Lecture 2: Random Effects and Hierarchical Structures

Dankmar Böhning

Southampton Statistical Sciences Research Institute University of Southampton, UK

 S^3RI , 12-13 June 2014

Crossed and Nested Factors

Nested Factors

ANOVA-Model for Crossed Factors

An Example

Linear mixed model formulation

Estimation and model selection

Crossed Factors

- ▶ two factors A (a levels) and B (b levels)
- **►** Example:
- experiment is done to study effect of temperature on yield of tomato plants
- ► A room temperature, B soil temperature
- ▶ both have 2 levels: high and low

Crossed Factors

Definition

experiment has factors crossed if all combinations of factors are available

Example

in the example with soil and room temperature:

$$(high, high), (high, low), (low, high), (low, low)$$

Crossed and Nested Factors

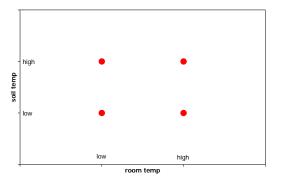


Figure: Example of two factor experiment with both factors crossed

Crossed and Nested Factors

Crossed and Nested Factors

Nested Factors

ANOVA-Model for Crossed Factors

An Example

Linear mixed model formulation

Estimation and model selection

- two factors A (a levels) and B (b levels),
- but B is nested within A
- **►** Example:
- a company operates two machines and 4 operators work with these machines
- ▶ but: only the first two operators (1 and 2) work on machine 1,
- the second two operators (3 and 4) on machine 2
- company is interested in the effect of
- A machine and B operator on machine product
- ▶ **important**: operator is *nested* within machine

Definition

experiment has factor b nested within A nested if level of B varies only within A

Example

in the example with machine and operator:

$$(o1, m1), (o2, m1), (o3, m2), (o4, m2)$$

where m indicates machine and o operator

Definition

experiment has factor b nested within A nested if level of B varies only within A

Example

in the example with machine and operator:

$$(o1, m1), (o2, m1), (o3, m2), (o4, m2)$$

where *m* indicates machine and *o* operator

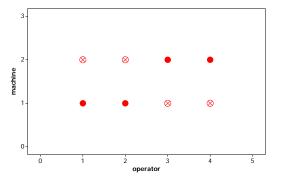


Figure: Example of two factor experiment with factor B operator nested within A machine

- two factors D (for doctor) and P (for patient),
- but P is nested within D
- since not every doctor consults every patient in the hospital
- ▶ **important**: patient is *nested* within doctor
- •
- ▶ two factors W (for ward) and P (for patient),
- but P is nested within W
- since patients stay within their wards in the hospital
- important: patient is nested within ward

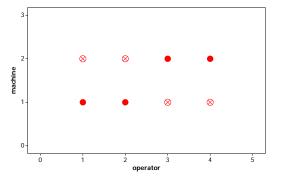


Figure: Example of two factor experiment with factor B operator nested within A machine

Crossed and Nested Factors

Nested Factors

ANOVA-Model for Crossed Factors

An Example

Linear mixed model formulation

Estimation and model selection

ANOVA-Model for Crossed Factors

Model

$$Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \epsilon_{ijk}$$

with $\epsilon_{ijk} \sim N(0, \sigma^2)$ and usual constraints on main effects α_i , β_j and interactions $(\alpha\beta)_{ij}$ (if they are fixed)

- i = 1, ..., a
- \triangleright j = 1, ..., b
- k = 1, ..., n

so that there are $n(n_j)$ observations per factor (j) combination

ANOVA-Model for Nested Factors

Model

$$Y_{ijk} = \mu + \alpha_i + \beta_{j(i)} + \epsilon_{ijk}$$

with $\epsilon_{ijk} \sim N(0, \sigma^2)$ and usual constraints on main effects α_i , $\beta_{j(i)}$ (if they are fixed), Factor B is nested within A

- i = 1, ..., a
- \triangleright j = 1, ..., b
- $k = 1, ..., n \text{ or } k = 1, ..., n_i$

so that there are $n(n_j)$ observations per factor (j) combination

- ▶ note that if B is nested A one can test for a main effect for A but not for an interaction with B separately from the main effect of B
- ▶ this is because *B* is changing only within *A*

Fixed or Random Effects?

when should we consider a factor random and when fixed?

no absolute rules exist. However, it is beneficial to consider a factor as **random** if

- the levels of the factor can be considered a sample from a much larger population
- ▶ the levels of the factor increase with the sample size it is appropriate to consider a factor as **fixed** if
 - there is specific interest in the levels of the factor
 - ▶ the levels of the factor (intervention, therapy) remain fixed when the sample size increases

ANOVA-Model for Crossed Factors

Crossed and Nested Factors

Nested Factors

ANOVA-Model for Crossed Factors

An Example

Linear mixed model formulation

Estimation and model selection

An example

- ▶ Data were collected on patients suffering from rheumatoid arthritis (RA) of the hands
- ► Computer program used to assess degree of severity
- Program analyses x-rays and determines mean joint space
- Only the left hands of patients were analysed.

the data have the following hierarchical structure:

- ▶ 4 patients randomly selected
- for each patient 3 x-rays were taken
- each x-ray was analysed by the computer twice

Data:

Patient	X-ray	comput	er–analysis
1	1	0.626	0.625
1	2	0.846	0.894
1	3	0.982	0.949
2	1	0.867	0.928
2	2	0.976	0.930
2	3	0.986	0.994
3	1	1.168	1.209
3	2	1.313	1.324
3	3	1.214	1.406
4	1	0.198	0.173
4	2	0.234	0.203
4	3	0.179	0.177

Model

for the computer analysis Y_{ijk} for patient i, x-ray j, and computer analysis k:

$$Y_{ijk} = \mu + \alpha_i + \beta_{j(i)} + \epsilon_{ijk}$$

with

- ▶ a patient random effect $\alpha_i \sim N(0, \sigma_P^2)$
- ▶ an x-ray random effect $\beta_{i(j)} \sim N(0, \sigma_X^2)$ nested in the patient effect
- with a random error $\epsilon_{ijk} \sim N(0, \sigma^2)$

Model

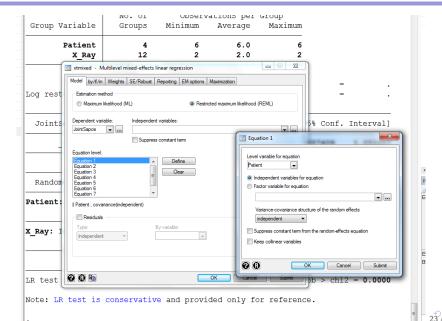
$$Y_{ijk} = \mu + \alpha_i + \beta_{i(i)} + \epsilon_{ijk}$$

since α_i and $\beta_{i(i)}$ assumed independent

$$Var(Y_{ijk}) = \sigma_P^2 + \sigma_X^2 + \sigma^2$$

hence we have a variance component model with **three variance components**

An Example



Lecture 2: Random Effects and Hierarchical Structures

An Example

Mixed-effects REML regression Number of							of	obs	=		24	
Group Variab	le	No. of Groups	Mi	Observ nimum		ns pe erage		ıp ıximu	m			
Patier X_Ra		4 12		6 2		6.0 2.0			- 6 2			
Log restricted	d-1:	ikelihood =	18.	352221			Wald c			=		:
JointSapce		Coef.	Std.	Err.		Z	P> z		[95%	Conf.	Inte	erval]
_cons		.808375	.225	8369	3.	58	0.000		.365	7428	1.2	251007
Random-effe	cts	Parameters		Estima	ite	Std.	Err.		[95%	Conf.	Inte	erval]
Patient: Ident	tity	var(_cons)		.20078	867	.166	5807		.039	4952	1.0	020765
X_Ray: Identit	ΞY	var(_cons)		.00863	354	.004	8522		.002	8708	.02	259759
	Vá	ar(Residual)		.00206	46	.000	8429		.000	9276	.00	045956
LR test vs. 1:	inea	ar regressio	n:	ch	ni2(2) =	64.0	5	Prob	> chi	2 = (0.0000

Fitting various variance component models:

Model	σ_X^2	σ_P^2	σ^2	log L	LRT
P,X	0.0086	0.2008	0.0021	18.3522	64.05 [§]
Р	-	0.2025	0.0090	12.6075	11.49
-	-	-	0.1675	-13.6741	52.55

[§] null hypothesis is here that all random effect variance components are zero

Crossed and Nested Factors

Nested Factors

ANOVA-Model for Crossed Factors

An Example

Linear mixed model formulation

Estimation and model selection

Mixed Model

$$Y = X\beta + A\alpha + \epsilon$$

- Y vector of responses
- \triangleright ϵ vector of mean-zero normal errors
- X design matrix of fixed effects
- \triangleright β vector of fixed effect parameters
- A design matrix of random effects
- lacktriangleright lpha vector of mean zero normal random effect parameters

amount of purity data:

Determination of impurity (in%)							
Batch	1	2	3	4			
1	3.28	3.09	3.03	3.07			
2	3.52	3.48	3.38	3.43			
3	2.91	2.80	2.76	2.85			
4	3.34	3.38	3.23	3.31			
5	3.28	3.14	3.25	3.21			
6	2.98	3.01	3.13	2.95			

illustration

Mixed Model

$$Y = X\beta + A\alpha + \epsilon$$

Note that

$$E(Y) = X\beta$$

let

- ▶ covariance matrix of \(\epsilon \) be R
- ightharpoonup covariance matrix of α be G

then the covariance matrix V of Y is given as

$$V = AGA' + R$$

Linear mixed model formulation

Crossed and Nested Factors

Nested Factors

ANOVA-Model for Crossed Factors

An Example

Linear mixed model formulation

Estimation and model selection

estimation:

estimation in linear mixed models is based upon the **multivariate normal log-likelihood**

$$-2\log L = constant + log|V| + (Y - X\beta)'V^{-1}(Y - X\beta)$$

another method is preferred when modeling covariance structures such as variance component models called **restricted maximum likelihood estimation (REML)** which uses a correction factor in the multivariate normal likelihood:

$$-2\log RL = constant + \log |\mathbf{X}'\mathbf{V}^{-1}\mathbf{X}| + \log |V| + (Y - X\beta)'V^{-1}(Y - X\beta)$$

estimation:

- ▶ REML corrects for estimating the mean structures
- gives unbiased estimates of variance components in classical balanced settings
- where MLEs are not unbiased
- both methods give consistent estimators
- for modelling covariance structures we use REML
- for modelling mean structures we us MLE

model evaluation

- for model assessment we will use criteria that compromise between model fit and model complexity
- Akaike information criterion

$$AIC = -2\log L + 2k$$

▶ Bayesian Information criterion

$$BIC = -2\log L + k\log n$$

- ▶ where *k* is the number of parameters in the model
- ▶ and *n* is the number of clustered observations
- ▶ we seek a model for which AIC and/or BIC are small

- Estimation and model selection

model assessment:

Model	σ_X^2	σ_P^2	σ^2	log L	LRT	AIC	BIC
P,X	0.0086	0.2008	0.0021	18.35	64.05	-28.70	-29.54
Р	-	0.2025	0.0090	12.61	11.49	-19.22	-19.84
-	-	-	0.1675	-13.67	52.55	31.35	30.93