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Crossed and Nested Factors

Crossed Factors

I two factors A (a levels) and B (b levels)

I Example:

I experiment is done to study effect of temperature on yield of
tomato plants

I A room temperature, B soil temperature

I both have 2 levels: high and low
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Crossed and Nested Factors

Crossed Factors

Definition
experiment has factors crossed if all combinations of factors are
available

Example

in the example with soil and room temperature:

(high, high), (high, low), (low , high), (low , low)
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Crossed and Nested Factors
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Figure: Example of two factor experiment with both factors crossed
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Nested Factors

Nested Factors

I two factors A (a levels) and B (b levels),

I but B is nested within A

I Example:

I a company operates two machines and 4 operators work with
these machines

I but: only the first two operators (1 and 2) work on machine 1,

I the second two operators (3 and 4) on machine 2

I company is interested in the effect of

I A machine and B operator on machine product

I important: operator is nested within machine
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Nested Factors

Nested Factors

Definition
experiment has factor b nested within A nested if level of B varies
only within A

Example

in the example with machine and operator:

(o1,m1), (o2,m1), (o3,m2), (o4,m2)

where m indicates machine and o operator
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Nested Factors

Nested Factors

Definition
experiment has factor b nested within A nested if level of B varies
only within A
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in the example with machine and operator:
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Figure: Example of two factor experiment with factor B operator nested
within A machine
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Nested Factors

Nested Factors

I two factors D (for doctor) and P (for patient),

I but P is nested within D

I since not every doctor consults every patient in the hospital

I important: patient is nested within doctor

I

I two factors W (for ward) and P (for patient),

I but P is nested within W

I since patients stay within their wards in the hospital

I important: patient is nested within ward
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Figure: Example of two factor experiment with factor B operator nested
within A machine
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ANOVA-Model for Crossed Factors

Model

Yijk = µ + αi + βj + (αβ)ij + εijk

with εijk ∼ N(0, σ2) and usual constraints on main effects αi , βj

and interactions (αβ)ij (if they are fixed)

I i = 1, ..., a

I j = 1, ..., b

I k = 1, ..., n

so that there are n(nj) observations per factor (j) combination
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ANOVA-Model for Crossed Factors

ANOVA-Model for Nested Factors

Model

Yijk = µ + αi + βj(i) + εijk

with εijk ∼ N(0, σ2) and usual constraints on main effects αi , βj(i)

(if they are fixed), Factor B is nested within A

I i = 1, ..., a

I j = 1, ..., b

I k = 1, ..., n or k = 1, ..., nj

so that there are n(nj) observations per factor (j) combination
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ANOVA-Model for Crossed Factors

I note that if B is nested A one can test for a main effect for A
but not for an interaction with B separately from the
main effect of B

I this is because B is changing only within A
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ANOVA-Model for Crossed Factors

Fixed or Random Effects?
when should we consider a factor random and when fixed?

no absolute rules exist. However, it is beneficial to consider a
factor as random if

I the levels of the factor can be considered a sample from a
much larger population

I the levels of the factor increase with the sample size

it is appropriate to consider a factor as fixed if

I there is specific interest in the levels of the factor

I the levels of the factor (intervention, therapy) remain fixed
when the sample size increases
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An Example

An example

I Data were collected on patients suffering from rheumatoid
arthritis (RA) of the hands

I Computer program used to assess degree of severity

I Program analyses x-rays and determines mean joint space

I Only the left hands of patients were analysed.

the data have the following hierarchical structure:

I 4 patients randomly selected

I for each patient 3 x-rays were taken

I each x-ray was analysed by the computer twice
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An Example

Data:

Patient X-ray computer–analysis

1 1 0.626 0.625
1 2 0.846 0.894
1 3 0.982 0.949
2 1 0.867 0.928
2 2 0.976 0.930
2 3 0.986 0.994
3 1 1.168 1.209
3 2 1.313 1.324
3 3 1.214 1.406
4 1 0.198 0.173
4 2 0.234 0.203
4 3 0.179 0.177
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An Example

Model
for the computer analysis Yijk for patient i , x-ray j , and computer
analysis k:

Yijk = µ + αi + βj(i) + εijk

with

I a patient random effect αi ∼ N(0, σ2
P)

I an x-ray random effect βi(j) ∼ N(0, σ2
X ) nested in the patient

effect

I with a random error εijk ∼ N(0, σ2)
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An Example

Model

Yijk = µ + αi + βj(i) + εijk

since αi and βj(i) assumed independent

I

Var(Yijk) = σ2
P + σ2

X + σ2

hence we have a variance component model with three variance
components
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An Example

LR test vs. linear regression:       chi2(2) =    64.05   Prob > chi2 = 0.0000

                                                                              

               var(Residual)     .0020646   .0008429      .0009276    .0045956

                                                                              

                  var(_cons)     .0086354   .0048522      .0028708    .0259759

X_Ray: Identity               

                                                                              

                  var(_cons)     .2007867   .1665807      .0394952    1.020765

Patient: Identity             

                                                                              

  Random-effects Parameters      Estimate   Std. Err.     [95% Conf. Interval]

                                                                              

                                                                              

       _cons      .808375   .2258369     3.58   0.000     .3657428    1.251007

                                                                              

  JointSapce        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

Log restricted-likelihood =  18.352221          Prob > chi2        =         .

                                                Wald chi2(0)       =         .

                                                           

          X_Ray         12          2        2.0          2

        Patient          4          6        6.0          6

                                                           

 Group Variable     Groups    Minimum    Average    Maximum

                    No. of       Observations per Group

                                                           

Mixed-effects REML regression                   Number of obs      =        24
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An Example

Fitting various variance component models:

Model σ2
X σ2

P σ2 log L LRT

P,X 0.0086 0.2008 0.0021 18.3522 64.05§

P - 0.2025 0.0090 12.6075 11.49
- - - 0.1675 -13.6741 52.55

§ null hypothesis is here that all random effect variance
components are zero
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Linear mixed model formulation

Mixed Model

Y = Xβ + Aα + ε

I Y vector of responses

I ε vector of mean-zero normal errors

I X design matrix of fixed effects

I β vector of fixed effect parameters

I A design matrix of random effects

I α vector of mean zero normal random effect parameters
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Linear mixed model formulation

amount of purity data:

Determination of impurity (in%)

Batch 1 2 3 4

1 3.28 3.09 3.03 3.07
2 3.52 3.48 3.38 3.43
3 2.91 2.80 2.76 2.85
4 3.34 3.38 3.23 3.31
5 3.28 3.14 3.25 3.21
6 2.98 3.01 3.13 2.95
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Linear mixed model formulation

illustration



Y11

Y12

Y13

Y14

Y21

Y22

Y23

Y24

...
Y61

Y62

Y63

Y64



=



1
1
1
1
1
1
1
1
...
1
1
1
1



µ +



1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
...
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1





α1

α2

α3

α4

α5

α6

 +



ε11
ε12
ε13
ε14
ε21
ε22
ε23
ε24
...
ε61
ε62
ε63
ε64


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Linear mixed model formulation

Mixed Model

Y = Xβ + Aα + ε

Note that
E (Y ) = Xβ

let

I covariance matrix of ε be R

I covariance matrix of α be G

then the covariance matrix V of Y is given as

V = AGA′ + R
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Estimation and model selection

estimation:
estimation in linear mixed models is based upon the multivariate
normal log-likelihood

−2 log L = constant + log |V |+ (Y − Xβ)′V−1(Y − Xβ)

another method is preferred when modeling covariance structures
such as variance component models called restricted maximum
likelihood estimation (REML) which uses a correction factor in
the multivariate normal likelihood:

−2 log RL = constant+ log |X′V−1X|+log |V |+(Y−Xβ)′V−1(Y−Xβ)
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Estimation and model selection

estimation:

I REML corrects for estimating the mean structures

I gives unbiased estimates of variance components in classical
balanced settings

I where MLEs are not unbiased

I both methods give consistent estimators

I for modelling covariance structures we use REML

I for modelling mean structures we us MLE
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Estimation and model selection

model evaluation

I for model assessment we will use criteria that compromise
between model fit and model complexity

I Akaike information criterion

AIC = −2 log L + 2k

I Bayesian Information criterion

BIC = −2 log L + k log n

I where k is the number of parameters in the model

I and n is the number of clustered observations

I we seek a model for which AIC and/or BIC are small
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Estimation and model selection

model assessment:

Model σ2
X σ2

P σ2 log L LRT AIC BIC

P,X 0.0086 0.2008 0.0021 18.35 64.05 -28.70 -29.54
P - 0.2025 0.0090 12.61 11.49 -19.22 -19.84
- - - 0.1675 -13.67 52.55 31.35 30.93
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