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Summary
Objectives: This contribution provides a unifying con-
cept for meta-analysis integrating the handling of un-
observed heterogeneity, study covariates, publication
bias and study quality. It is important to consider these
issues simultaneously to avoid the occurrence of arti-
facts, and a method for doing so is suggested here.
Methods: The approach is based upon the meta-
likelihood in combination with a general linear non-
parametric mixed model, which lays the ground for all
inferential conclusions suggested here.
Results: The concept is illustrated at hand of a meta-
analysis investigating the relationship of hormone re-
placement therapy and breast cancer. The phenomenon
of interest has been investigated in many studies for a
considerable time and different results were reported.
In 1992 a meta-analysis by Sillero-Arenas et al. [1]
concluded a small, but significant overall effect of 1.06
on the relative risk scale. Using the meta-likelihood ap-
proach it is demonstrated here that this meta-analysis
is due to considerable unobserved heterogeneity. Fur-
thermore, it is shown that new methods are available
to model this heterogeneity successfully. It is argued
further to include available study covariates to explain
this heterogeneity in the meta-analysis at hand.
Conclusions: The topic of HRT and breast cancer has
again very recently become an issue of public debate,
when results of a large trial investigating the health ef-
fects of hormone replacement therapy were published
indicating an increased risk for breast cancer (risk ratio
of 1.26). Using an adequate regression model in the
previously published meta-analysis an adjusted esti-
mate of effect of 1.14 can be given which is consider-
ably higher than the one published in the meta-analy-
sis of Sillero-Arenas et al. [1]. In summary, it is hoped
that the method suggested here contributes further
to a good meta-analytic practice in public health
and clinical disciplines.
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1. Introduction and
Background
In all empirical sciences there exists an
enormous body of empirical knowledge for
a given question of interest. This knowledge
has often been collected in numerous
studies and empirical investigations by
means of experimental studies, clinical
trials or observational studies. Typically,
these individual findings are buried in the
scientific literature, in registries, or some
other form of documentary source. From
here, they must be retrieved and relevant in-
formation extracted, and finally, statistically
analyzed by an appropriate methodology.
We have entered the territory of meta-analy-
sis. Numerous publications in the area
underline that meta-analysis has become a
central role in the collection, analysis and
evaluation of findings in any empirical
science. Before we proceed to develop a
general statistical framework for coping
with controversial issues in a more universal
framework, we hope to initiate interest in the
question by recalling a recent debate on the
public health issue of hormone replacement
therapy. Hormone replacement therapy is
applied to achieve positive effects in many
respects for women near and after meno-
pause. It has been questioned, however, for a
longer period if it relates to the occurrence
of breast cancer.

In a recent evening news broadcast Die
Tagesthemena the following event was re-
ported which translates as follows: “New

Doubts on Hormone Replacement Ther-
apy. Due to arising care for the participating
women a hormone study (the WHI-study) in
the USA including 16,000 older women was
terminated earlier than scheduled. The ob-
jective of the study was to investigate the
benefit of Oestrogenes and Progestines for
females in or after menopause. As it turned
out that the risks occurring due to the daily
dosages of hormone are larger than their po-
tential benefits, the US health adminis-
tration NIH declared termination of the
study three years prior to the end of the de-
signed study period. Specifically, more
cases of breast cancer, myocardial infarc-
tion, stroke, and blood clothing in the lung
had occurred in the exposed group (under
hormone treatment) than in the control
group (no exposure) which was given a
placebo presumingly of no effect.” (Die Ta-
gesthemen, ARD 10:30 p.m.). Details of the
before mentioned study can be found else-
where [2]. For breast cancer the study pro-
vided a risk ratio of 1.26. This seems to be a
minor effect. However, one should keep in
mind that even a small elevated relative risk
can have large public health effects if the
size of the exposed population is large. To
demonstrate let us assume that in a popu-
lation with a baseline risk of breast cancer of
1 in 100 there are 1,000,000 under hormone
replacement therapy (HRT) leading to 2,600
additional cases due to HRT (using the risk
ratio of the above mentioned study). Even
with a diminished assumption of 1 in 1000
(the baseline risk e.g. the risk in the placebo
arm of the WHI-study was, with 124 breast
cancer cases in 8,102 women under risk, far
above this number [2] ) one can expect about
260 additional cases due to HRT. Thus, even
small effects are of considerable importance

a This evening news belongs to Channel One of
public German television and has typically lead-
ing participant quota.
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when the exposure is widespread in the
community.

This finding of the WHI-study has not
only been taken up by the media as impor-
tant health news, even medical investigators
executing clinical trials with a hormone re-
placement therapy arm were taken by sur-
prise by the results of the WHI-trial (see
Fig. 1). In this case, a medical study was
publicly criticized for using HRT, though it
would have been known that an excess risk
for developing breast cancer exists. Interest-
ingly, in its response the medical team
pointed out that they would have not
executed the trial in this fashion if the excess
risks had been known prior to the time of the

beginning of their study. In addition, the
medical team pointed the attention of the
reader to the agreement of the hospital’s
ethical committee. However, as we will
argue in this contribution, appropriate
analysis of the body of evidence would have
flagged sources of excess risks a consider-
able time earlier.

Indeed, if we reconsider the meta-analy-
sis by Sillero-Arenas et al. [1] and use the
appropriate tools in a secondary analysis,
we find an estimate of 1.137 on the relative
risk scale. This finding occurs since the
meta-analysis at hand experiences consider-
able unobserved heterogeneity, which has
previously been ignored (leading to a di-

minished effect estimate of 1.06). We argue
further in this contribution that this form of
heterogeneity can be successfully linked to
covariates observed in the study base pro-
vided by SA, namely the study type (cohort
or case-control) and whether in the study the
estimate of effect has been adjusted for po-
tential confounders. It can be furthermore
established that these covariates correlate
with the size of the effect measure. Con-
sequently, an odds ratio adjusted for study
type and confounder treatment seems to be
more appropriate, leading to the one given
above.

In this contribution, we outline a general
concept based on what is called the meta-
likelihood, which provides a unifying ap-
proach to deal with several typical problems
in the area of meta-analysis: study covari-
ates and unobserved heterogeneity, pub-
lication bias and study quality.

2. An Application: The Data of
the Meta-Analysis of Hormone
Replacement Therapy and the
Occurrence of Breast Cancer

We would like to come back to a meta-
analysis provided by Sillero-Arenas et al.
[1] – throughout this paper abbreviated as
SA – and point out that the finding of the re-
cent trial [2] is not surprising and essentially
agrees with the result of the meta-analysis.
The meta-analysis [1] contained 23 case-
control studies and 13 cohort studies. There
was also one clinical trial mentioned that is
not further considered here since relevant
information could not be retrieved for this
study.

2.1 Effect Measure and
95% Confidence Interval
Since there is a mixture of study designs the
odds ratio appears to be the appropriate ef-
fect measure. The odds ratio is validly es-
timable in case-control and cohort studies,
whereas the relative risk can only be validly
estimated in cohort studies, though the dif-

Fig. 1 Critical report on a clinical trial using HRT in the daily DER TAGESSPIEGEL, January 27, 2003. Title translates as:
Medication Study of Women: Does a Medical Doctor Put his Patients at Risk? Subtitle translates as: Hormone Therapy Can
Trigger Breast Cancer, nevertheless, a Professor at the Free University Berlin Will Continue his Research
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ferences between the two are small when the
baseline-risk is small.Therefore, odds ratios
might be interpretable as relative risks.
Odds ratios were available in the original
meta-analysis and were provided with
95% confidence intervals (see Table 1).

2.2 Standard Error
In the original meta-analysis the standard
errors associated with the log-odds ratios
were not available. However, they can easily
be reconstructed since the 95% C.I. is con-
structed as log(OR) ± 1.96 SE, where SE
is the standard error for the log(OR). Let
the two interval ends be denoted by U and
L, then the standard error is found as
SE = (U – L)/(1.96 × 2). This formula was
used to construct the data provided in col-
umn 3 of Table 2.

2.3 Sample Size
Sample sizes were also provided in the orig-
inal meta-analysis, but on different scales
(number of persons for case-control studies
and number of person-years for cohort
studies). Since the sample size is related in-
versely to the standard error we will use
1/SE as a substitute for the sample size
wherever this is needed.

2.4 Date of Data Collection
For most studies a time for the data collec-
tion is provided as well. If a time interval is
given, we have used the mid-point.

2.5 Study Type
Two study types are used: cohort (13
studies) and case-control (23 studies). This
information will be utilized and considered
as a potential source of bias.

Table 1 Extracted data from meta-analysis by Sillero-Arenas et al. [1]

Study♣ OR

1 1.11

2 0.97

3 2.15

4 0.82

5 0.90

6 0.89

7 1.10

8 1.30

95% CI

0.38

0.49

0.71

0.60

0.66

0.60

0.80

1.00

1.19

1.92

6.49

1.20

1.22

1.32

1.90

1.70

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36
♣ Studies are listed as in Table 1 by Sillero-Arenas et al. (1992).
♥ 1 corresponds to Case-Control-Study, 0 corrresponds to Cohort Study.
¥ A * indicates a missing value. ♠ Indicates how many covariates were adjusted for in each study.

0.77

1.58

0.55

0.70

0.90

0.73

0.90

1.03

1.84

0.74

1.02

1.00

0.96

1.03

1.20

1.30

1.38

1.97

0.38

2.50

1.38

0.32

0.62

1.18

1.59

0.59

1.11

1.74

0.58

1.09

0.32

0.30

0.50

0.58

0.50

0.90

1.27

0.51

0.75

0.90

0.75

0.62

0.98

1.00

0.81

0.50

0.16

1.60

0.72

0.18

0.33

1.04

1.18

0.38

0.99

1.10

1.02

2.28

0.94

1.60

1.70

0.90

1.30

1.20

2.68

1.08

1.38

1.20

1.22

1.69

1.47

1.70

2.33

1.78

0.88

4.00

2.65

0.57

1.14

1.35

2.10

0.83

1.24

2.74

Study-Type♥

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

Date of Data
Coll.¥

72.0

68.0

71.0

71.5

72.0

73.0

74.0

72.0

78.0

77.5

76.0

69.5

77.5

78.5

81.5

76.5

84.0

77.5

77.5

81.0

82.5

83.0

83.5

55.5

*

*

65.0

77.0

59.0

78.0

70.0

81.0

80.0

59.0

80.5

79.0

Adjusted for Co-vari-
ates♠

1

1

1

2

0

0

*

*

*

1

2

1

0

2

2

1

2

1

1

2

2

1

1

1

1

1

0

*

1

0

0

*

1

1

1

2
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2.6 Number of Covariates Adjusted
for

When doing observational studies it is im-
portant to control for potential confounding
covariates like age, BMI, etc. This in-
formation was available in the original
meta-analysis and will also be considered as
a potential source of bias. All these covari-
ates are provided in Table 1.

3. Statistical Methods –
An Approach Based upon the
Meta-Likelihood
3.1 The Meta-Likelihood
Meta-analysis has become a standard tool in
medical research. Recently, a number of ex-
cellent books have appeared [3-6] updating
a number of earlier contributions [7-9]. In
addition, special texts have appeared deal-
ing with Bayesian approaches [10] or het-
erogeneity modeling [11]. In the following,
a likelihood approach is used which appears
to be widely accepted.

It is assumed that the effect measure λ̂i
for the i-th study (in the application it is the
log-odds ratio) follows (at least approxi-
mately) a normal distribution with density
of λ̂i:

(1)

where λi is the unknown effect measure in
study i and σi

2 is the known study variance
(see column 3 of Table 2). Having k inde-
pendent studies available this leads to the
meta-likelihood

(2)

which will be the basis for all inferential
conclusions. Now different models for the
effect measure λi can be considered.

Table 2 Log-odds ratios with associated standard errors from meta-analysis by Sillero-Arenas et al. [1]

Study♣ log OR

1 1.11

2 0.97

3 2.15

4 0.82

5 0.90

6 0.89

7 1.10
8 1.30

Standard Error

0.29

0.35

0.56

0.18

0.16

0.20

0.22

0.14

Study-Type♥

1

1

1

1

1

1

1

1

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36
♣ Studies are listed as in Table 1 in [1].
♥ 1 corresponds to Case-Control.Study, 0 corresponds to Cohort Study
¥ A * indicates a missing value.
♠ Indicates how many covariates were adjusted for in each study.

0.77

1.58

0.55

0.70

0.90

0.73

0.90

1.03

1.84

0.74

1.02

1.00

0.96

1.03

1.20

1.30

1.38

1.97

0.38

2.50

1.38

0.32

0.62

1.18

1.59

0.59

1.11

1.74

0.14

0.19

0.27

0.43

0.31

0.11

0.24

0.07

0.19

0.19

0.16

0.07

0.12

0.26

0.10

0.14

0.27

0.32

0.43

0.23

0.33

0.29

0.32

0.07

0.15

0.20

0.06

0.23

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

Date of Data
Coll.¥

72.0

68.0

71.0

71.5

72.0

73.0

74.0

72.0

78.0

77.5

76.0

69.5

77.5

78.5

81.5

76.5

84.0

77.5

77.5

81.0

82.5

83.0

83.5

55.5

*

*

65.0

77.0

59.0

78.0

70.0

81.0

80.0

59.0

80.5

79.0

Adjusted for
Co-variates♠

1

1

1

2

0

0

*

*

*

1

2

1

0

2

2

1

2

1

1

2

2

1

1

1

1

1

0

*

1

0

0

*

1

1

1

2
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3.2 Homogeneity
This is the simplest model and also the most
widely used. It assumes that all λ1 = λ2 = ... =
λk = λ coincide and maximizing the meta-
likelihood (2) leads to the weighted mean
λ̂+ = w1λ̂i + ... + wk λ̂k / (w1 + ... + wk) of the
observed effect measures of the k studies
with wi = 1/σi

2.This is also called the pooled
or fixed effect estimate. It is particularly at-
tractive since it combines all study estimates
into one single measure (for details, see [4]).
In addition, the variance of this estimate is
readily available as 1/(w1 +... + wk). Though
attractive and simple, this approach is rarely
appropriate in practice, since the assump-
tion of homogeneity is often violated, and
non-homogeneity or heterogeneity fre-
quently occurs .

3.3 (Unobserved) Heterogeneity
and the Nonparametric Meta-
Likelihood

Effect-heterogeneity implies that a certain
value for the effect is valid for some studies
whereas for others a different value is cor-
rect.To demonstrate, it might be that the het-
erogeneity consists in two subpopulations,
where one corresponds to a moderately
harmful, the other to a more harmful effect,
or, heterogeneity might consist out of three
subpopulations, one corresponding to a
harmful, the other to a beneficial, and the
third to a null-effect. The latter example is
particularly misleading when a simple,
weighted mean, which might take on a value
near the null-effect, is computed. How can
such a situation be validly captured by
means of a model? Typically, recent ap-
proaches concentrate on random effects
models. These can be best illustrated as fol-
lows. One supposes that the studies are
sampled from a population with a non-
homogeneous effect pattern, in other words,
there are a number of components experi-
encing different sizes in the effect. One can
think of a distribution P according to which
sampling of studies takes place. It is no limi-
tation to assume that this distribution is dis-
crete giving mass pj to effect size λj, where j
corresponds to the component in the popu-

lation, j = 1, ..., m, where m is the (unknown)
number of components. It is assumed that the
membership of each study to the associated
subpopulation is unknown. The pair ( λ̂i, zi)
contains the observed effect measure
λ̂i of the i-th study and the unobserved
indicator vector zi with exactly one 1 in the
j-th position, say, indicating that the i-th
study belongs to the j-th subpopulation. The
corresponding unobserved meta-likelihood
is

(3)

for which closed form solutions for pj and λj
exist. Unfortunately, zij are not known,
so that the marginal likelihood (margin
over the latent variable) is appropriate to be
used:

(4)

This meta-likelihood is called observed and
needs to be maximized in the parameters
λ1, ..., λm, p1, ..., pm. Note there are now
2m – 1 parameters since the non-negative
weights p1,...,pm are summing up to 1. Note
that if m = 1 this meta-likelihood reduces
to the one given under homogeneity. The
unobserved meta-likelihood (3) and the ob-
served meta-likelihood (4) are connected
by means of a many-to-one mapping which
maps the pair ( λ̂i,zi) onto λ̂i . We have that
unobserved and observed meta-likelihood
are connected via

(5)

where the first summation is taken over all
possible vectors zi (for each i there are
exactly m of those) having a single 1 at one
position. The result (5) is one of the mile-
stones of the EM-algorithmic theory [12].
Estimation of the 2m – 1 parameters can be
readily accomplished with the EM algo-
rithm. The latter uses expected values
eij = E(Zij|λ̂i ; λj,pj) in the unobserved meta-
likelihood (3) and maximization of this ex-

pected, unobserved meta-likelihood pro-
vides new estimates for pj and λj:

(6)

This is the M-step. It remains to provide the
conditional expected values eij = E(Zij|λi;
λj,pj). Let Λi be the random variable with
realiziation λi. Then

/

where Bayes theorem was used in the last
equation. Therefore, we have

(7)

where ϕ is the standard normal density. This
completes the E-step.

The EM-algorithm proceeds by cycling
between steps (6) and (7). C.A.MAN, a soft-
ware tool freely available from the author’s
homepage can be used for computational
practice. Details on the nonparametric mix-
ture likelihood approach can be found in
[11]. Note that this approach models the
background heterogeneity more complete-
ly than other approaches like the one by
DerSimonian and Laird [13] in which only
an adjustment of the variance of the overall
effect estimator is provided.

In our approach we use the model of un-
observed heterogeneity as the starting point
of all further analysis. We do this since the
meta-likelihood for unobserved heteroge-
neity can’t be increased any further for a
given data set: it is the largest likelihood
possible and provides what is called the
nonparametric maximum meta-likelihood
(NPMML) and the corresponding estimator
is called the nonparametric maximum meta-
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likelihood estimator (NPMMLE). To avoid
a potential misunderstanding we point out
that in the likelihood (5) m is treated as an
unknown parameter. The NPMML is the
maximum meta-likelihood for all possible
values of λ1, ..., λm, p1, ..., pm, and m. The
meta-likelihood is bounded over the set of
all discrete probability distributions on the
real line, and, consequently, the NPMMLE
exists. This is in contrast to other normal
likelihoods where restrictions need to be
placed to attain boundedness of the likeli-
hood (an example is the mixture of normals
with a common unknown variance pa-
rameter, where the likelihood increases
beyond every bound when the number of
components m is increasing). Here, these
problems do not exist, and an estimate m̂
of m exists which associates with the
NPMMLE. Technically, using the EM algo-
rithm this estimate is found in a conditional
fashion, fixing the m to values 1, 2, 3, …,
and then finding estimates with the EM al-
gorithm for each value of m. Increasing m to
(m + 1) is terminated when there is zero
change in the associated likelihoods. Note
that this is in contrast to other cases where a
likelihood increase is continuing for all in-
creases of m. Then NPMMLE (and with this
m̂) can also be computed with one of the
existing global search algorithms like the
vertex-exchange method [11].

3.4 Including Covariates
to Explain Heterogeneity
Having identified considerable unobserved
heterogeneity the question arises whether
any observed variables can be associated
with this latent form of heterogeneity.To put
it in other words, one knows that there is het-
erogeneity, but it is yet unclear what it stands
for. Having observed further covariates,
x1, x2, ...., xp, say, one can formulate a
regression model to include these into the
meta-likelihood

(8)

where now λi = βix1i + βix2i + ... + βixpi = xi
Tβ

is provided by the regression model. Find-

ing the maximum likelihood estimate ac-
cording to the meta-likelihood leads to the
weighted regression estimator (which is
provided for compactness in vector no-
tation):

β̂ = (XTWX)-1 XTWY,

where

contain on the diagonal the inverse study
variances wi=1/σi

2,Y = ( λ̂1 , λ̂2 , …, λ̂k)T and
X is the design matrix

containing the study data of the p predictors
in the k studies. The variance-covariance
matrix of β^ is easily available as (XTWX)–1.

This powerful tool is readily available by
means of any statistical package which can
do weighted regression. Here, the package
MINITAB [14] was used.

3.5 Model Evaluation
Various models are considered and need to
be evaluated in terms of which model pro-
vides the most adequate explanation of the
data. For the analysis provided here, the
Bayesian Information Criteria was used
throughout. It is defined as BIC = 2 meta-
log-likelihood – N log(k), where meta-log-
likelihood stands for the natural logarithm
of the meta-likelihood of the model under
consideration, N stands for the number of
parameters involved in the model, and
log(k) is the natural logarithm of the number
of studies. The idea behind this criterion is
that if one adds more parameters into the
model the likelihood increases. It should
therefore be penalized for the number of
parameters involved in the model to balance
the increase in fit with the increased model
complexity. The BIC-criterion has turned
out to be a valid instrument for discriminat-
ing models. For the homogeneity model,

N = 1, since only the mean parameter is in-
volved in the model. For the heterogeneity
model, there are N = 2m – 1 parameters as
mentioned above and for the regression
model N = p, the number of covariates in the
model. Having included all relevant covari-
ates into the model one can expect that
the log-likelihood for the regression model
becomes close to the log-likelihood for the
heterogeneity model, meaning that most
of the residual heterogeneity has been ex-
plained. If this is not the case, it can be ex-
pected that some additional covariate (yet
unknown) needs to be found for explaining
the residual heterogeneity.

3.6 Publication Bias
To avoid drawing unbiased conclusions
from a meta-analysis it is important that all
relevant primary studies need to be identi-
fied on a given subject. It has been long ac-
cepted that research with statistically sig-
nificant results is potentially more likely to
be submitted, published or published more
rapidly than work with null or non-signifi-
cant results, leading to incorrect, usually ef-
fect-overestimating conclusions. This prob-
lem is known as publication bias. Methods
are available for the diagnosis of publication
bias including graphical methods such as
the funnel plot [9] and statistical methods
such as the rank correlation test [15], Ro-
senthal’s ‘file drawer’method [16], the more
recent ‘trim and fill’method [17], or regres-
sion techniques. A detailed discussion of
these techniques can be found in [4, Ch. 7].
The basic idea of most of the techniques is
based on the assumption that if there is no
publication bias, then the effect measure
should be unrelated to the sample size. If the
sample size of the study is not available the
surrogate 1/SE is used since it is known that
the standard error is inversely related to the
sample size. Though all of the above men-
tioned methods have their moments, in the
approach here, we focus on regression
methods since they allow the unifying treat-
ment of the subject. We follow the ideas sug-
gested in Macaskill et al. [18] in which the
effect measure λ̂i is regressed on wi = 1/σi

2

using weights wi. If there is no publication
bias, then the regression to the inverse vari-
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ance should show no effect. The benefit of
this approach is that it can be simultane-
ously included in the previously mentioned
regression approach for the covariates.

3.7 Study Quality
Various methodological issues can in-
fluence the quality of a study including
study design (cohort, unmatched or
matched case-control study, cross-sec-
tional), case and control selection, cohort
group selection, case and exposure assess-
ment, and the kind of statistical analysis
(parametric modelling or non-parametric
estimation, logistic regression modelling or
Mantel-Haenszel analysis). At best, none of
these factors should be associated with the
effect measure of interest. It has been sug-
gested [4] to combine these individual
markers into a quality score QS, and incor-
porate these scores as weights into the
analysis. On the other hand, it is often re-
marked critically that these new weights
might incorporate new, subjective choices
into the meta-analysis, since different re-
searchers dealing with the same body of evi-
dence might come up with very different
weighing schemes. In fact, Greenland [19]
has indicated that quality assessment is the
most insidious form of bias in the conduct of
meta-analysis. It seems to exist a general
agreement that a quality assessment of the
primary studies should be carried out, pos-
sibly using a scale, checklist or individual
components, though there is controversy
how this should be incorporated at the
analysis stage [20]. It is our opinion that the
analysis should incorporate effects due to
study quality, if agreement about study
quality indicators can be reached. An
example for such an agreement would be the
fact if in a study an effect was adjusted for
potential confounders or not; here most of
the epidemiologists and statisticians would
agree that it is very important to adjust for
potential confounders.

It is therefore suggested [4, Ch. 8] to use
a regression model in which the quality
score is related to the effect measure. Here,
we take up this straightforward idea, but ex-
tend it to allow other covariates in the model
as well.

The idea can be formalized by regressing
the estimate of the effect measure onto the
quality score ( λ̂i on QSi):

(9)

where εi is a normal error with mean 0 and
variance σi

2, and xi the vector of covariates
already included into the modelling. Esti-
mates can again be found using weighted re-
gression.

It might be argued that the construction of
the quality score is a subjective instrument
itself, especially if it is not well-accepted in
the area of research at hand.Then, instead of
using the quality score in (9), one simply
uses the original marker variables describ-
ing the quality of a study. This results in a
model with two kinds of covariate vectors:

(10)

where in contrast to (9) si is the vector of
study quality covariates for study i.

4. Reanalysis of the Meta-
Analysis by Sillero-Arenas
et al. [1]
We now come back to the MA of SA and
apply the ideas of section 3. The homogene-
ity model shows considerable difference to
the heterogeneity model (see Table 4 ). Vari-
ous models for heterogeneity have been esti-

mated: models with m = 2, m = 3, and
m = 4 subpopulations, the latter (m = 4) cor-
responding to the NPMMLE. The BIC-
value suggests a model with m = 3 com-
ponents (see Table 4). Therefore, it can be
expected that covariates are to be found to
explain the residual heterogeneity. We con-
sider study type (case_control) and the
number of covariates that has been adjusted
for in each study (Number-of-Covariates).
When we include the covariates one at a
time, none of them are significant, though
Case-Control and Number-of-Covariates
are borderline (Table 3a). When we include
these two simultaneously the latter becomes
significant (see Table 3b). This also cor-
responds to a considerable amount of in-
crease in the log-likelihood. Now, if the
BIC-value of the regression model is com-
pared with the BIC-model of the hetero-
geneity model, it is seen that the regression
model provides the better BIC-value. Thus,
it can be argued that most of the heteroge-
neity is explained. Note that the covariate
Number of covariates adjusted for is trans-
formed into a 0/1 covariate, indicating pres-
ence or absence of covariate adjustment in
the original study. The basis for this trans-
formation is provided in Figure 2 where
there is almost no correlation visible for
larger values of the covariate (right hand
side of the Fig. 2).

Fig. 2
Scatter plot of log OR vs.
Number of covariates ad-
justed for
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4.1 Estimated Adjusted Relative
Risk

The estimated relative risk adjusted for
study type and confounding variables can be
found using the equation

log OR = – 0.229 + 0.356 number of covari-
ates – 0.104 case_control

which leads to a log-odds ratio of 0.128 with
95% C.I. of (0.002-0.255) when number of
covariates takes on the value 1 and
case_control the value 0. This corresponds
to an OR of 1.137 with 95% CI of
(1.002-1.291).

4.2 Publication Bias
Neither the funnel plot (provided in Fig. 3)
nor the weighted regression (weights equal
to the inverse variance) of the log-odds ratio
onto the inverse variance (weight) provide
any evidence for presence of a publication
bias. SeeTable 3c for the regression output.

Study quality was not further investi-
gated, since the covariates describing it,
namely study type and adjustment for co-
variates, have already been included into
the model , and have proved to provide an ef-
fect. Therefore, study quality has inherently
been taken into the modelling.

5. Discussion
In summary, we refocus on our approach. It
is assumed that an effect measure is avail-
able which is normally distributed with
known study-specific variances. This as-
sumption is a mere working assumption and
could be replaced by something else such as
a Binomial or Poisson distribution for the
measure of interest. We are using the normal
model to retain the simplicity of presenta-
tion. In addition, the normal model provides
often reasonable approximations for effect
measures like risk differences or risk ratios,
if those are appropriately transformed. To
identify heterogeneity it is required to do a
mixture analysis in the first place. If the

a) ANALYSIS WITH STUDY_TYPE ONLY
The regression equation is logOR = 0.145 – 0.147 case_control

Predictor Coef

Constant 0.14545

case_cont –0.14699

b) ANALYSIS WITH STUDY_TYPE AND NUMBER_OF_COVARIATES
The regression equation is logOR = – 0.229 + 0.356 number of covariates – 0.104 case_control
31 cases used 5 cases contain missing values or had zero weight

Predictor Coef

Constant –0.2288

number o 0.3564

case_cont –0.10384

StDev

0.06601

0.08664

StDev

0.1810

00.1738

0.09389

T

2.20

–1.70

T

–1.26

2.05

–1.11

P

0.034

0.099

P

0.217

0.050

0.278

c) ANALYSIS WITH STUDY_TYPE, NUMBER_OF_COVARIATES, AND WEIGHT (as replacement for sample size)
The regression equation is logOR = – 0,212 + 0,377 number of covariates – 0,120 case_control –0,000187 weight
31 cases used 5 cases contain missing values or had zero weight

Predictor

Constant

number o

case_cont

weight

Coef StDev T P

–0,2122 0,1890 0,271–1,12

0,3772

–0,1198 0,260–1,150,1043

0,1849 2,04 0,051

–0,0001866 0,707–0,380,0004914

Table 3 Regression output forweighted regression of log-odds-ratio on study type (case-control) and covariate adjustment
(number of covariates ajusted for)

Table 4 Measures to evaluate the various models: good models should have large BIC-value [ BIC = 2 meta-log-likeli-
hood – # parameters log (#studies) ]

Model Meta-log-likelihood

Homogeneity –34.4630

mixture 2-components –21.9740

mixture 3-components –17.1960

mixture 4-components –16.1373

Covariates –19.2900

Number of Parameters

1

3

5

7

3

BIC

–72.5095

–54.6986

–52.3096

–57.3592

–49.3306

Fig. 3
Scatter plot (for diagnosis
of publication bias) of log
OR vs. weight
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meta-likelihood for models of homogeneity
and heterogeneity agree, no further analysis
is necessary, since there is no heterogeneity
to be explained. In this case, one may pro-
ceed to the pooled analysis. Note that this
implies as well that there is no need to check
for publication bias nor study quality. In
most cases, however, forms of heterogeneity
might be found.These can be linked to study
covariates describing study characteristics,
study quality or publication bias. Effect esti-
mates for these covariates can be simply
found using weighted regression and sig-
nificance of individual covariates using
Wald statistics will lead to the final model.
The idea is expressed in Figure 4 in a com-
pact way. Finally, having identified an ap-
propriate model one can compare the as-
sociated likelihood with the likelihood for
the unobserved heterogeneity. If both likeli-
hoods are close, then most of the hetero-
geneity has been accounted for. On the other
hand, if there is still considerable disagree-
ment between both likelihoods, the meta-
analysis is still frail for explaining residual
heterogeneity, potentially by means of a
missing covariate, correlated studies, or
other causes of extra-heterogeneity. With re-
gard to this aspect, the MA could still be
considered incomplete.

Coming to the MA of HRT and breast
cancer, it is argued here that the overall re-
sult of the meta-analysis by SA which pro-
vided an odds ratio of 1.062 with 95% con-
fidence interval (1.014–1.112) need to be
corrected using up-to-date methods. Indeed,
if we reconsider the meta-analysis by SA
and use in a secondary analysis the tools
available today, we find an estimate of 1.137
on the relative risk scale indicating a more

elevated risk for HRT than the one provided
by SA. This finding occurs since the meta-
analysis at hand experiences considerable
unobserved heterogeneity, which has pre-
viously been ignored. We argue further in
this contribution that this form of heteroge-
neity can be successfully linked to covari-
ates observed in the study base provided by
SA, namely the study type (cohort or case-
control) and whether in the study the esti-
mate of effect has been adjusted for poten-
tial confounders. It can be furthermore es-
tablished that these covariates do indeed
correlate with the size of the effect measure.
Consequently, an odds ratio adjusted for
study type and confounder treatment seems
to be more appropriate, leading to the one
given above. This effect estimate is more in
the direction and closer to the one of 1.26
provided in the WHI-trial [2].

In general, it appears appropriate and
useful to include study characteristics (as
well as patient characteristics) into the
meta-analysis. The analysis tools are readily
available and easy to handle. The problem
though might be that not all of the interest-
ing and important covariates might be avail-
able. Therefore, it is supremely important to
incorporate unobserved heterogeneity into
the meta-likelihood, which can be used as an
indicator for covariates not yet known and/
or not yet included into the meta-analysis. In
the meta-analysis at hand most of the unob-
served heterogeneity could be explained
and this can be taken as considerable em-
pirical evidence for the validity of the effect
estimates found with the modelling ap-
proach taken here.

Furthermore, it was investigated if these
results could be prone to any publication

bias effect. Using the graphical device of a
funnel plot in combination with an appro-
priate regression analysis no evidence of a
presence of a publication bias could be de-
tected.
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Graphical summary of the
general framework
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