Dankmar Böhning

Southampton Statistical Sciences Research Institute Mathematics and Medicine, Southampton, UK

Maha Sarakham, Thailand, May 2013

<ロト < 団 ト < 臣 ト < 臣 ト 三 9000 1/54

joint work with:

- Heinz Holling, Statistics and Quantitative Methods Faculty of Psychology and Sport Science University of Münster, Germany
- Suphada Charoensawat, Health Sciences Program Udon Thani Rajabhat University, Udon Thani, Thailand

principles of research

research should be

- excellent
- ► novel
- relevant
- ▶ impact

<ロト<問ト<良ト<良ト<良ト 3/54

introduction and background of diagnostic setting

<ロト<部ト<差ト<差ト 4/54

SROC-Diagram and a new measure

a mixed model approach

case studies MMSE and Dementia/MCI MOOD and depressive disorders MRS and prostate cancer

often studies are done in medicine or psychology to determine:

discriminatory ability of a diagnostic test to separate people

<ロト<問ト<臣ト<臣ト 5/54

- with a specific disease (or condition)
- from those without

introduction and background of diagnostic setting

measures of diagnostic accuracy

- ► Specificity: P(T − |D−) = q Probability of a negative test result for a healthy person
- Sensitivity: P(T + |D+) = p Probability of a positive test result for a diseased person

<ロト<問ト<臣ト<臣ト 6/54

estimating diagnostic accuracy

- ▶ Specificity: $P(T |D-) = \hat{q} = \frac{x}{n}$ where x is the number of true-negatives out of n healthy individuals, n - x are the false-positives
- Sensitivity: $P(T + |D+) = \hat{p} = \frac{y}{m}$ where y are the number of true-positives out of m healthy individuals, y - m are the false-negatives

<ロト<問ト<臣ト<臣ト 7/54

frequently available:

- a variety of diagnostic studies
- providing diagnostic measures

 x_i, n_i (specificity)

 y_i, m_i (sensitivity)

<ロト<問ト<臣ト<臣ト 8/54

- ▶ for i = 1, ..., k
- leading to the field of meta-analysis

an example: meta-analysis of diagnostic accuracy of natriuretic peptides for heart failure

- diagnosis of heart failure is difficult
- overdiagnosis and underdiagnosis is occurring
- natriuretic peptides have been proposed as a diagnostic test
- meta-analysis provided by Doust *et al.* (2004) for brain natriuretic peptide (BNP)
- restriction on studies that use left ventricular ejection fraction of 40% or less as gold standard

□ > < @ > < ≧ > < ≧ > < ≧ > < ≧
 9/54

Data on meta-analysis of diagnostic accuracy of natriuretic peptides for heart failure

	diseased		healthy		
study	y(TP)	m - y(FN)	x(TN)	n - x(FP)	n+m
Bettenc. 2000	29	7	46	19	101
Choy 1994	34	6	22	13	75
Valli 2001	49	9	78	17	153
Vasan 2002a	4	6	1612	85	1707
Vasan 2002b	20	40	1339	71	1470
Hutcheon 2002	29	2	102	166	299
Landray 2000	26	14	75	11	126
Smith 2000	11	1	93	50	155

Contraction of the

-introduction and background of diagnostic setting

Systematic Reviews

in Health Care Meta-analysis in context

Methods for Meta-Analysis in Medical Research

WWILE

Alex J. Sutton • Keith R. Abrams David R. Jones • Trevor A. Sheldon • Fujian So

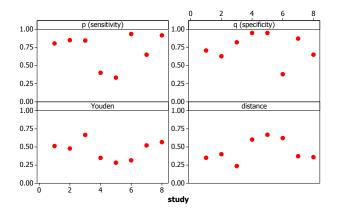
WILEY SERIES IN PROBABILITY AND STATISTICS

a possible strategy:

compute a summary measure for each study:

Youden index

$$J_i=p_i+q_i-1$$

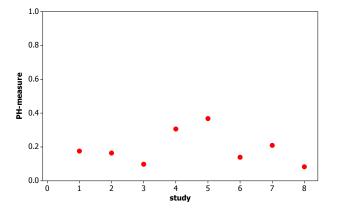

Euclidean distance (to the point of perfect separation)

$$E_i = \sqrt{(1-p_i)^2 + (1-q_i)^2}$$

<ロト<日、<日、<日、<日、<日、<日、<日、<日、<日、<12/54

... many others (Xinhua Liu 2012 SiM)

considerable variation across studies:

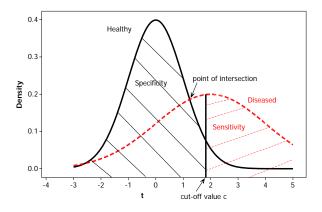

a new measure

proportional hazards (PH) measure

$$heta = rac{\log p}{\log(1-q)}$$

relating log-sensitivity to log-false positive rate

introduction and background of diagnostic setting



the cut-off value problem

- Why not proceed with the available armada of meta-analysis methods?
- continuous or ordered categorical test uses cut-off value

<ロト < 回 > < 国 > < 国 > < 国 > 国) (0,0) 16/54

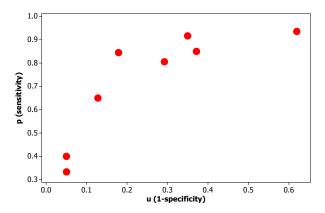
Illustration of the cut-off value problem:

the cut-off value problem

- sensitivities and specificities from different studies not comparable
- different values for sensitivity and specificity might be due to different diagnostic accuracy or different cut-off value
- cut-off problem introduces bias of unknown direction and size

<ロト < 回 > < 国 > < 国 > < 国 > 国 2000 18/54

The SROC-diagram for meta-analytic situations

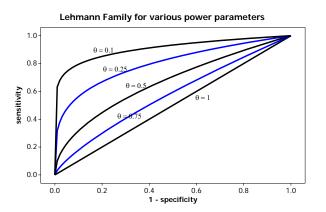

Consider the pairs (sensitivity, 1-specificity) estimated by

$$(\hat{p}_i, 1 - \hat{q}_i) = (y_i/m_i, 1 - x_i/n_i)$$

for i = 1, ..., k

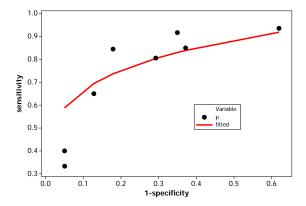
- include them in a Receiver Operating Characteristic (ROC) diagram
- called summary ROC because the points relate to different studies with potentially different cut-off values

SROC-diagram for MA of BNP and heart failure


Modelling of the SROC-diagram

Consider the Lehmann family for θ > 0 fixed (Le 2006):

$$p=(1-q)^{ heta}$$

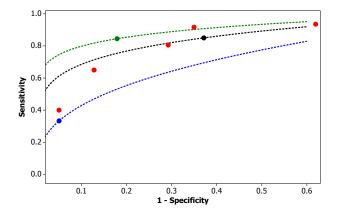

• note that θ represents the **diagnostic power**

SROC-Diagram and a new measure

instead of constructing average SROC model ...

Modelling of the SROC-diagram

consider the study-specific Lehmann curves :

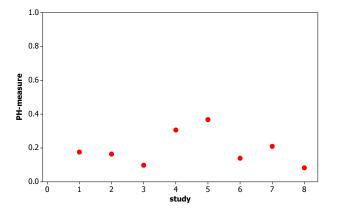

$$p=(1-q)^{\hat{ heta}_i}$$
 (1)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where $\hat{\theta}_i = \frac{\log \hat{p}_i}{\log(1-\hat{q}_i)}$ • so that (1) goes exactly through the point

$$(\hat{p}_i, 1-\hat{q}_i)$$

SROC-Diagram and a new measure


explaining the reduced variation of the PH measure

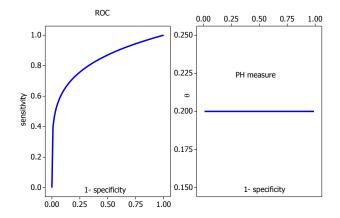
proportional hazards (PH) measure for study i

$$heta_i = rac{\log \hat{p}_i}{\log(1-\hat{q}_i)}$$

relating log-sensitivity to log-false positive rate

SROC-Diagram and a new measure

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □


explaining the reduced variation of the PH measure

> Youden index, euclidean distance, and others measure

diagnostic accuracy + something else

whereas the PH measure focuses more diagnostic accuracy

SROC-Diagram and a new measure

□ > < @ > < \(\bar{B}\) < \(\bar{B}\) < \(\bar{B}\) > \(\bar{B}\) < \(\bar{B}\) = \(\bar{D}\) < \(\b

a mixed model approach

k studies available with diagnostic accuracies $\hat{ heta}_1, \cdots, \hat{ heta}_k$ where

$$\hat{ heta}_i = rac{\log \hat{p}_i}{\log(1-\hat{q}_i)}$$

linear mixed model

$$\log \hat{\theta}_i = \beta^{\mathsf{T}} \mathbf{x}_i + \delta_i + \epsilon_i$$

<ロト<回ト<三ト<三ト<三ト 30/54

a mixed model approach

k studies available with diagnostic accuracies $\hat{ heta}_1, \cdots, \hat{ heta}_k$ where

$$\hat{ heta}_i = rac{\log \hat{p}_i}{\log(1-\hat{q}_i)}$$

linear mixed model

$$\log \hat{\theta}_i = \beta^{\mathsf{T}} \mathbf{x}_i + \delta_i + \epsilon_i$$

<ロト < 回 ト < 直 ト < 直 ト 三 31/54

 \triangleright **x**_{*i*} is a known covariate vector in study *i*

a mixed model approach

k studies available with diagnostic accuracies $\hat{ heta}_1, \cdots, \hat{ heta}_k$ where

$$\hat{ heta}_i = rac{\log \hat{p}_i}{\log(1-\hat{q}_i)}$$

linear mixed model

$$\log \hat{\theta}_i = \beta^{\mathsf{T}} \mathbf{x}_i + \delta_i + \epsilon_i$$

<ロ > < 回 > < 直 > < 直 > < 直 > 三 32/54

- x_i is a known covariate vector in study i
- ► $\delta_i \sim N(0, \tau^2)$, τ^2 unknown and $\epsilon_i \sim N(0, \sigma_i^2)$ with known variance σ_i^2

the within study variance of

 $\log \hat{\theta} = \log(-\log \hat{p}) - \log(-\log(1 - \hat{q}))$ using the δ -method $(VarT(X) \approx T'(EX)^2 Var(X))$ $Var \log(-\log \hat{p}) \approx \frac{\hat{p}(1 - \hat{p})/m}{\hat{p}^2(\log \hat{p})^2}$ $Var \log(-\log 1 - \hat{q}) \approx \frac{\hat{q}(1 - \hat{q})/n}{(1 - \hat{q})^2(\log \hat{p})^2}$

leads to the within study variance

$$\sigma_i^2 = \frac{m_i - y_i}{m_i y_i (\log \hat{p}_i)^2} + \frac{x_i}{n_i (n_i - x_i) (\log 1 - \hat{q}_i)^2}$$

<ロト<日、<三ト<三ト<三ト<三、 33/54

a mixed model approach

has great flexibility and embeds conventional approaches

a mixed model approach

- has great flexibility and embeds conventional approaches
- "fixed" effect model

$$\log \hat{\theta}_i = \beta_0 + \epsilon_i$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

a mixed model approach

- has great flexibility and embeds conventional approaches
- "fixed" effect model

$$\log \hat{\theta}_i = \beta_0 + \epsilon_i$$

"random" effect model

$$\log \hat{\theta}_i = \beta_0 + \delta_i + \epsilon_i$$

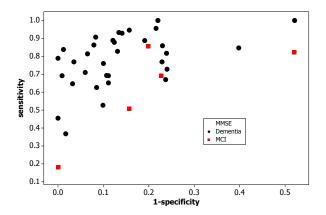
-case studies

MMSE and Dementia/MCI

MA of MMSE and Dementia/MCI

- mini-mental state examination (MMSE) as a diagnostic test for the detection of dementia and, more recently, mild cognitive impairment (MCI)
- MA by Mitchell (2009, J Psychiatr Res) included 38 studies

<ロト<日、<三、<三、<三、<三、<三、<三、<三、</2、</2、</2>


MMSE and Dementia/MCI

MA of MMSE and Dementia/MCI

study	author(s)	condition	ΤP	FN	FP	ΤN
1	Belle <i>et al.</i> , 2000	Dem	65	3	240	870
2	Borson <i>et al.</i> , 2000	Dem	117	12	10	110
3	Brayne <i>et al.</i> , 1989	Dem	24	5	44	292
4	Brodaty <i>et al.</i> , 2002	Dem	67	15	48	153
36	Borson <i>et al.</i> , 2005	MCI	37	36	22	118
37	Kalbe <i>et al.</i> , 2004	MCI	67	30	22	75
38	Nasred. et al., 2005	MCI	17	77	0	90

-case studies

MMSE and Dementia/MCI

MMSE and Dementia/MCI

proc mixed in SAS

```
proc mixed data=MMSE method=ml covtest;
class study condition;
model logtheta = condition /s;
* weight is inverse variance
weight w;
random study(condition);
* do NOT estimate residual variance component
parms (1) (1) /hold=2;
run;
```

□ > < ⊡ > < Ξ > < Ξ > < Ξ > Ξ
 40/54

MMSE and Dementia/MCI

solution for fixed effects

effect	parameter	SE	Z-value
Intercept	-2.2878	0.1208	-18.94
condition	0.8605	0.3187	2.70

associated SROC curves dementia:

$$p = (1 - q)^{\exp(-2.2878)}$$

MCI:

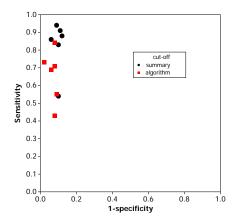
$$p = (1 - q)^{\exp(-2.2878 + 0.8605)}$$

MOOD and depressive disorders

MA of MOOD and depressive disorder

- nine-item MOOD module of the Patient Health Questionnaire (PHQ-9) developed to screen and to diagnose patients in primary care with depressive disorders
- MA by Wittkampf at al. (2007, General Hospital Psychiatry) included 12 studies
- the instrument consists of 9 questions each could receive 0-3 points
- hence the total score ranges from 0 to 27
- the studies used either a cut-off of 10 (summary score) or a more complex evaluation algorithm (algorithm)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >


└─MOOD and depressive disorders

MOOD and depressive disorder

study	1st author	cut-off	ΤP	FN	FP	ΤN
1	Corapcioglu 2004	algorithm	65	26	104	1192
2	Diez-Quevedo 2001	algorithm	70	13	74	846
3	Grafe 2004	sum score	62	10	27	429
4	Kroenke 2001	sum score	36	5	65	474
5	Lowe 2004	sum score	55	11	43	392
6	Mazzotti2003	algorithm	6	8	12	144
7	McManus2005	sum score	121	103	80	720
8	Persoons 2003	algorithm	11	5	5	76
9	Picardi 2005	algorithm	6	5	0	3
10	Spitzer 1999	algorithm	85	31	9	460
11	Watnick 2005	sum score	15	1	4	42
12	Williams 2005	sum score	96	10	23	187

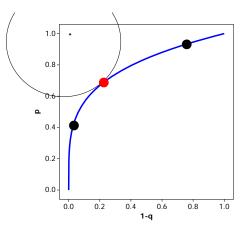
-case studies

MOOD and depressive disorders

└─ MOOD and depressive disorders

solution for fixed effects

effect	parameter	SE	Z-value
Intercept	-2.5332	0.2817	-8.99
cut-off	0.4804	0.3966	1.21


different criterion?

better use Euclidean distance:

$$E = (1 - p)^2 + (1 - q)^2$$

-case studies

MOOD and depressive disorders

-case studies

MOOD and depressive disorders

variance computation:

$$\hat{E} = (1-\hat{p})^2 + (1-\hat{q})^2$$
 where $\hat{p} = y/m$ and $\hat{q} = x/n$

$$V$$
ar $\hat{E} pprox 4(1-\hat{p})^2 \hat{p}(1-\hat{p})/m + 4(1-\hat{q})^2 \hat{q}(1-\hat{q})/m$

used δ -method:

$$VarT(X) \approx T'(EX)^2 Var(X)$$

└─ MOOD and depressive disorders

solution for fixed effects using Euclidean distance

criterion	effect	parameter	SE	Z-value
PH				
model	cut-off	0.4804	0.3966	1.21
Eucliden				
distance	cut-off	0.05629	0.04297	1.31

<ロ > < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > () の ()

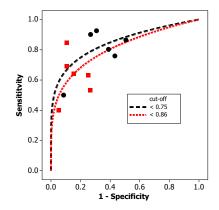
MRS and prostate cancer

MA of MRS and prostate cancer

 magnetic resonance spectroscopy has ability to discriminate prostate cancer from benign prostatic hyperplasia based on reduced citrate and elevated choline in the cancerous region

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- test works on a voxel of signal intensity ratios of (choline+creatine)/citrate
- ▶ two cut-off points are in use: < 0.75 and < 0.86
- MA by Wang et al. (2008) including 12 studies


MRS and prostate cancer

MA of MRS and prostate cancer

study	1st author	cut-off	ΤP	FN	FP	ΤN
1	Ullrich	0.75	122	30	35	55
2	Juyoung I	0.75	73	8	80	219
3	Juyoung II	0.75	75	6	92	207
4	Wiefer	0.75	123	39	38	50
5	Juergen	0.75	134	21	40	39
6	Kyle	0.75	12	12	7	75
7	Ullrich	0.86	81	71	24	59
8	Juyoung I	0.86	56	25	32	267
9	Juyoung II	0.86	52	29	20	59
10	Scheidler	0.86	98	57	20	59
11	Yuen	0.86	6	9	15	266
12	Prando	0.86	44	8	32	264

-case studies

MRS and prostate cancer

<ロ> < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 1 < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 → < 日 → < 日 → < 日 → < 日 → < 日 → < 日 → < 日 → < 日 → < 日 →

MRS and prostate cancer

solution for fixed effects using PHM and Euclidean distance

criterion	effect	parameter	SE	Z-value
PH				
model	cut-off	0.2049	0.3516	0.58
Eucliden				
distance	cut-off	-0.02119	0.05730	-0.37

◆□ → < □ → < Ξ → < Ξ → Ξ 52/54

MRS and prostate cancer

some conclusions

- benefit of the approach: a bivariate problem is reduced to a univariate one
- ► this is not unique: log p = θ log(1 q) could be replaced by log p = θ + log(1 - q) or

$$p = \exp heta(1-q)$$

or

$$\exp \theta = \frac{p}{1-q} =$$
likelihood ratio positive

MRS and prostate cancer

recent work

- Holling, H., Böhning, W., and Böhning, D. (2012). Likelihood based clustering of meta-analytic SROC curves. *Psychometrika* 77, 106-126.
- Holling, H., Böhning, W., and Böhning, D. (2012). Meta-analysis of diagnostic studies based upon SROC-curves: a mixed model approach using the Lehmann family. *Statistical Modelling - an International Journal* 12, 347-375.
- Doebler, P., Holling, H., and Böhning, D. (2012). A mixed model approach to meta-analysis of diagnostic studies with binary test outcome. *Psychological Methods* 17, 418-436.
- www.personal.soton.ac.uk/dab1f10/home.htm