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Lecture 1: Introduction to Epidemiology

Outline

What is Epidemiology?

Epidemiology is the study of the determinants, distribution, and
frequency of disease (who gets the disease and why)

I

I epidemiologists study sick people

I epidemiologists study healthy people

I to determine the crucial difference between those who get the
disease and those who are spared

I

I epidemiologists study exposed people

I epidemiologists study non-exposed people

I to determine the crucial effect of the exposure
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Lecture 1: Introduction to Epidemiology

Outline

What is Epidemiology? Last’s dictionary gives a
detailed definition:

The study of the distribution and determinants of health-related
states or events in specified populations, and the application of this
study to control of health problems.
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Lecture 1: Introduction to Epidemiology

Outline

Uses of Epidemiology

I to determine, describe, and report on the natural course of
disease, disability, injury, and death

I to aid in the planning and development of health services and
programs

I to provide administrative and planning data
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Lecture 1: Introduction to Epidemiology

Outline

Uses of Epidemiology

I to study the cause (or etiology) of disease(s), or conditions,
disorders, disabilities, etc.

I to determine the primary agent responsible or ascertain
causative factors

I to determine the characteristics of the agent or causative
factors

I to determine the mode of transmission

I to determine contributing factors

I to identify and determine geographic patterns
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Outline

Purpose of Epidemiology

I to provide a basis for developing disease control and
prevention measures for groups at risk

I this translates into developing measures to prevent or control
disease

6 / 19



Lecture 1: Introduction to Epidemiology

Outline

Two Broad Types of Epidemiology:

I descriptive epidemiology: examining the distribution of disease
in a population, and observing the basic features of its
distribution

I analytic epidemiology: investigating a hypothesis about the
cause of disease by studying how exposures relate to disease
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Outline

descriptive epidemiology is antecedent to analytical
epidemiology:

analytical epidemiology studies require information to ...

I know where to look

I know what to control for

I develop viable hypotheses
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Outline

three essentials characteristics of disease that we look
for in descriptive studies are ...

I Person

I Place

I Time
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Lecture 1: Introduction to Epidemiology

Outline

Person

I age, gender, ethnic group

I genetic predisposition

I concurrent disease

I diet, physical activity, smoking

I risk taking behavior

I SES, education, occupation
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Lecture 1: Introduction to Epidemiology

Outline

geographic Place

I presence of agents or vectors

I climate

I geology

I population density

I economic development

I nutritional practices

I medical practices
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Outline

Time

I calendar time

I time since an event

I physiologic cycles

I age (time since birth)

I seasonality

I temporal trends
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Lecture 1: Introduction to Epidemiology

Outline

The Epidemiologic Triangle: three characteristics
that are examined to study the cause(s) for disease
in analytic epidemiology

I host

I agent

I environment

Host

Agent Environment
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Lecture 1: Introduction to Epidemiology

Outline

The Epidemiologic Triangle

I host

I personal traits

I behaviors

I genetic predisposition

I immunologic factors

I ...

Host

Agent Environment

14 / 19



Lecture 1: Introduction to Epidemiology

Outline

The Epidemiologic Triangle

I agents

I biological

I physical

I chemical

I ...

I influence the chance for
disease or its severity

Host

Agent Environment
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Outline

The Epidemiologic Triangle

I environment

I external conditions

I physical/biological/social

I ...

I contribute to the disease
process

Host

Agent Environment
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Lecture 1: Introduction to Epidemiology

Outline

Epidemics occur when ..

I host, agent and
environmental factors
are not in balance

I due to new agent

I due to change in existing
agent (infectivity,
pathogenicity, virulence)

I due to change in number
of susceptibles in the
population

I due to environmental
changes that affect
transmission of the agent
of growth of the agent

Host

Agent Environment
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Outline

Epidemiologic Activities

I often concentrate on PPT

I demographic distribution

I geographic distribution

I seasonal patterns and temporal trends

I frequency of disease patterns
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Lecture 1: Introduction to Epidemiology

Outline

Epidemiologic Activities

I are built around the analysis of the relationship between
I exposures
I disease occurrence

I are built around the analysis of differences between
I cases
I healthy controls
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Lecture 2: Measuring Disease Occurrence (Morbidity and Mortality): Prevalence, incidence, incidence density

Outline

Purpose

The purpose of this material is to provide an overview on the most
important measures of disease occurrence:

I prevalence

I incidence (cumulative incidence or risk)

I incidence density

Examples

The concepts will be illustrated with examples and practicals.

2 / 37
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Outline

Epidemiology and it’s Definition

Measuring Disease Occurrence: Prevalence

Measuring Disease Occurrence: Incidence

Measuring Disease Occurrence: Incidence Density
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Epidemiology and it’s Definition

Epidemiology and it’s Definition

Definition
Epidemiology studies the distribution of diseases in populations
and factors related to them.

This definition leads to two questions:

1. How can we measure diseases and their
distributions?

I morbidity
I prevalence
I incidence

I mortality
I incidence
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Epidemiology and it’s Definition
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Epidemiology and it’s Definition

2. How can we measure differences in disease
occurrence in different populations?

I epidemiological study types
I cross-sectional
I clinical trials
I cohort studies
I case-control studies

I epidemiological measures of effect
I differences in disease risk
I ratios in disease risk
I relative differences in disease risk
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Measuring Disease Occurrence: Prevalence

Measuring Disease Occurrence: Prevalence

Prevalence:
is the proportion (denoted as p) of a specific population having a
particular disease. p is a number between 0 and 1. If multiplied by
100 it is percentage.

Examples

In a population of 1000 there are two cases of malaria:
p = 2/1000 = 0.002 or 0.2%.
In a population of 10,000 there are 4 cases of skin cancer:
p = 4/10, 000 = 0.0004 or 0.04%.
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Measuring Disease Occurrence: Prevalence

Measuring Disease Occurrence: Prevalence

epidemiological terminology

In epidemiology, disease occurrence is frequently small relative to
the population size. Therefore, the proportion figures are
multiplied by an appropriate number such as 10,000. In the above
second example, we have a prevalence of 4 per 10,000 persons.

Exercise
In a county with 2300 inhabitant there have occurred 2 cases of
leukemia. Prevalence?
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Measuring Disease Occurrence: Prevalence

Quantitative Aspects:

What is Variance and Confidence Interval for the Prevalence!

sample:

sample (population survey) of size n provides for disease status for
each unit of the sample:

Xi = 1, disease present

Xi = 0, disease not present

consequently,

p̂ =
X1 + X2 + ... + Xn

n

=

∑n
i=1 Xi

n

plausible estimator of prevalence.
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Measuring Disease Occurrence: Prevalence

Computing Variance of Prevalence of Xi :

E (Xi ) = 1× P(Xi = 1) + 0× P(Xi = 0)

= 1× p + 0× (1− p) = p

Var(Xi ) = (1− p)2P(Xi = 1) + (0− p)2P(Xi = 0)

= (1− p)2p + p2(1− p) = (1− p)p[1− p + p]

= p(1− p)

10 / 37



Lecture 2: Measuring Disease Occurrence (Morbidity and Mortality): Prevalence, incidence, incidence density

Measuring Disease Occurrence: Prevalence

Computing Variance of Prevalence of Xi :

consequently,

Var (p̂) = Var

(∑
i Xi

n

)
=

1

n2
Var(

∑
i

Xi )

=
1

n2

∑
i

Var(Xi ) =
1

n2
n × p(1− p)

=
p(1− p)

n

SD(p̂) =

√
p(1− p)

n
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Measuring Disease Occurrence: Prevalence

p̂ is approx. normal
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Measuring Disease Occurrence: Prevalence

using the normal distribution for p̂:

with 95% probability

−2 ≤ p̂ − p

SD(p̂)
≤ +2

⇔
p̂ − 2SD(p̂) ≤ p ≤ p̂ + 2SD(p̂)

⇔
95%CI : p̂ ± 2SD(p̂)

= p̂ ± 2
√

p̂(1− p̂)/
√

n
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Measuring Disease Occurrence: Prevalence

Examples

In a population of 1000 there are two cases of malaria:
p = 2/1000 = 0.002 or 0.2%.

Var(p̂) = 0.002(1− 0.002)/1000 = (0.00141280)2,

SD(p̂) = 0.00141280

95%CI : p̂ ± 2
√

p̂(1− p̂)/
√

n

= 0.002± 2× 0.0014 = (0− 0.0048)
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Measuring Disease Occurrence: Prevalence

Exercise
In a county with 2300 inhabitants there have occurred 2 cases of
leukemia. Prevalence with CI?
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Measuring Disease Occurrence: Prevalence

Practical 1: Prevalence of Caries in Belo Horizonte

The BELCAP Study; background:

I Dental epidemiological study.

I A prospective study of school-children from an urban area of
Belo Horizonte, Brazil.

I The Belo Horizonte caries prevention (BELCAP) study.

I The aim of the study was to compare different methods to
prevent caries.
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Measuring Disease Occurrence: Prevalence

I Children selected were all 7 years-old and from a similar
socio-economic background.

I Interventions:
I Control (3),
I Oral health education (1),
I Enrichment of the school diet with rice bran (4),
I Mouthwash (5),
I Oral hygiene (6),
I All four methods together (2).

I Interventions were cluster randomised to 6 different schools.
I Response, or outcome variable = DMFT index. (Number of

decayed, missing or filled teeth.) DMFT index was calculated
at the start of the study and 2 years later. Only the 8
deciduous molars were considered.

I Potential confounders: sex (female 0 male 1), ethnicity.
I Data analysed by Böhning et al. (1999,Journ. Royal Statist.

Soc. A ).
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Measuring Disease Occurrence: Prevalence

Practical 1: Prevalence of Caries in Belo Horizonte

Questions:
calculate prevalence of caries (DMFT > 0) with 95% CI at study
begin:

I overall

I stratified by gender

I stratified by school

I stratified by gender and school
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Measuring Disease Occurrence: Incidence

Measuring Disease Occurrence: Incidence

Incidence:
is the proportion (denoted as I ) of a specific, disease-free
population developing a particular disease in a specific study
period. I is a number between 0 and 1. If multiplied by 100 it is
percentage.

Examples

In a malaria-free population of 1000 there are four new cases of
malaria within one year : I = 4/1000 = 0.004 or 0.4%.
In a skin-cancer free population of 10,000 there are 11 new cases
of skin cancer: I = 11/10, 000 = 0.0011 or 0.11%.
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Measuring Disease Occurrence: Incidence

Measuring Disease Occurrence: Incidence

Exercise
In a rural county with 2000 children within pre-school age there
have occurred 15 new cases of leukemia within 10 years. Incidence?
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Measuring Disease Occurrence: Incidence

Quantitative Aspects: How to determine Variance and
Confidence Interval for the Incidence?
sample (population cohort - longitudinal) of size n, which is
initially disease-free, provides the disease status for each unit of
the sample at the end of study period:

Xi = 1, new case

Xi = 0, disease not present

consequently,

Î =
X1 + X2 + ... + Xn

n
=

∑n
i=1 Xi

n

plausible estimator of incidence.
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Measuring Disease Occurrence: Incidence

Computing Variance of Incidence

Consider any of the Xi :

E (Xi ) = 1× P(Xi = 1) + 0× P(Xi = 0)

= 1× I + 0× (1− I ) = I

Var(Xi ) = (1− I )2P(Xi = 1) + (0− I )2P(Xi = 0)

= (1− I )2I + I 2(1− I ) = (1− I )I [1− I + I ]

= I (1− I )
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Measuring Disease Occurrence: Incidence

consequently,

Var

(∑
i Xi

n

)
=

1

n2
Var(

∑
i

Xi )

=
1

n2

∑
i

Var(Xi ) =
1

n2
n × I (1− I ) =

I (1− I )

n

SD(Î ) =

√
I (1− I )

n
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Measuring Disease Occurrence: Incidence

p̂ is approx. normal
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Measuring Disease Occurrence: Incidence

95% confidence interval for the incidence density

with 95% probability

−2 ≤ Î − I

SD(Î )
≤ +2

⇔
Î − 2SD(Î ) ≤ I ≤ Î + 2SD(Î )

⇔
95%CI : Î ± 2SD(Î )

= Î ± 2

√
Î (1− Î )/

√
n
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Measuring Disease Occurrence: Incidence

Examples

In a malaria-free population of 1000 there are four new cases of
malaria within one year : I = 4/1000 = 0.004 or .4%.

Var(Î ) = 0.004(1− 0.004)/1000 = (0.001996)2,

SD(Î ) = 0.001996

95%CI : Î ± 2

√
Î (1− Î )/

√
n

= 0.004± 2× 0.001996 = (0.000008− 0.0080)
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Measuring Disease Occurrence: Incidence

Exercise
In a rural county with 2000 children within pre-school age there
have occurred 15 new cases of leukemia within 10 years. Incidence
with 95% CI?
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Measuring Disease Occurrence: Incidence

Practical 1: Prevalence of Caries in Belo Horizonte

Questions:
calculate incidence of caries (DMFT = 0 begin of study and at
DMFT > 0 at the end of study) with 95% CI:

I overall

I stratified by gender

I stratified by school

I stratified by gender and school

I why is it useless here to stratify by age?
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Measuring Disease Occurrence: Incidence Density

Measuring Disease Occurrence: Incidence Density

Incidence Density:

is the rate (denoted as ID) of a specific, disease-free population
developing a particular disease w. r. t. a specific study period
of length T . ID is a positive number, but not necessarily between
0 and 1.

estimating incidence density

suppose a disease-free population of size n is under risk for a time
period T . Then a plausible estimator of ID is given as

ÎD =

∑n
i=1 Xi

n × T
=

count of events

person–time

where Xi = 1 if for person i disease occurs and 0 otherwise.
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Measuring Disease Occurrence: Incidence Density

Examples

A cohort study is conducted to evaluate the relationship between
dietary fat intake and the development in prostate cancer in men.
In the study, 100 men with high fat diet are compared with 100
men who are on low fat diet. Both groups start at age 65 and are
followed for 10 years. During the follow-up period, 10 men in the
high fat intake group are diagnosed with prostate cancer and 5
men in the low fat intake group develop prostate cancer.
The incidence density is ÎD = 10/(1, 000) = 0.01 in the high fat

intake group and ÎD = 5/(1, 000) = 0.005 in the low fat intake
group.
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Measuring Disease Occurrence: Incidence Density

most useful generalization

occurs if persons are different times under risk and hence
contributing differently to the person–time–denominator

estimating incidence density with different risk-times

suppose a disease-free population of size n is under risk for a time
periods T1,T2, ...,Tn, respectively. Then a plausible estimator of
ID is given as

ÎD =

∑n
i=1 Xi∑n
i=1 Ti

=
count of events

person–time

where Xi = 1 if for person i disease occurs and 0 otherwise, and Ti

represents the person-time of person i in the study period.
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Measuring Disease Occurrence: Incidence Density

Examples

Consider a population of n = 5 factory workers with X2 = 1 and all
other Xi = 0(here the disease incidence might be a lung disease).
We have also T1 = 12, T2 = 2,T3 = 6,T4 = 12,T5 = 5, so that

ÎD =
1

12 + 2 + 6 + 12 + 5
= 1/37.
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Measuring Disease Occurrence: Incidence Density

interpretation of incidence density:

In the above example of diet-cancer study: ÎD = 0.01 means
what? There is no longer the interpretation of 1 case per 100 men,
but 1 case per 100 men-years!
The interpretation is now number of events per person–time!
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Measuring Disease Occurrence: Incidence Density

Quantitative Aspects for the Incidence Density

sample (population cohort - longitudinal) of size n available:

event indicators: X1, ...,Xn

person times: T1, ...,Tn

estimate of incidence density

ÎD =
X1 + X2 + ... + Xn

T1 + T2 + ... + Tn
=

X

T

a variance estimate can be found as

V̂ar(ÎD) =
ÎD

T
=

X

T 2
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Measuring Disease Occurrence: Incidence Density

Quantitative Aspects for the Incidence Density

variance estimate can be found as

V̂ar(ÎD) =
ÎD

T
=

X

T 2

so that a 95% confidence interval is given as

ÎD ± 2

√
ÎD

T
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Measuring Disease Occurrence: Incidence Density

Example

Consider the population of n = 5 factory workers with X2 = 1 and
all other Xi = 0 (here the disease incidence might be a lung

disease). We have X = 1 and T = 37, so that ÎD = 1/37 = 0.027.

The variance is ÎD
T = 0.0007 and standard deviation 0.027. This

leads to a 95% CI

ÎD ± 2

√
ÎD

T
= 0.027± 2× 0.027 = (0, 0.081).
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Measuring Disease Occurrence: Incidence Density

Exercise
We return to the cohort study mentioned before. It had been
conducted to evaluate the relationship between dietary fat intake
and the development in prostate cancer in men. In the study, 100
men with high fat diet are compared with 100 men who are on low
fat diet. Both groups start at age 65 and are followed for 10 years.
During the follow-up period, 10 men in the high fat intake group
are diagnosed with prostate cancer and 5 men in the low fat intake
group develop prostate cancer.

Compute 95% CI for incidence densities:

high fat intake group: ÎD = 10/(1, 000) = 0.01

low fat intake group: ÎD = 5/(1, 000) = 0.005
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Lecture 3: Direct Standardization of Measures of Disease Occurrence

Outline

Purpose

The purpose of this material is to provide an introduction to the
problems of medical surveillance and associated standardization
problems:

I comparing disease (risk factor) occurrence

I standardization methodology

I examples
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Outline

Medical Surveillance

Example on problems with comparison of rates

The Directly Standardized Rate

How to execute in STATA?
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Medical Surveillance

Definition
detection of the occurrence of health-related events or exposures in
a target population

Goal
to identify changes in the distributions of diseases in order to
prevent or control these diseases within a population
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Medical Surveillance

potential specific goals

I identification of pattern of disease occurrence

I detection of disease outbreaks

I development of clues about possible risk factors (ecological
study)

I finding of cases for further investigation

I anticipation of health service needs
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Medical Surveillance

traditionally

medical surveillance activities were developed to monitor the
spread of infectious disease through a population

today

target are all diseases and health related conditions and exposures
such as traffic accident morbidity and mortality, smoking, sexual
habits, etc

6 / 23



Lecture 3: Direct Standardization of Measures of Disease Occurrence

Medical Surveillance

Data Sources

Surveillance of deaths

I mortality statistics

Surveillance of morbidity

I important function of registries such as cancer registries,
traffic accident registries, etc.

I legislation on certain transmittable diseases

Surveillance of risk factors

I micro-census

I survey
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Example on problems with comparison of rates

to detect change

morbidity or mortality needs frequently be compared

I in time (weekly, monthly, yearly, ...)

I in space (county, states, city-areas, ...)

such a comparison - if done without care - can be quite problematic
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Example on problems with comparison of rates

Comparing Mortality from Lung Cancer in Berlin
(West) 1960 and 1989
age-group deaths 1989 under risk deaths 1960 under risk

35-39 3 78862 2 44454
40-44 15 74485 5 38932
45-49 49 96516 24 66595
50-54 64 78693 63 83553
55-59 88 48942 145 83353
60-64 83 38789 202 65947
65-69 125 29128 181 50805
70-74 86 19168 160 40282
75-79 126 25109 114 25545
80-84 113 17417 43 12431
85+ 54 8821 9 4183

total 806 515930 948 516080
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Example on problems with comparison of rates

Comparing Mortality from Lung Cancer in Berlin
(West) 1960 and 1989

I mortality rate 1960 = 948
516080 × 1000 = 1.84

I mortality rate 1989 = 806
515930 × 1000 = 1.56

coming to the perplexing conclusion that mortality has dropped
from 1960 to 1989!
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Example on problems with comparison of rates

Comparing Mortality Rates from Lung Cancer in Berlin
(West) 1960 and 1989
age-group mortality rate 1989 mortality rate 1960

35-39 0.04 0.04
40-44 0.20 0.13
45-49 0.51 0.36
50-54 0.81 0.75
55-59 1.89 1.74
60-64 2.14 3.06
65-69 4.29 3.56
70-74 4.49 3.97
75-79 5.02 4.46
80-84 6.49 3.46
85+ 6.12 2.15

total 1.56 1.84
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Example on problems with comparison of rates

age group
85

+
80

-8
4

75
-7

9
70

-7
4

65
-6

9
60

-6
4

55
-5

9
50

-5
4

45
-4

9
40

-4
4

35
-3

9
19

60
19

89
19

60
19

89
19

60
19

89
19

60
19

89
19

60
19

89
19

60
19

89
19

60
19

89
19

60
19

89
19

60
19

89
19

60
19

89
19

60
19

89

100000

80000

60000

40000

20000

0

fr
eq

u
en

cy
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Example on problems with comparison of rates

Explanation

I age distributions 1960 and 1989 are quite different

I 1989 age distribution puts more weight on younger ages

I 1960 age distribution puts more weight on older ages

I hence crude rates are not comparable

Solution
use identical age distribution

I World (Segi’s Standard)

I Europe

I national
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Example on problems with comparison of rates

Two Reference Populations

age-group World Europe
... ... ...

35-39 6000 7000
40-44 6000 7000
45-49 6000 7000
50-54 5000 7000
55-59 4000 6000
60-64 4000 5000
65-69 3000 4000
70-74 2000 3000
75-79 1000 2000
80-84 500 1000
85+ 500 1000

total 100000 100000
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The Directly Standardized Rate

Construction of Directly Standardized Rate
study population reference population

age-group deaths at risk rate at risk

1 d1 n1 p1 = d1
n1

N1

2 d2 n2 p2 = d2
n2

N2

... ... ... ...

k dk nk pk = dk
nk

Nk

total d n p = d
n N

crude rate:

p =
k∑

i=1

di

ni
× ni

n

standardized rate:

pDS =
k∑

i=1

di

ni
× Ni

N
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The Directly Standardized Rate

Computing the Standardized Mortality Rate for Lung
Cancer in Berlin (West) 1989

age deaths under risk rate World Expect.
35-39 3 78862 3/78862=0.00004 6000 0.23
40-44 15 74485 15/74485=0.00020 6000 1.21
45-49 49 96516 49/96516=0.00051 6000 3.05
50-54 64 78693 64/78693=0.00081 5000 4.07

... ... ... ... ...
85+ 54 8821 54/8821=0.00612 500 3.06

total 806 515930 38000 57.47

standardized rate (1989):

pDS =
57.47

38000
× 1000 = 1.51

and, similarly, (1960): pDS = 52.08
38000 × 1000 = 1.37
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Lecture 3: Direct Standardization of Measures of Disease Occurrence

How to execute in STATA?

how to execute in STATA?

organization of data

first a data file needs to be constructed containing

I the stratums variable (age)

I the event variable (cases or deaths)

I the population size variable (population)

I the group variable containing information on the groups to be
compared (year)

an example is given as follows:
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Lecture 3: Direct Standardization of Measures of Disease Occurrence

How to execute in STATA?

+---------------------------------+
| age death population Year |
|---------------------------------|

1. | 35-39 3 78862 1989 |
2. | 40-44 15 74485 1989 |
3. | 45-49 49 96516 1989 |
4. | 50-54 64 78693 1989 |
5. | 55-59 88 48942 1989 |

|---------------------------------|
6. | 60-64 83 38789 1989 |
7. | 65-69 125 29128 1989 |
8. | 70-74 86 19168 1989 |
9. | 75-79 126 25109 1989 |
10. | 80-84 113 17417 1989 |

|---------------------------------|
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How to execute in STATA?

+---------------------------------+
| age death population Year |
|---------------------------------|

11. | 85+ 54 8821 1989 |
12. | 35-39 2 44454 1960 |
13. | 40-44 5 38932 1960 |
14. | 45-49 24 66595 1960 |
15. | 50-54 63 83553 1960 |

|---------------------------------|
16. | 55-59 145 83353 1960 |
17. | 60-64 202 65947 1960 |
18. | 65-69 181 50805 1960 |
19. | 70-74 160 40282 1960 |
20. | 75-79 114 25545 1960 |

|---------------------------------|
21. | 80-84 43 12431 1960 |
22. | 85+ 9 4183 1960 |

+---------------------------------+
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Lecture 3: Direct Standardization of Measures of Disease Occurrence

How to execute in STATA?

how to execute in STATA?

organization of data

a second data file needs to be constructed containing

I the stratums variable (age) matching with exactly the same
name

I the population size variable containing the reference
population carrying the same name as the study population
variable

an example is given as follows in which population contains now
the distribution of the world standard
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How to execute in STATA?

+------------------------+
| age world europe |
|------------------------|

1. | 35-39 6000 7000 |
2. | 40-44 6000 7000 |
3. | 45-49 6000 7000 |
4. | 50-54 5000 7000 |
5. | 55-59 4000 6000 |

|------------------------|
6. | 60-64 4000 5000 |
7. | 65-69 3000 4000 |
8. | 70-74 2000 3000 |
9. | 75-79 1000 2000 |
10. | 80-84 500 1000 |

|------------------------|
11. | 85+ 500 1000 |

+------------------------+
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How to execute in STATA?

how to execute in STATA?

execution of standardization
a very practical way to accomplish this is to choose in the first file
the population name as the name of the reference standard, in this
example world
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How to execute in STATA?
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Outline

Indirect standardization

Calculating the rate in STATA
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Lecture 4: Indirect standardization with examples in Stata

Indirect standardization

Direct Standardization: age-specific health related event (e.g.
disease, death) rates in study population are applied to the
reference population

Indirect Standardization: age-specific rates in reference
population are applied to the study population

Typically used when:

1. Age-specific rates are unavailable for the study population
I direct standardization is not possible

2. We have a small number of events in the study population
and age-specific rates are not stable

I indirection standardization based on rates from a larger
population provides a more precise estimate
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Indirect standardization

Data required:

I Size of the study population in each age group

I Observed total number of events in the study population

I Age-specific event rates in a reference (standard) population

Choosing a reference population:

I the reference population should be similar to the years of
available data for the study population.

I For example, to calculate a standardized mortality rate for
London in 1989, the reference population could be the 1989
mortality rate of the UK.
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Indirect standardization

The standardized mortality ratio (SMR):
study population reference population

age-group deaths at risk rate deaths at risk rate
1 d1 n1 p1 D1 N1 ρ1

2 d2 n2 p2 D2 N2 ρ2

. . . . . . . . . . . . . . . . . . . . .
k dk nk pk Dk Nk ρk

total d n p D N ρ

The expected number of deaths in the study population is:

E =
k∑

i=1

niρi =
k∑

i=1

ni
Di

Ni

SMR =
observed number

expected number
=

d

E
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Indirect standardization

Assuming a Poisson distribution for the observed number of deaths
d , the standard error is

se(SMR) =

√
d

E

I SMR is often multiplied by 100 for presentation purposes

I A value of SMR less than 100 indicate a study population with
mortality less than the reference, allowing for age differentials.

I Above 100 means a rate above the reference.

If the health related event in NOT death, this ratio is called the
standardized incidence ratio (SIR).
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Indirect standardization

The indirect standardized mortality rate is

RIDS = SMR × ρ = SMR × D

N

Expressed per 1, 000 people, this rate is

1000× SMR × D

N

With standard error

1000× D

N
×
√

d

E
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Indirect standardization

Comparing Mortality from Lung Cancer in Berlin
(West) 1960 and 1989

age-group deaths 1989 at risk deaths 1960 at risk
35-39 3 78862 2 44454
40-44 15 74485 5 38932
45-49 49 96516 24 66595
50-54 64 78693 63 83553
55-59 88 48942 145 83353
60-64 83 38789 202 65947
65-69 125 29128 181 50805
70-74 86 19168 160 40282
75-79 126 25109 114 25545
80-84 113 17417 43 12431

85+ 54 8821 9 4183

total 806 515930 948 516080
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Indirect standardization

Lung Cancer in Berlin (West) 1960 and 1989

To illustrate the calculation, we use 1960 as reference:

E =
k∑

i=1

ni
Di

Ni
= (78862× 2

44454
)+. . .+(8821× 9

4183
) = 682.3731

So the standardized mortality ratio is

SMR =
806

682.3731
= 1.181

with standard error
√

806
682.3731 = 0.0416

I Lung cancer mortality in 1989 is thus around 118% that in
1960.
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Indirect standardization

Lung Cancer in Berlin (West) 1960 and 1989

Using the SMR we obtain the indirect standardized rate (per 1000
persons),

RIDS = 1000× SMR × D

N
= 1000× 1.181× 948

516080
= 2.17

with standard error

1000× 948

516080
×
√

806

682.3731
= 0.0764

I The age adjusted lung cancer mortality rate for 1989 is 2.17
the rate in 1960.
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Calculating the rate in STATA

In STATA

Data files needed:
(1) A study population file containing

I the strata variable (age) and the study size for each strata

I the total number of events observed

I if necessary, a group variable containing the groups to be
compared

(2) A reference population file containing

I the strata variable (age) exactly as in study population file

I Age-specific number of events and population size (or
age-specific rates)
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Calculating the rate in STATA

Study population file: Reference population file:
+----------------------------+ +-------------------------+
| age at_risk total_~s | | age death at_risk |
|----------------------------| |-------------------------|
| 35-39 78862 806 | | 35-39 2 44454 |
| 40-44 74485 . | | 40-44 5 38932 |
| 45-49 96516 . | | 45-49 24 66595 |
| 50-54 78693 . | | 50-54 63 83553 |
| 55-59 48942 . | | 55-59 145 83353 |
| 60-64 38789 . | | 60-64 202 65947 |
| 65-69 29128 . | | 65-69 181 50805 |
| 70-74 19168 . | | 70-74 160 40282 |
| 75-79 25109 . | | 75-79 114 25545 |
| 80-84 17417 . | | 80-84 43 12431 |
| 85+ 8821 . | | 85+ 9 4183 |
+----------------------------+ +-------------------------+
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Calculating the rate in STATA
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Calculating the rate in STATA
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Calculating the rate in STATA

Population Observed Cases

Stratum Rate Population Expected

----------------------------------------------------------

35-39 0.0000 78862 3.55

40-44 0.0001 74485 9.57

45-49 0.0004 96516 34.78

50-54 0.0008 78693 59.34

55-59 0.0017 48942 85.14

60-64 0.0031 38789 118.81

65-69 0.0036 29128 103.77

70-74 0.0040 19168 76.14

75-79 0.0045 25109 112.05

80-84 0.0035 17417 60.25

85+ 0.0022 8821 18.98

----------------------------------------------------------

Totals: 515930 682.37

Observed Cases: 806

SMR (Obs/Exp): 1.18

SMR exact 95% Conf. Interval: [1.1010, 1.2656]

Crude Rate: 0.0016

Adjusted Rate: 0.0022

95% Conf. Interval: [0.0020, 0.0023]

Summary of Study Populations (Rates):

Observed Crude Adj_Rate Confidence Interval

--------------------------------------------------------------------------

806 0.001562 0.002170 [0.002023, 0.002325]

Summary of Study Populations (SMR):

Observed Expected SMR Confidence Interval

--------------------------------------------------------------------------

806 682.37 1.181 [1.101024, 1.265611]
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Measures of differences in disease occurrence

Risk difference

Attributable Fraction

Calculating in STATA
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Lecture 5: Measures of effect I Risk Difference and Attributable Fraction with examples in Stata

Measures of differences in disease occurrence

We have seen earlier how to measure diseases and their
distributions using prevalence and incidence.

Now we are concerned differences in disease occurrence in different
populations.

Common measures are

1. risk difference (RD)

2. relative risk difference or attributable fraction (AF)

3. risk ratio (RR)

4. odds ratio (OR)

In this lecture we will look at the first two.

The risk ratio and odds ratio will be covered in the next lecture.
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Lecture 5: Measures of effect I Risk Difference and Attributable Fraction with examples in Stata

Risk difference

The Risk Difference (RD) is the difference between disease risk in
an exposed population and risk in an non-exposed population.

Let p1 = disease risk in an exposed population

p0 = disease risk in an non-exposed population.

RD = p1 − p0

RD is a number between -1 and 1.

Example 1

In a study of two toothpastes, 10 out of 100 caries-free children using a

new toothpaste (exposure) develop caries after 1 year. In another group

of 100 caries-free children using a standard toothpaste, 25 develop caries.

R̂D =
10

100
− 25

100
= −0.15

4 / 14



Lecture 5: Measures of effect I Risk Difference and Attributable Fraction with examples in Stata

Risk difference

Example 2

In a group of 1000 persons with heavy sun-exposure, there are 40
cases of skin cancer. In a comparative, equally sized, non-exposed
group there are 10 cases of skin cancer.

R̂D =
40

1000
− 10

1000
= 0.03

Exercise 1
In a cohort study evaluating radiation exposures, 52 tumours
developed among 2872 exposed individuals and 6 tumours
developed among 5049 unexposed individuals within the
observation period.
What is the risk difference?

R̂D = p̂1 − p̂0 =
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Risk difference

Distribution of number of diseased

Suppose that in a cohort study,

Y1 out of n1 exposed individuals and

Y0 out of n0 non-exposed individuals

developed the disease.

Assume that the probability p1 of developing the disease is the
same for everyone in the exposed group

Similarly, assume that the probability p0 of developing the disease
is the same for everyone in the non-exposed group

Then Y1 ∼ B(n1, p1) distribution

And Y0 ∼ B(n0, p0) distribution
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Risk difference

Variance of RD
A reasonable estimate for the RD is

R̂D = p̂1 − p̂0 =
Y1

n1
− Y0

n0

From which we get,

Var(R̂D) = Var

(
Y1

n1
− Y0

n0

)
= Var

(
Y1

n1

)
+ Var

(
Y0

n0

)
and since both Y1 and Y2 follow binomial distributions,

Var(R̂D) =
p1(1− p1)

n1
+

p0(1− p0)

n0
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Risk difference

A confidence interval for RD

SD(R̂D) =

√
p1(1− p1)

n1
+

p0(1− p0)

n0

Estimating p1 and p0 by p̂1 = Y1/n1 and p̂0 = Y0/n0

A 95% confidence interval for RD is

R̂D ± 2SD(R̂D)

= R̂D ± 2

√
p̂1(1− p̂1)

n1
+

p̂0(1− p̂0)

n0
)
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Risk difference

Example 1 (revisited)

Here we had that 10 children out of 100 using a new toothpaste
developed caries while 25 out of 100 using the standard toothpaste
developed caries.
The estimated RD was shown to be R̂D = 10

100 −
25
100 = −0.15

A 95%CI for RD is R̂D ± 2SD(R̂D)

= R̂D ± 2

√
p̂1(1− p̂1)

n1
+

p̂0(1− p̂0)

n0
)

= −0.15± 2

√
0.1(1− 0.1)

100
+

.25(1− 0.25)

100
)

= −0.15± 2
√

0.002775

= −0.15± 2× 0.0526783 = (−0.255,−0.045)
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Risk difference

Exercise 1 (revisited)

Here we had a cohort study on radiation exposure where 52
tumours developed among 2872 exposed and 6 tumours developed
among 5049 unexposed individuals.
The risk difference was R̂D = p̂1 − p̂0 =
A 95% CI for the risk difference is:

R̂D ± 2

√
p̂1(1− p̂1)

n1
+

p̂0(1− p̂0)

n0
)

=

Interpretation:
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Attributable Fraction

Attributable Fraction (AF):

The attributable fraction (AF) or relative risk difference is a
measure that combines RD and prevalence

AF due to exposure: Assume that exposure increases risk.

That is assume p1 > p0.

AF =
RD

p1
=

p1 − p0

p1

interpretation: Let n be the total number of cases and controls

AF =
np1 − np0

np1

=
(# cases if everyone exposed)− (# cases if everyone non-exposed)

# cases if everyone exposed
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Attributable Fraction

AF = proportion of cases due to exposure

= proportion of avoidable cases due to exposure

AF is a relative measure:
Effects with similar risks will have similar attributable fractions.

Scenario A): p1 = 1/10, p0 = 1/100
RD = 0.1− 0.01 = 0.09 ∼ 0.1

AF = 0.09/0.1 = 0.90

Scenario B): p1 = 1/100, p0 = 1/1000

RD = 0.01− 0.001 = 0.009 ∼ 0.01

AF = 0.009/0.01 = 0.90
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Attributable Fraction

Preventive fraction
If exposure decreases risk the preventive fraction is instead
calculated:

p0 − p1

p0

Population attributable fraction (PAF)

This is the proportion of cases occurring in the total population
which can be explained by the exposure

Let the proportion exposed be p

PAF =
p(p1 − p0)

pp1 + (1− p)p0
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Calculating in STATA

In STATA

Example 1: Caries Study

Data in rectangular format:

 

                                          csi   10 25 90 75 
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Risk Ratio

Odds Ratio

Calculating in STATA
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Risk Ratio

Risk ratio (RR):

The risk ratio or relative risk is the ratio of disease risk in an
exposed to disease risk in an non-exposed population.

RR =
p1

p0

where p1 is disease risk in exposed and p0 is disease risk in
non-exposed population.

I RR is a number between 0 and ∞.

Interpretation:

For example, RR=2 means that disease occurrence is 2 times more
likely in exposure group than in non-exposure group.

RR=1 means no effect of exposure.
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Risk Ratio

Example 1

In a study of two toothpastes, 10 out of 100 caries-free children
using a new toothpaste (exposure) develop caries after 1 year. In
another group of 100 caries-free children using a standard
toothpaste, 25 develop caries.

R̂R =
10

100
/

25

100
= 0.40

Example 2

In a group of 1000 persons with heavy sun-exposure, there are 40
cases of skin cancer. In a comparative, equally sized, non-exposed
group there are 10 cases of skin cancer.

R̂R =
40

1000
/

10

1000
= 40
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Risk Ratio

Exercise 1
In a cohort study evaluating radiation exposures, 52 tumours
developed among 2872 exposed individuals and 6 tumours
developed among 5049 unexposed individuals within the
observation period.
What is the risk ratio?

R̂R =
p̂1

p̂0
=
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Risk Ratio

Estimator of RR
Suppose that in a cohort study,

Y1 out of n1 exposed individuals and

Y0 out of n0 non-exposed individuals

developed the disease.

Assume that the probability p1 of developing the disease is the
same for everyone in the exposed group

Similarly, assume that the probability p0 of developing the disease
is the same for everyone in the non-exposed group

Then a plausible estimator of the risk ratio is

R̂R =
Y1
n1

Y0
n0

=
Y1n0

Y0n1
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Risk Ratio

Variance of RR
Technically it is easier to work with the logarithm of the risk ratio.

log(RR) = log(p1)− log(p0)

Applying the δ method, an approximate variance is

Var
(

̂log RR
)

=
(

1
p1

1
p0

)( Var(p̂1) 0
0 Var(p̂0)

)( 1
p1
1
p0

)

=
1

p2
1

p1(1− p1)

n1
+

1

p2
0

p0(1− p0)

n0

Estimating p1 by Y1/n1 and p0 by Y0/n0 and simplifying, we get

Var
(

̂log RR
)

=
1

Y1
− 1

n1
+

1

Y0
− 1

n0
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Risk Ratio

A confidence interval for RR

SD( ̂log RR) =

√
1

Y1
− 1

n1
+

1

Y0
− 1

n0

Consequently, a 95% confidence interval for the log relative risk
is

̂log RR ± 2SD( ̂log RR)

= ̂log RR ± 2

√
1

Y1
− 1

n1
+

1

Y0
− 1

n0

and back on the relative risk scale, a 95% CI for RR is

exp

(
̂log RR ± 2

√
1

Y1
− 1

n1
+

1

Y0
− 1

n0

)
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Risk Ratio

Example 1 (revisited)

Here we had that 10 children out of 100 using a new toothpaste
developed caries while 25 out of 100 using the standard toothpaste
developed caries.
The estimated RR was shown to be

R̂R =
10

100
/

25

100
= 0.4

A 95%CI for log(RR) is

̂log RR ± 2

√
1

Y1
− 1

n1
+

1

Y0
− 1

n0

= log 0.4± 2

√
1

10
− 1

100
+

1

25
− 1

100
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Risk Ratio

= −0.92± 2
√

0.12

= −0.92± 2× 0.3464 = (−1.6128,−0.2272)

Hence a 95%CI for the risk ratio is

(exp(−1.6128), exp(−0.2272)) = (0.1993, 0.7968)

This shows that the new toothpaste significantly reduces the risk
of developing caries.
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Risk Ratio

Exercise 1 (revisited)

Here we had a cohort study on radiation exposure where 52
tumours developed among 2872 exposed and 6 tumours developed
among 5049 unexposed individuals.
The risk ratio was R̂R = p̂1

p̂0

A 95% CI for RR is:

Interpretation:
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Risk Ratio

AF and RR:
Assume that p1 > p0:

AF = RD/p1 =
p1 − p0

p1

= 1− p0

p1

= 1− 1

RR

Hence an estimate of AF is available if an estimate of RR is
available.
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Odds Ratio

Odds
The odds of an outcome is the number of times the outcome
occurs to the number of times it does not.

Suppose that p is the probability of the outcome, then

odds =
p

1− p

It follows that p = odds
odds+1

Examples

I p = 1/2⇒ odds = 1

I p = 1/4⇒ odds = 1/3

I p = 3/4⇒ odds = 3/1 = 3
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Lecture 6: Measures of effect II Risk Ratio and Odds Ratio with examples in Stata

Odds Ratio

Odds Ratio

OR =
odds( in exposure )

odds( in non-exposure )

=
p1/(1− p1)

p0/(1− p0)

Properties of Odds Ratio

I 0 < OR <∞
I OR = 1 if and only if p1 = p0
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Lecture 6: Measures of effect II Risk Ratio and Odds Ratio with examples in Stata

Odds Ratio

Examples

risk =

{
p1 = 1/4

p0 = 1/8
effect measure =

{
OR = p1/(1−p1)

p0/(1−p0)
= 1/3

1/7 = 2.33

RR = p1
p0

= 2

risk =

{
p1 = 1/100

p0 = 1/1000
eff. meas. =

{
OR = 1/99

1/999 = 10.09

RR = p1
p0

= 10

Fundamental Theorem of Epidemiology

p0 small ⇒ OR ≈ RR

benefit: OR is interpretable as RR which is easier to deal with
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Lecture 6: Measures of effect II Risk Ratio and Odds Ratio with examples in Stata

Odds Ratio

Example: Radiation Exposure and Tumor Development

cases non-cases

E 52 2820 2872

NE 6 5043 5049

odds and OR
odds for disease given exposure:

52/2872

2820/2872
= 52/2820

odds for disease given non-exposure:

6/5049

5043/5049
= 6/5043

16 / 19



Lecture 6: Measures of effect II Risk Ratio and Odds Ratio with examples in Stata

Odds Ratio

Example, cont’d

cases non-cases

E 52 2820 2872

NE 6 5043 5049

odds ratio for disease :

OR =
52/2820

6/5043
=

52× 5043

6× 2820
= 15.49

or, log OR = log 15.49 = 2.74
for comparison

RR =
52/2872

6/5049
= 15.24
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Lecture 6: Measures of effect II Risk Ratio and Odds Ratio with examples in Stata

Odds Ratio

cases non-cases

E a b
NE c d

OR =
a/b

c/d
=

ad

bc

CI for OR: Using

Var(log OR) =
1

a
+

1

b
+

1

c
+

1

d

A 95% CI for log OR is log OR ± 2
√

1
a + 1

b + 1
c + 1

d

As for RR, the exponent of these limits will provide the CI for OR
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Lecture 6: Measures of effect II Risk Ratio and Odds Ratio with examples in Stata

Calculating in STATA

In STATA

Example: Radiation Exposure and Tumor Development
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Overview 
 

        1. Cohort Studies with Similar Observation Time 

          2. Cohort Studies with Individual, Different Observation Time 

          3. Case-Control Studies: Unmatched Situation 

          4. Case-Control Studies: Matched Situation 
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1. Cohort Studies with Similar Observation Time 

 
Situation in the population: 

 
 Case Non-Case  

Exposed p1 1-p1  
Non-

exposed 
p0 1-p0  

 

1

0
interest in:  pRR

p
=  



 4

 

Situation in the sample: 
 
 

 Case Non-Case At Risk 
Exposed Y1 n1 - Y1 n1

Non-
exposed 

Y0 n0 - Y0 n0 

 

Interest in estimating 1

0

pRR
p

= : 

RR̂ = 
Y1/n1
Y0/n0
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Example: Radiation Exposure and Cancer Occurrence 
 
 

 Case Non-Case At Risk 
Exposed 52 2820 2872 

Non-
exposed 

6 5043 5049 

 

RR̂ = 
52/2872
6/5049  = 

0.0181
0.0012 = 15.24 
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Tests and Confidence Intervals 

Estimated Variance of  log(RR̂ ): 

Var^  ( log RR̂ ) = 1/Y1 - 1/n1 + 1/Y0 - 1/n0 

 

Estimated Standard Error of  log(RR̂ ): 

SÊ (log RR̂ ) = 1/Y1 - 1/n1 + 1/Y0 -1/n0  
 

For the above example: 

Var^  ( log RR̂ ) = 1/52 -1/2872 +1/6 - 1/5049 
= 0.1854 

      SÊ (log RR̂ ) = 0.4305 
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Testing 

H0: RR= 1 or  log(RR) = 0 

H1: H0  is false 
 

Statistic used for testing:  Z = log( RR̂ )/ SÊ (log RR̂ ) 
  

Z is approx. standard  normally distributed if H0 true 
 

 
Test with Significance level 5%:  
 
reject H0 if  |Z| > 1.96 
accept H0 if  |Z| ≤ 1.96 

 
For the example: Z = log(15.24)/0.4305 = 6.327 
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Confidence Interval 

 
95%-CI covers with 95% confidence the true log (RR): 

 

log( RR̂ ) ± 1.96 SÊ (log RR̂ ) 
 

 
For the example:  

log(15.24) ±1.96 × 0.4305 = (1.8801, 3.5677) 
 

and back to the relative risk – scale: 
 

(exp(1.8801), exp(3.5677) ) = (6.55, 35.43) 
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In STATA 
 

                               chi2(1) =    72.08  Pr>chi2 = 0.0000
                                                                   
 Attr. frac. pop           .8377077        
 Attr. frac. ex.           .9343663            .8473876     .971773 
      Risk ratio           15.23607            6.552546    35.42713 
 Risk difference           .0169175            .0119494    .0218856 
                                                                   
                        Point estimate         [95% Conf. Interval]
                                           
            Risk    .0181058    .0011884      .0073223
                                           
           Total        2872        5049          7921
                                                       
        Noncases        2820        5043          7863
           Cases          52           6            58
                                                       
                     Exposed   Unexposed         Total
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Potential Confounding 

and Stratification with Respect to the Confounder 

 
Situation: 

 
 

 

 

 

 

Explanation?  

 

 Exposed Non-Exposed  
Stratum Case Non-

Case 
Case Non-Case RR 

1 50 100 1500 3000 1 
2 10 1000 1 100 1 
      

Total 60 1100 1501 3100 0.1585
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A more realistic example: Drinking Coffee and  CHD 
 

 
 Exposed (coffee) Non-Exposed  

Stratum Case Non-
Case 

Case Non-Case RR 

Smoker 195 705 21 79 1.03 
Non-S 5 95 29 871 1.55 

      
Total 200 800 50 950 4 
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How to diagnose confounding?  Stratify ! 

Situation: 
 

 
 Exposed Non-Exposed  

Stratum Case Non-Case Case Non-Case RR 
1 Y1

(1) n1
(1)- Y1

(1) Y0
(1) n0

(1)- Y0
(1) RR(1)

2 Y1
(2) n1

(2)- Y1
(2) Y0

(2) n1
(2)- Y0

(2) RR(2)

…  …  …  
k  Y1

(k) n1
(k)- Y1

(k) Y0
(k) n1

(k)- Y0
(k) RR(k)

      
Total Y1 n1- Y1 Y0 n1- Y0 RR
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How should the RR be estimated? 

 

Use an average  of  stratum-specific weights: 

RR̂ = w1RR̂ (1) + … + wk RR̂ (k)/(w1+…+wk) 

    

   Which weights? 
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Mantel-Haenszel Approach 

RR̂ MH= 
Y1

(1)n0
(1)/n(1)+ …+ Y1

(k)n0
(k)/n(k) 

Y0
(1)n1

(1)/n(1)+ …+ Y0
(k)n1

(k)/n(k)   

with n(i)= n0
(i)+ n1

(i). 

  Good Properties! 

 

  Mantel-Haenszel Weight: wi = Y0
(i)n1

(i)/n(i) 

    w1RR̂ (1) + … + wk RR̂ (k)/(w1+…+wk) = RR̂ MH 
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 Illustration of the MH-weights 

 

 

 
 
 
 

 
 

 
 
 
 
 

 Exposed Non-Exposed  
Stratum Case Non-

Case
Case Non-Case wi 

1 50 100 1500 3000 1500*150/4650
2 10 1000 1 100 1*1010/1111 
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In STATA 

       Stratum  Case  Exposure        obs  
  1.        1         1         1       50   
  2.        1         0         1          100   
  3.        1         1         0         1500   
  4.        1         0         0         3000   
  5.        2         1         1          10   
  6.        2         0         1         1000   
  7.        2         1         0           1   
  8.        2         0         0          100   
 
         Stratum |    RR   [95% Conf. Interval]    M-H Weight 
-----------------+------------------------------------------------- 
               1 |          1     .7944874   1.258673       48.3871  
               2 |          1     .1293251   7.732451      .9090909  
-----------------+------------------------------------------------- 
            Crude |   .1585495       .123494    .2035559                
  M-H combined |          1             .7953728   1.257272 
------------------------------------------------------------------- 
Test of homogeneity (M-H)      chi2(1) =    0.000  Pr>chi2 = 1.0000 
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Illustration:  Coffee-CHD-Data  
 

                                             
  8.      0          1         2         95  
  7.      1          1         2          5  
  6.      0          0         2        871  
                                             
  5.      1          0         2         29  
  4.      0          1         1        705  
  3.      1          1         1        195  
  2.      0          0         1         79  
  1.      1          0         1         21  
                                             
       Case   Exposure   Smoking   freque~y  
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Test of homogeneity (M-H)      chi2(1) =    0.629  Pr>chi2 = 0.4279
                                                                   
    M-H combined      1.100917     .7633712   1.587719
           Crude             4     2.971453   5.384571              
                                                                   
               2      1.551724     .6144943   3.918422          2.9 
               1      1.031746     .6916489   1.539076         18.9 
                                                                   
         Smoking         RR       [95% Conf. Interval]   M-H Weight
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Inflation, Masking and Effect Modification 
 
 

Inflation (Confounding): Crude RR is larger (in absolute value) than stratified RR 
 
Masking (Confounding): Crude RR is smaller (in absolute value) than stratified RR 
 
Effect Modification: Crude Rate is in between stratified RR 
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How can these situations be diagnosed? 

 
Use heterogeneity or homogeneity  test:  

 
  Homogeneity Hypothesis 

H0: RR(1) = RR(2) = …=RR(k) 

H1: H0 is wrong 
 
 
 

Teststatistic:  
 

( ) ( )2 2
( 1)

1
(log log ) / Var (log )

k i i

k MH
i

RR RR RRχ −
=

= −∑   
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Illustration of the Heterogeneity Test for CHD-Coffee 

 Exposed Non-Exposed  
Stratum Case Non-

Case 
Case Non-Case χ2

 

Smoke 195 705 21 79 0.1011 
 

Non-
Smoke 

5 95 29 871 0.5274 

Total 200 800 50 950 0.6285 
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. 

Test of homogeneity (M-H)      chi2(1) =    0.629  Pr>chi2 = 0.4279
                                                                   
    M-H combined      1.100917     .7633712   1.587719
           Crude             4     2.971453   5.384571              
                                                                   
               2      1.551724     .6144943   3.918422          2.9 
               1      1.031746     .6916489   1.539076         18.9 
                                                                   
         Smoking         RR       [95% Conf. Interval]   M-H Weight
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Cohort Studies with Individual, different Observation Time 
 

Situation: 
 

 Event-Risk Person-Time At Risk 
Exposed p1 T1 n1

Non-
exposed 

p0 T0 n0 

 

Definition: Person-Time is the time that n persons spend  
  under risk in the study period 
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Interest in:  RR = p1/p0 

Situation: 
 

 

 

 

RR̂ = 
Y1/T1
Y0/T0

  

Y/T is also called the incidence density (ID) !

 Events Person-Time At Risk 
Exposed Y1 T1 n1
Non-
exposed 

Y0 T0 n0 
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Example: Smoking Exposure and CHD Occurrence 
 

 
 Events Person-Time ID (Events per 

10,000 PYs) 
Exposed 206 28612 72

Non-
exposed

28 5710 49 

 

RR̂ =
206/28612
28/5710  = 

72
49  =  1.47 
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Tests and Confidence Intervals 

Estimated Variance of   log(RR̂ ) = log( ID1
^  / ID0

^  ): 

Var^  ( log RR̂ ) = 1/Y1 + 1/Y0 

 

Estimated Standard Error of  log(RR̂ ): 

SÊ (log RR̂ ) = 1/Y1 + 1/Y0  
 

For the above example: 

  Var^  ( log RR̂ ) = 1/206  +1/28     = 0.0405 

  SÊ (log RR̂ ) = 0.2013 
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Testing 

H0: RR= 1 or  log(RR) = 0 

   H1: H0  is false 
 

Statistic used for testing:  Z = log( RR̂ )/ SÊ (log RR̂ ) 
  

Z is approx. normally distributed if H0 true: 
 

Test with Significance level 5%:  
reject H0 if  |Z| > 1.96 
accept H0 if  |Z| ≤ 1.96 

 
For the example: Z = log(1.47)/0.2013 = 1.9139 
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Confidence Interval 

 
95%-CI covers with 95% confidence the true log (RR): 

 

log( RR̂ ) ± 1.96 SÊ (log RR̂ ) 
 

For the example:  
log(1.47) ±1.96 0.2013 = (-0.0093, 0.7798) 

 
and back to the relative risk – scale: 

 
    (exp(-0.0093),exp(0.7798) ) = (0.99, 2.18) 
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In STATA 

 
 

. 

                     (midp) 2*Pr(k>=206) =                   0.0487 (exact)
                     (midp)   Pr(k>=206) =                   0.0243 (exact)
                                                                   
 Attr. frac. pop            .280752        
 Attr. frac. ex.           .3189125           -.0138261    .5583247 (exact)
 Inc. rate ratio            1.46824            .9863624    2.264107 (exact)
 Inc. rate diff.           .0022961            .0002308    .0043614 
                                                                   
                        Point estimate         [95% Conf. Interval]
                                           
  Incidence Rate    .0071998    .0049037      .0068178
                                           
                                                       
     Person-time       28612        5710         34322
           Cases         206          28           234
                                                       
                     Exposed   Unexposed         Total
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Stratification with Respect to a Potential Confounder 

Example:  energy intake (as surrogate measure for physical inactivity)   
and Ischaemic Heart Disease 

 
 
 

 Exposed  
(<2750 kcal) 

Non-Exposed 
(≥2750 kcal) 

 

Stratum Cases P-Time Cases P-Time RR 
40-49 2 311.9 4 607.9 0.97 
50-59 12 878.1 5 1272.1 3.48 
60-60 14 667.5 8 888.9 2.33 

      
Total 28 1857.5 17 2768.9 2.46
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Situation: 
 

 
 Exposed Non-Exposed  

Stratum Cases P-Time Cases P-Time RR 
1 Y1

(1) T1
(1) Y0

(1) T0
(1) RR(1)

2 Y1
(2) T1

(2) Y0
(2) T0

(2) RR(2)

… … …
k  Y1

(k) T1
(k) Y0

(k) T0
(k) RR(k)

      
Total Y1 T1 Y0 T0 RR
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How should the RR be estimated? 

Use an average  of  stratum-specific weights: 

RR̂ = w1
(1) + … + wk RR̂ (k)/(w1+…+wk) 

      Which weights? 

Mantel-Haenszel Approach 

RR̂ MH= 
Y1

(1)T0
(1)/T(1)+ …+ Y1

(k)T0
(k)/T(k) 

Y0
(1)T1

(1)/T(1)+ …+ Y0
(k)T1

(k)/T(k)   

with T(i)= T0
(i)+ T1

(i). 

 Mantel-Haensel Weight: wi = Y0
(i)T1

(i)/T(i) 

w1RR̂ (1) + … + wk RR̂ (k)/(w1+…+wk) = RR̂ MH 
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In STATA 

                                                 
  6.         3          0          8      888.9  
                                                 
  5.         3          1         14      667.5  
  4.         2          0          5     1272.1  
  3.         2          1         12      878.1  
  2.         1          0          4      607.9  
  1.         1          1          2      311.9  
                                                 
       Stratum   Exposure   number~e   Person~e  
                                                 

 Test of homogeneity (M-H)    chi2(2) =      1.57  Pr>chi2 = 0.4555
                                                                   
    M-H combined     2.403914      1.306881   4.421829
           Crude     2.455204      1.297757   4.781095              (exact)
                                                                   
               3      2.33045      .9123878   6.411597     3.430995 (exact)
               2     3.476871       1.14019   12.59783     2.041903 (exact)
               1     .9745111      .0881524   6.799694     1.356382 (exact)
                                                                   
         Stratum        IRR       [95% Conf. Interval]   M-H Weight
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2. Case-Control Studies: Unmatched Situation 

 
Situation: 

 
 Case Controls 

Exposed q1 q0
Non-

exposed 
1-q1 1-q0 

 

Interest is in:  RR = p1/p0 which is not estimable 
      not in RRe = q1/q0 
   

 



 35

Illustration with a Hypo-Population: 

 

 Bladder-Ca Healthy  
Smoking 500 199,500 200,000 

Non-smoke 500 799,500 800,000 
 1000 999,000 1,000,000 

 

                RR = p1/p0  = 4  

 = 2.504= 
5/10

 1995/9990 =q1/q0 = RRe 
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However, consider the (disease) Odds Ratio defined as 
 
    

OR = 
p1/(1-p1)
p0/(1-p0) 

 
 
 

Pr(D/E) = p1 , Pr(D/NE) = p0 , 
 

Pr(E/D) = q1 , Pr(E/ND) = q0 , p = Pr(D)  
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             p1 = P(D/E)  using Bayes Theorem 

                                   = 
Pr(E/D)Pr(D)

 Pr(E/D)Pr(D)+ Pr(E/ND)Pr(ND) = 
q1 p

 q1p + q0 (1-p)  

            p0 = P(D/NE)  

                                 = 
Pr(NE/D)Pr(D)

 Pr(NE/D)Pr(D)+ Pr(NE/ND)Pr(ND) = 
(1-q1) p

 (1-q1) p + (1−q0 )(1-p)   

 

     p1/(1-p1) = q1p/q0(1-p) und p0/(1-p0) = [(1-q1)p]/[(1-q0)(1-p)].  

 

            it follows that  

OR = 
 p1/(1-p1)
 p0/(1-p0) = 

 q1/q0
 (1-q1)/(1-q0) = 

 q1/(1-q1,)
q0/(1-q0)  = ORe 

Disease Odds Ratio = Exposure Odds Ratio 
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Illustration with a Hypo-Population: 

 

 

 

 

 

 

OR = (500/199,500)/(500/799,500) = (500/500)/(199,500/799,500) = ORe = 4.007 

 

Also, if disease occurrence is low (low prevalence), 

OR ≈ RR 

 Bladder-Ca Healthy  
Smoking 500 199,500 200,000 

Non-smoke 500 799,500 800,000 
 1000 999,000 1,000,000
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Estimation of OR 
 

Situation: 
 

        

 

 

      OR̂ = 
q1
^  /(1-q1

^  )

q0
^  /(1-q0

^  )
 = 

X1/(m1-X1) 
 X0/(m0-X0) = 

X1(m0-X0) 
 X0(m1-X1)  

 
 
 
 

 Case Controls 
Exposed X1 X0

Non-
exposed 

m1-X1 m0-X0 

 m1 m0
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Example: Sun Exposure and Lip Cancer Occurrence in Population of 50-69 year old 
men 
 

 Case Controls 
Exposed 66 14 

Non-
exposed

27 15 

 93 29 
      

OR̂ = 
66 × 15
14 × 27  =   2.619 
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Tests and Confidence Intervals 

Estimated Variance of  log(OR̂ ): 

Var^  ( log OR̂ ) = 
1

X1
 + 

1
m1 - X1   + 

1
X0

 + 
1

m0 - X0   

 

Estimated Standard Error of  log(OR̂ ): 

SÊ (log OR̂ ) = 
1

X1
 + 

1
m1 - X1   + 

1
X0

 +
1

m0 - X0    
 

For the above example: 

  Var^  ( log OR̂ ) = 1/66 + 1/27 +1/14 + 1/15 
            = 0.1903 

  SÊ (log OR̂ ) = 0.4362 
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Testing 

H0: OR= 1 or  log(OR) = 0  

   H1: H0  is false 
 

Statistic used for testing:  Z = log(OR̂ )/ SÊ (log OR̂ ) 
  

Z is approx. normally distributed if H0 true: 
 

Test with Significance level 5%:  
reject H0 if  |Z| > 1.96 
accept H0 if  |Z| ≤ 1.96 

 
For the example: Z = log(2.619)/0.4362 = 2.207 
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Confidence Interval 
 

95%-CI covers with 95% confidence the true log (RR): 
 

log(OR̂ ) ± 1.96 SÊ (log OR̂ ) 
 

For the example:  
log(2.619) ±1.96 0.4362 = (0.1078, 1.8177) 

 
and back to the relative risk – scale: 

 
(exp(0.1078),exp(1.8177) ) = (1.11, 6.16) 
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In STATA 
 

. 

                               chi2(1) =     4.22  Pr>chi2 = 0.0399
                                                                   
 Attr. frac. pop           .4193548        
 Attr. frac. ex.           .5909091            .0278254    .8278546 (Woolf)
      Odds ratio           2.444444            1.028622    5.809044 (Woolf)
                                                                   
                        Point estimate         [95% Conf. Interval]
                                           
           Total          80          41           121       0.6612
                                                                   
        Controls          14          14            28       0.5000
           Cases          66          27            93       0.7097
                                                                   
                     Exposed   Unexposed         Total     Exposed
                                                         Proportion

 

Exercise: A case-control study investigates if a keeping a pet bird is a risk factor: 
Cases: 98 Bird Owners, 141 None, Controls: 101 Bird Owners, 328 None 
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Potential Confounding 

and Stratification with Respect to the Confounder 

 
Situation:  
  
 

 
 

Lip-Cancer  Sun-
Exposure 

Smoking
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Lip-Cancer and Sun Exposure with Smoking as Potential Confounder 

 
 
 

 

 

 

 

 

Explanation?  

 Cases Controls  
Stratum Exposed Non-

Exp. 
Exp. Non-

Exp. 
OR 

Smoke 51 24 6 10 3.54 
Non-

Smoke 
15 3 8 5 3.13 

      
Total 66 27 14 15 2.62 
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How to diagnose confounding?  Stratify ! 

 
Situation: 

 
 Cases Controls Cases

Stra-
tum  

Ex-
posed 

Non-Exp. Ex-
posed

Non-Exp. OR 

1 X1
(1) m1

(1)- X1
(1) X0

(1) m0
(1)- X0

(1) OR(1)

2 X1
(2) m1

(2)- X1
(2) X0

(2) m1
(2)- X0

(2) OR(2)

…  …  …  
k  X1

(k) m1
(k)- X1

(k) X0
(k) m1

(k)- X0
(k) OR(k)

      
Total X1 m1- X1 X0 m1- X0 OR

 

How should the OR based upon stratification be estimated? 
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Use an average  of  stratum-specific weights: 

      OR̂ = w1OR̂ (1) + … + wk OR̂ (k)/(w1+…+wk) 

      Which weights?  

Mantel-Haenszel Weight: wi = X0
(i) (m1

(i) -X1
(i))/ m(i) 

Mantel-Haenszel Approach 

OR̂ MH= 
X1

(1) (m0
(1) -X0

(1)) /m(1)+ …+ X1
(k) (m0

(k) -X0
(k))/m(1)

 X0
(1) (m1

(1) -X1
(1))/ m(1) + …+ X1

(1) (m0
(1) -X0

(1))/ m(1)    

with m(i)= m0
(i)+ m1

(i). 

    w1OR̂ (1) + … + wk OR̂ (k)/(w1+…+wk) = OR̂ MH 
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Illustration of the MH-weights 

 Cases Controls  
Stratum Exposed Non-

Exp. 
Exp. Non-

Exp. 
wi 

Smoke 51 24 6 10 6*24/91
Non-

Smoke
15 3 8 5 8*3/31 
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In STATA 
 
 
        Case   Exposure Smoke Pop  
  1.        1         1          0        51   
  2.        0         1            0         6   
  3.        1         0           0        24   
  4.        0         0           0        10   
  5.        1         1           1        15   
  6.        0         1           1         8   
  7.        1         0           1         3   
  8.        0         0           1         5   
 
 
. cc  Case Control [freq=Pop], by(Smoke) 
           Smoke |       OR      [95% Conf. Interval]    M-H Weight 
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-----------------+------------------------------------------------- 
               0 |   3.541667     1.011455   13.14962      1.582418 (exact) 
               1 |      3.125       .4483337   24.66084      .7741935 (exact) 
-----------------+------------------------------------------------- 
               Crude |   2.619048     1.016247    6.71724               (exact) 
M-H combined |   3.404783     1.341535   8.641258                
------------------------------------------------------------------- 
Test of homogeneity (M-H)      chi2(1) =     0.01  Pr>chi2 = 0.9029 
 
                   Test that combined OR = 1: 
Mantel-Haenszel chi2(1) =      6.96              Pr>chi2 =    0.0083 
 

 
Note that “freq=Pop” is optional, e.g. raw data can be used with this analysis 
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Inflation, Masking and Effect Modification 
 

Inflation (Confounding): Crude OR is larger (in absolute value) than stratified OR 
 
Masking (Confounding): Crude OR is smaller (in absolute value) than stratified OR 
 
Effect Modification: Crude Rate is in between stratified OR 
 
 

How can these situations be diagnosed? Use heterogeneity or homogeneity test:  
 
   Homogeneity Hypothesis 
 

H0: OR(1) = OR(2) = …=OR(k) 

H1: H0 is wrong 
 

            

( ) ( )2 2
( 1)

1
(log log ) / Var (log )

k i i

k MH
i

OR OR ORχ −
=

= −∑  
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Illustration of the Heterogeneity Test for Lip Cancer -Sun Exposure 
 

 Cases Controls  
Stratum Exposed Non-

Exp. 
Exp. Non-

Exp. 
χ2

 

Smoke 51 24 6 10 0.0043 
Non-

Smoke 
15 3 8 5 0.0101 

Total 66 27 14 15 0.0144 
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  8.   1   1         2     15  
  7.   0   0         2      5  
  6.   1   0         2      3  
                               
  5.   1   1         1     51  
  4.   1   0         1     24  
  3.   0   1         1      6  
  2.   0   1         2      8  
  1.   0   0         1     10  
                               
       D   E   stratum   freq  
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                                                Pr>chi2 =    0.0083
                                Mantel-Haenszel chi2(1) =      6.96
                   Test that combined OR = 1:

Test of homogeneity (M-H)      chi2(1) =     0.01  Pr>chi2 = 0.9029
                                                                   
    M-H combined     3.404783      1.341535   8.641258              
           Crude     2.619048      1.016247   6.717228              (exact)
                                                                   
               2        3.125      .4483337   24.66091     .7741935 (exact)
               1     3.541667      1.011455   13.14962     1.582418 (exact)
                                                                   
         stratum         OR       [95% Conf. Interval]   M-H Weight
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3. Case-Control Studies: Matched Situation 

 
Given a case is sampled, a comparable control is sampled: comparable w.r.t. matching 
criteria 
 
Examples of  matching criteria  are age, gender, SES, etc. 
 

Matched pairs sampling is more elaborate:  
to be effective often a two stage sampling of controls is done:  

first stage, controls are sampled as in the unmatched case; 
 second stage, from the sample of controls.  

 
strata are built according to the matching criteria from which the matched controls are 
sampled 
 

Result: data consist of pairs: (Case,Control) 



 57

 
Because of the design the case-control study the data are no longer two independent 
samples of the diseased and the healthy population, but rather one independent sample 
of the diseased population, and a stratified sample of the healthy population, stratified 
by the matching variable as realized for the case 
 
 Case 1 (40 ys, man)     Control 1 (40 ys, man) 
 Case 2 (33 ys, wom)     Control 2 (33 ys, wom) 
     …. 
Because of the design of the matched case-control study, stratified analysis is most 
appropriate with  
each pair defining a stratum 
 
 
What is the principal structure of a pair? 
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Four Situations 

 

a) 
 Case Control 

exposed 1 1  
non-exposed    

   2 
 
 

b)  
 Case Control  

exposed 1   
non-exposed  1  

   2 
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c)  
 Case Control  

exposed  1  
non-exposed 1   

   2 
 
 

d)  
 Case Control  

exposed    
non-exposed 1 1  

   2 
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How many pairs of each type? 
 

Four frequencies 
 

a pairs of type a) 
 Case Control  

exposed 1 1  
non-exposed    

 2
 
 

b pairs of type b)  
 Case Control  

exposed 1   
non-exposed 1

   2 
 



 61

 
 

c pairs of type c)  
 Case Control  

exposed  1  
non-exposed 1   

 2
 

d pairs of type d)  
Case Control

exposed  
non-exposed 1 1  

   2 
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OR̂ MH= 
X1

(1) (m0
(1) -X0

(1)) /m(1)+ …+ X1
(k) (m0

(k) -X0
(k))/m(1)

 X0
(1) (m1

(1) -X1
(1))/ m(1) + …+ X1

(1) (m0
(1) -X0

(1))/ m(1)    

 

=
a × 1 × 0 /2 + b × 1 × 1 /2 +c × 0 × 0 /2 + d × 0 × 1 /2
 a × 0 × 1 /2 + b × 0 × 0 /2 +c × 1 × 1 /2 + d × 1× 0 /2    

 
= b/c 

= 
# pairs with case exposed and control unexposed
 # pairs with case unexposed and controlexposed  

 
In a matched case-control study, the Mantel-Haenszel odds ratio is estimated by the 
ratio of the frequency of pairs  with case exposed and control unexposed to the 
frequency of pairs  with case unexposed and control exposed: 
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(typical presentation of paired studies) 

 
 

  Control  

C
as

e  exposed unexposed  
exposed a b a+b 

unexposed c d c+d 
  a+c b+d  

 

OR̂ (conventional, unadjusted) = 
(a+b)(b+d)
(a+c)(c+d)  

OR̂ MH = b/c  (ratio of discordant pairs) 
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Example: Reye-Syndrome and Aspirin Intake 
 

 
  Control  

C
as

e  exposed unexposed  
exposed 132 57 189 

unexposed 5 6 11
 137 63 200

 
 

OR̂ (conventional, unadjusted) = 
(a+b)(b+d)
(a+c)(c+d) = 

189 × 63
137 × 11 = 7.90 

 

OR̂ MH = b/c  (ratio of discordant pairs) 
= 57/5 = 11.4 

 
Cleary, for the inference only discordant pairs are required! Therefore, inference is 
done conditional upon discordant pairs 
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What is the probability that a pair is of type (Case exposed, Control unexposed) given 
it is discordant? 
 

π = Pr ( Case E, Control NE | pair is discordant) = 
 

P(Case E, Control NE) / P(pair is discordant) = 
 

P(Case E, Control NE) / P(Case E, Control NE or Case NE, Control E)  
 

= q1(1-q0)/[ q1(1-q0) + (1-q1)q0]  

= 
q1(1-q0)
(1-q1)q0

 /( 
q1(1-q0)
(1-q1)q0

 +1 ) = OR/ (OR+1) 
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How can I estimate π ? 

 

π̂ = 
frequency of pairs: Case E; Control NE

frequency of all discordant pairs   

 
= b/(b+c) 

 
now, π = OR/(OR+1)  or OR = π/(1-π) 

 
How can I estimate OR? 

 

OR̂ = π̂ /(1-π̂ ) = (b/(b+c) / (1- b/(b+c)) = b/c 
 

which corresponds to the Mantel-Haenszel-estimate used before! 
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Testing and CI Estimation 

 
    

H0: OR = 1 or π = OR/(OR+1) = ½ 
   H1: H0 is false  
 

since π̂ is a proportion estimator its estimated standard error is: 
 

SE of π̂ : π (1-π)/m  = Null-Hpyothesis= ½  1/m  
 
where m=b+c (number of discordant pairs) 
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Teststatistic:  Z = (π̂ - ½ )/ (½  1/m )  
 
      = b+c (2 b/(b+c) –1) 
      = (b-c)/ b+c  
 

and χ2 = Z2 = (b-c)2/(b+c) is  McNemar’s Chi-Square test statistic! 
 
 
 

In the example:  
χ2 = (57-5)2/62 = 43.61 
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Confidence Interval (again using π) 

 

π̂ ± 1.96 SÊ  (π̂ ) = π̂ ± 1.96 π̂  (1-π̂ )/m  
  

and, to get Odds Ratios, use transform. OR = π/(1-π):  
 

 

π̂ ± 1.96 π̂  (1-π̂ )/m 

1-  π̂ ± 1.96 π̂  (1-π̂ )/m 
  

 
to provide a 95% CI for the Odds Ratio! 
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In the Example, 

 

π̂ = 57/62 = 0.9194, 

π̂ ± 1.96 π̂  (1-π̂ )/m = 0.9194 ± 1.96 × 0.0346 
= (0.8516, 0.9871) 

 
leading to the 95%-CI for the Odds Ratio: 

 
[0.8516/(1-0.8516), 0.9871/(1-0.9871) ] 

 
= [5.7375, 76.7194 ] 
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In Stata: 
 

 

. 

        odds ratio      11.4      4.610017   36.44671   (exact)

        rel. diff.  .8253968       .723037   .9277566
        ratio       1.379562      1.253398   1.518425
        difference       .26      .1867662   .3332338
                                                     
        Controls        .685     [95% Conf. Interval]
        Cases           .945
Proportion with factor

Exact McNemar significance probability       = 0.0000
McNemar's chi2(1) =     43.61    Prob > chi2 = 0.0000

           Total         137          63           200
                                                       
       Unexposed           5           6            11
         Exposed         132          57           189
                                                       
Cases                Exposed   Unexposed         Total
                   Controls                
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Overview 
 

        1. Cohort Studies with Similar Observation Time 

          2. Cohort Studies with Individual, Different Observation Time 

          3. Case-Control Studies: Unmatched Situation 

          4. Case-Control Studies: Matched Situation 
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1. Cohort Studies with Similar Observation Time 

 
Situation in the population: 

 
 Case Non-Case  

Exposed p1 1-p1  
Non-

exposed 
p0 1-p0  

 

1

0
interest in:  pRR

p
=  
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Situation in the sample: 
 
 

 Case Non-Case At Risk 
Exposed Y1 n1 - Y1 n1

Non-
exposed 

Y0 n0 - Y0 n0 

 

Interest in estimating 1

0

pRR
p

= : 

RR̂ = 
Y1/n1
Y0/n0
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Example: Radiation Exposure and Cancer Occurrence 
 
 

 Case Non-Case At Risk 
Exposed 52 2820 2872 

Non-
exposed 

6 5043 5049 

 

RR̂ = 
52/2872
6/5049  = 

0.0181
0.0012 = 15.24 
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Tests and Confidence Intervals 

Estimated Variance of  log(RR̂ ): 

Var^  ( log RR̂ ) = 1/Y1 - 1/n1 + 1/Y0 - 1/n0 

 

Estimated Standard Error of  log(RR̂ ): 

SÊ (log RR̂ ) = 1/Y1 - 1/n1 + 1/Y0 -1/n0  
 

For the above example: 

Var^  ( log RR̂ ) = 1/52 -1/2872 +1/6 - 1/5049 
= 0.1854 

      SÊ (log RR̂ ) = 0.4305 
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Testing 

H0: RR= 1 or  log(RR) = 0 

H1: H0  is false 
 

Statistic used for testing:  Z = log( RR̂ )/ SÊ (log RR̂ ) 
  

Z is approx. standard  normally distributed if H0 true 
 

 
Test with Significance level 5%:  
 
reject H0 if  |Z| > 1.96 
accept H0 if  |Z| ≤ 1.96 

 
For the example: Z = log(15.24)/0.4305 = 6.327 
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Confidence Interval 

 
95%-CI covers with 95% confidence the true log (RR): 

 

log( RR̂ ) ± 1.96 SÊ (log RR̂ ) 
 

 
For the example:  

log(15.24) ±1.96 × 0.4305 = (1.8801, 3.5677) 
 

and back to the relative risk – scale: 
 

(exp(1.8801), exp(3.5677) ) = (6.55, 35.43) 
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In STATA 
 

                               chi2(1) =    72.08  Pr>chi2 = 0.0000
                                                                   
 Attr. frac. pop           .8377077        
 Attr. frac. ex.           .9343663            .8473876     .971773 
      Risk ratio           15.23607            6.552546    35.42713 
 Risk difference           .0169175            .0119494    .0218856 
                                                                   
                        Point estimate         [95% Conf. Interval]
                                           
            Risk    .0181058    .0011884      .0073223
                                           
           Total        2872        5049          7921
                                                       
        Noncases        2820        5043          7863
           Cases          52           6            58
                                                       
                     Exposed   Unexposed         Total
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Potential Confounding 

and Stratification with Respect to the Confounder 

 
Situation: 

 
 

 

 

 

 

Explanation?  

 

 Exposed Non-Exposed  
Stratum Case Non-

Case 
Case Non-Case RR 

1 50 100 1500 3000 1 
2 10 1000 1 100 1 
      

Total 60 1100 1501 3100 0.1585
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A more realistic example: Drinking Coffee and  CHD 
 

 
 Exposed (coffee) Non-Exposed  

Stratum Case Non-
Case 

Case Non-Case RR 

Smoker 195 705 21 79 1.03 
Non-S 5 95 29 871 1.55 

      
Total 200 800 50 950 4 
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How to diagnose confounding?  Stratify ! 

Situation: 
 

 
 Exposed Non-Exposed  

Stratum Case Non-Case Case Non-Case RR 
1 Y1

(1) n1
(1)- Y1

(1) Y0
(1) n0

(1)- Y0
(1) RR(1)

2 Y1
(2) n1

(2)- Y1
(2) Y0

(2) n1
(2)- Y0

(2) RR(2)

…  …  …  
k  Y1

(k) n1
(k)- Y1

(k) Y0
(k) n1

(k)- Y0
(k) RR(k)

      
Total Y1 n1- Y1 Y0 n1- Y0 RR
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How should the RR be estimated? 

 

Use an average  of  stratum-specific weights: 

RR̂ = w1RR̂ (1) + … + wk RR̂ (k)/(w1+…+wk) 

    

   Which weights? 

 



 14

Mantel-Haenszel Approach 

RR̂ MH= 
Y1

(1)n0
(1)/n(1)+ …+ Y1

(k)n0
(k)/n(k) 

Y0
(1)n1

(1)/n(1)+ …+ Y0
(k)n1

(k)/n(k)   

with n(i)= n0
(i)+ n1

(i). 

  Good Properties! 

 

  Mantel-Haenszel Weight: wi = Y0
(i)n1

(i)/n(i) 

    w1RR̂ (1) + … + wk RR̂ (k)/(w1+…+wk) = RR̂ MH 
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 Illustration of the MH-weights 

 

 

 
 
 
 

 
 

 
 
 
 
 

 Exposed Non-Exposed  
Stratum Case Non-

Case
Case Non-Case wi 

1 50 100 1500 3000 1500*150/4650
2 10 1000 1 100 1*1010/1111 
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In STATA 

       Stratum  Case  Exposure        obs  
  1.        1         1         1       50   
  2.        1         0         1          100   
  3.        1         1         0         1500   
  4.        1         0         0         3000   
  5.        2         1         1          10   
  6.        2         0         1         1000   
  7.        2         1         0           1   
  8.        2         0         0          100   
 
         Stratum |    RR   [95% Conf. Interval]    M-H Weight 
-----------------+------------------------------------------------- 
               1 |          1     .7944874   1.258673       48.3871  
               2 |          1     .1293251   7.732451      .9090909  
-----------------+------------------------------------------------- 
            Crude |   .1585495       .123494    .2035559                
  M-H combined |          1             .7953728   1.257272 
------------------------------------------------------------------- 
Test of homogeneity (M-H)      chi2(1) =    0.000  Pr>chi2 = 1.0000 
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Illustration:  Coffee-CHD-Data  
 

                                             
  8.      0          1         2         95  
  7.      1          1         2          5  
  6.      0          0         2        871  
                                             
  5.      1          0         2         29  
  4.      0          1         1        705  
  3.      1          1         1        195  
  2.      0          0         1         79  
  1.      1          0         1         21  
                                             
       Case   Exposure   Smoking   freque~y  
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Test of homogeneity (M-H)      chi2(1) =    0.629  Pr>chi2 = 0.4279
                                                                   
    M-H combined      1.100917     .7633712   1.587719
           Crude             4     2.971453   5.384571              
                                                                   
               2      1.551724     .6144943   3.918422          2.9 
               1      1.031746     .6916489   1.539076         18.9 
                                                                   
         Smoking         RR       [95% Conf. Interval]   M-H Weight
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Inflation, Masking and Effect Modification 
 
 

Inflation (Confounding): Crude RR is larger (in absolute value) than stratified RR 
 
Masking (Confounding): Crude RR is smaller (in absolute value) than stratified RR 
 
Effect Modification: Crude Rate is in between stratified RR 
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How can these situations be diagnosed? 

 
Use heterogeneity or homogeneity  test:  

 
  Homogeneity Hypothesis 

H0: RR(1) = RR(2) = …=RR(k) 

H1: H0 is wrong 
 
 
 

Teststatistic:  
 

( ) ( )2 2
( 1)

1
(log log ) / Var (log )

k i i

k MH
i

RR RR RRχ −
=

= −∑   
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Illustration of the Heterogeneity Test for CHD-Coffee 

 Exposed Non-Exposed  
Stratum Case Non-

Case 
Case Non-Case χ2

 

Smoke 195 705 21 79 0.1011 
 

Non-
Smoke 

5 95 29 871 0.5274 

Total 200 800 50 950 0.6285 
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. 

Test of homogeneity (M-H)      chi2(1) =    0.629  Pr>chi2 = 0.4279
                                                                   
    M-H combined      1.100917     .7633712   1.587719
           Crude             4     2.971453   5.384571              
                                                                   
               2      1.551724     .6144943   3.918422          2.9 
               1      1.031746     .6916489   1.539076         18.9 
                                                                   
         Smoking         RR       [95% Conf. Interval]   M-H Weight
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Cohort Studies with Individual, different Observation Time 
 

Situation: 
 

 Event-Risk Person-Time At Risk 
Exposed p1 T1 n1

Non-
exposed 

p0 T0 n0 

 

Definition: Person-Time is the time that n persons spend  
  under risk in the study period 
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Interest in:  RR = p1/p0 

Situation: 
 

 

 

 

RR̂ = 
Y1/T1
Y0/T0

  

Y/T is also called the incidence density (ID) !

 Events Person-Time At Risk 
Exposed Y1 T1 n1
Non-
exposed 

Y0 T0 n0 
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Example: Smoking Exposure and CHD Occurrence 
 

 
 Events Person-Time ID (Events per 

10,000 PYs) 
Exposed 206 28612 72

Non-
exposed

28 5710 49 

 

RR̂ =
206/28612
28/5710  = 

72
49  =  1.47 
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Tests and Confidence Intervals 

Estimated Variance of   log(RR̂ ) = log( ID1
^  / ID0

^  ): 

Var^  ( log RR̂ ) = 1/Y1 + 1/Y0 

 

Estimated Standard Error of  log(RR̂ ): 

SÊ (log RR̂ ) = 1/Y1 + 1/Y0  
 

For the above example: 

  Var^  ( log RR̂ ) = 1/206  +1/28     = 0.0405 

  SÊ (log RR̂ ) = 0.2013 
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Testing 

H0: RR= 1 or  log(RR) = 0 

   H1: H0  is false 
 

Statistic used for testing:  Z = log( RR̂ )/ SÊ (log RR̂ ) 
  

Z is approx. normally distributed if H0 true: 
 

Test with Significance level 5%:  
reject H0 if  |Z| > 1.96 
accept H0 if  |Z| ≤ 1.96 

 
For the example: Z = log(1.47)/0.2013 = 1.9139 
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Confidence Interval 

 
95%-CI covers with 95% confidence the true log (RR): 

 

log( RR̂ ) ± 1.96 SÊ (log RR̂ ) 
 

For the example:  
log(1.47) ±1.96 0.2013 = (-0.0093, 0.7798) 

 
and back to the relative risk – scale: 

 
    (exp(-0.0093),exp(0.7798) ) = (0.99, 2.18) 
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In STATA 

 
 

. 

                     (midp) 2*Pr(k>=206) =                   0.0487 (exact)
                     (midp)   Pr(k>=206) =                   0.0243 (exact)
                                                                   
 Attr. frac. pop            .280752        
 Attr. frac. ex.           .3189125           -.0138261    .5583247 (exact)
 Inc. rate ratio            1.46824            .9863624    2.264107 (exact)
 Inc. rate diff.           .0022961            .0002308    .0043614 
                                                                   
                        Point estimate         [95% Conf. Interval]
                                           
  Incidence Rate    .0071998    .0049037      .0068178
                                           
                                                       
     Person-time       28612        5710         34322
           Cases         206          28           234
                                                       
                     Exposed   Unexposed         Total
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Stratification with Respect to a Potential Confounder 

Example:  energy intake (as surrogate measure for physical inactivity)   
and Ischaemic Heart Disease 

 
 
 

 Exposed  
(<2750 kcal) 

Non-Exposed 
(≥2750 kcal) 

 

Stratum Cases P-Time Cases P-Time RR 
40-49 2 311.9 4 607.9 0.97 
50-59 12 878.1 5 1272.1 3.48 
60-60 14 667.5 8 888.9 2.33 

      
Total 28 1857.5 17 2768.9 2.46
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Situation: 
 

 
 Exposed Non-Exposed  

Stratum Cases P-Time Cases P-Time RR 
1 Y1

(1) T1
(1) Y0

(1) T0
(1) RR(1)

2 Y1
(2) T1

(2) Y0
(2) T0

(2) RR(2)

… … …
k  Y1

(k) T1
(k) Y0

(k) T0
(k) RR(k)

      
Total Y1 T1 Y0 T0 RR
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How should the RR be estimated? 

Use an average  of  stratum-specific weights: 

RR̂ = w1
(1) + … + wk RR̂ (k)/(w1+…+wk) 

      Which weights? 

Mantel-Haenszel Approach 

RR̂ MH= 
Y1

(1)T0
(1)/T(1)+ …+ Y1

(k)T0
(k)/T(k) 

Y0
(1)T1

(1)/T(1)+ …+ Y0
(k)T1

(k)/T(k)   

with T(i)= T0
(i)+ T1

(i). 

 Mantel-Haensel Weight: wi = Y0
(i)T1

(i)/T(i) 

w1RR̂ (1) + … + wk RR̂ (k)/(w1+…+wk) = RR̂ MH 
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In STATA 

                                                 
  6.         3          0          8      888.9  
                                                 
  5.         3          1         14      667.5  
  4.         2          0          5     1272.1  
  3.         2          1         12      878.1  
  2.         1          0          4      607.9  
  1.         1          1          2      311.9  
                                                 
       Stratum   Exposure   number~e   Person~e  
                                                 

 Test of homogeneity (M-H)    chi2(2) =      1.57  Pr>chi2 = 0.4555
                                                                   
    M-H combined     2.403914      1.306881   4.421829
           Crude     2.455204      1.297757   4.781095              (exact)
                                                                   
               3      2.33045      .9123878   6.411597     3.430995 (exact)
               2     3.476871       1.14019   12.59783     2.041903 (exact)
               1     .9745111      .0881524   6.799694     1.356382 (exact)
                                                                   
         Stratum        IRR       [95% Conf. Interval]   M-H Weight
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2. Case-Control Studies: Unmatched Situation 

 
Situation: 

 
 Case Controls 

Exposed q1 q0
Non-

exposed 
1-q1 1-q0 

 

Interest is in:  RR = p1/p0 which is not estimable 
      not in RRe = q1/q0 
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Illustration with a Hypo-Population: 

 

 Bladder-Ca Healthy  
Smoking 500 199,500 200,000 

Non-smoke 500 799,500 800,000 
 1000 999,000 1,000,000 

 

                RR = p1/p0  = 4  

 = 2.504= 
5/10

 1995/9990 =q1/q0 = RRe 
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However, consider the (disease) Odds Ratio defined as 
 
    

OR = 
p1/(1-p1)
p0/(1-p0) 

 
 
 

Pr(D/E) = p1 , Pr(D/NE) = p0 , 
 

Pr(E/D) = q1 , Pr(E/ND) = q0 , p = Pr(D)  
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             p1 = P(D/E)  using Bayes Theorem 

                                   = 
Pr(E/D)Pr(D)

 Pr(E/D)Pr(D)+ Pr(E/ND)Pr(ND) = 
q1 p

 q1p + q0 (1-p)  

            p0 = P(D/NE)  

                                 = 
Pr(NE/D)Pr(D)

 Pr(NE/D)Pr(D)+ Pr(NE/ND)Pr(ND) = 
(1-q1) p

 (1-q1) p + (1−q0 )(1-p)   

 

     p1/(1-p1) = q1p/q0(1-p) und p0/(1-p0) = [(1-q1)p]/[(1-q0)(1-p)].  

 

            it follows that  

OR = 
 p1/(1-p1)
 p0/(1-p0) = 

 q1/q0
 (1-q1)/(1-q0) = 

 q1/(1-q1,)
q0/(1-q0)  = ORe 

Disease Odds Ratio = Exposure Odds Ratio 

 



 38

Illustration with a Hypo-Population: 

 

 

 

 

 

 

OR = (500/199,500)/(500/799,500) = (500/500)/(199,500/799,500) = ORe = 4.007 

 

Also, if disease occurrence is low (low prevalence), 

OR ≈ RR 

 Bladder-Ca Healthy  
Smoking 500 199,500 200,000 

Non-smoke 500 799,500 800,000 
 1000 999,000 1,000,000
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Estimation of OR 
 

Situation: 
 

        

 

 

      OR̂ = 
q1
^  /(1-q1

^  )

q0
^  /(1-q0

^  )
 = 

X1/(m1-X1) 
 X0/(m0-X0) = 

X1(m0-X0) 
 X0(m1-X1)  

 
 
 
 

 Case Controls 
Exposed X1 X0

Non-
exposed 

m1-X1 m0-X0 

 m1 m0
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Example: Sun Exposure and Lip Cancer Occurrence in Population of 50-69 year old 
men 
 

 Case Controls 
Exposed 66 14 

Non-
exposed

27 15 

 93 29 
      

OR̂ = 
66 × 15
14 × 27  =   2.619 
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Tests and Confidence Intervals 

Estimated Variance of  log(OR̂ ): 

Var^  ( log OR̂ ) = 
1

X1
 + 

1
m1 - X1   + 

1
X0

 + 
1

m0 - X0   

 

Estimated Standard Error of  log(OR̂ ): 

SÊ (log OR̂ ) = 
1

X1
 + 

1
m1 - X1   + 

1
X0

 +
1

m0 - X0    
 

For the above example: 

  Var^  ( log OR̂ ) = 1/66 + 1/27 +1/14 + 1/15 
            = 0.1903 

  SÊ (log OR̂ ) = 0.4362 
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Testing 

H0: OR= 1 or  log(OR) = 0  

   H1: H0  is false 
 

Statistic used for testing:  Z = log(OR̂ )/ SÊ (log OR̂ ) 
  

Z is approx. normally distributed if H0 true: 
 

Test with Significance level 5%:  
reject H0 if  |Z| > 1.96 
accept H0 if  |Z| ≤ 1.96 

 
For the example: Z = log(2.619)/0.4362 = 2.207 
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Confidence Interval 
 

95%-CI covers with 95% confidence the true log (RR): 
 

log(OR̂ ) ± 1.96 SÊ (log OR̂ ) 
 

For the example:  
log(2.619) ±1.96 0.4362 = (0.1078, 1.8177) 

 
and back to the relative risk – scale: 

 
(exp(0.1078),exp(1.8177) ) = (1.11, 6.16) 
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In STATA 
 

. 

                               chi2(1) =     4.22  Pr>chi2 = 0.0399
                                                                   
 Attr. frac. pop           .4193548        
 Attr. frac. ex.           .5909091            .0278254    .8278546 (Woolf)
      Odds ratio           2.444444            1.028622    5.809044 (Woolf)
                                                                   
                        Point estimate         [95% Conf. Interval]
                                           
           Total          80          41           121       0.6612
                                                                   
        Controls          14          14            28       0.5000
           Cases          66          27            93       0.7097
                                                                   
                     Exposed   Unexposed         Total     Exposed
                                                         Proportion

 

Exercise: A case-control study investigates if a keeping a pet bird is a risk factor: 
Cases: 98 Bird Owners, 141 None, Controls: 101 Bird Owners, 328 None 
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Potential Confounding 

and Stratification with Respect to the Confounder 

 
Situation:  
  
 

 
 

Lip-Cancer  Sun-
Exposure 

Smoking
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Lip-Cancer and Sun Exposure with Smoking as Potential Confounder 

 
 
 

 

 

 

 

 

Explanation?  

 Cases Controls  
Stratum Exposed Non-

Exp. 
Exp. Non-

Exp. 
OR 

Smoke 51 24 6 10 3.54 
Non-

Smoke 
15 3 8 5 3.13 

      
Total 66 27 14 15 2.62 
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How to diagnose confounding?  Stratify ! 

 
Situation: 

 
 Cases Controls Cases

Stra-
tum  

Ex-
posed 

Non-Exp. Ex-
posed

Non-Exp. OR 

1 X1
(1) m1

(1)- X1
(1) X0

(1) m0
(1)- X0

(1) OR(1)

2 X1
(2) m1

(2)- X1
(2) X0

(2) m1
(2)- X0

(2) OR(2)

…  …  …  
k  X1

(k) m1
(k)- X1

(k) X0
(k) m1

(k)- X0
(k) OR(k)

      
Total X1 m1- X1 X0 m1- X0 OR

 

How should the OR based upon stratification be estimated? 
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Use an average  of  stratum-specific weights: 

      OR̂ = w1OR̂ (1) + … + wk OR̂ (k)/(w1+…+wk) 

      Which weights?  

Mantel-Haenszel Weight: wi = X0
(i) (m1

(i) -X1
(i))/ m(i) 

Mantel-Haenszel Approach 

OR̂ MH= 
X1

(1) (m0
(1) -X0

(1)) /m(1)+ …+ X1
(k) (m0

(k) -X0
(k))/m(1)

 X0
(1) (m1

(1) -X1
(1))/ m(1) + …+ X1

(1) (m0
(1) -X0

(1))/ m(1)    

with m(i)= m0
(i)+ m1

(i). 

    w1OR̂ (1) + … + wk OR̂ (k)/(w1+…+wk) = OR̂ MH 
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Illustration of the MH-weights 

 Cases Controls  
Stratum Exposed Non-

Exp. 
Exp. Non-

Exp. 
wi 

Smoke 51 24 6 10 6*24/91
Non-

Smoke
15 3 8 5 8*3/31 
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In STATA 
 
 
        Case   Exposure Smoke Pop  
  1.        1         1          0        51   
  2.        0         1            0         6   
  3.        1         0           0        24   
  4.        0         0           0        10   
  5.        1         1           1        15   
  6.        0         1           1         8   
  7.        1         0           1         3   
  8.        0         0           1         5   
 
 
. cc  Case Control [freq=Pop], by(Smoke) 
           Smoke |       OR      [95% Conf. Interval]    M-H Weight 
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-----------------+------------------------------------------------- 
               0 |   3.541667     1.011455   13.14962      1.582418 (exact) 
               1 |      3.125       .4483337   24.66084      .7741935 (exact) 
-----------------+------------------------------------------------- 
               Crude |   2.619048     1.016247    6.71724               (exact) 
M-H combined |   3.404783     1.341535   8.641258                
------------------------------------------------------------------- 
Test of homogeneity (M-H)      chi2(1) =     0.01  Pr>chi2 = 0.9029 
 
                   Test that combined OR = 1: 
Mantel-Haenszel chi2(1) =      6.96              Pr>chi2 =    0.0083 
 

 
Note that “freq=Pop” is optional, e.g. raw data can be used with this analysis 
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Inflation, Masking and Effect Modification 
 

Inflation (Confounding): Crude OR is larger (in absolute value) than stratified OR 
 
Masking (Confounding): Crude OR is smaller (in absolute value) than stratified OR 
 
Effect Modification: Crude Rate is in between stratified OR 
 
 

How can these situations be diagnosed? Use heterogeneity or homogeneity test:  
 
   Homogeneity Hypothesis 
 

H0: OR(1) = OR(2) = …=OR(k) 

H1: H0 is wrong 
 

            

( ) ( )2 2
( 1)

1
(log log ) / Var (log )

k i i

k MH
i

OR OR ORχ −
=

= −∑  
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Illustration of the Heterogeneity Test for Lip Cancer -Sun Exposure 
 

 Cases Controls  
Stratum Exposed Non-

Exp. 
Exp. Non-

Exp. 
χ2

 

Smoke 51 24 6 10 0.0043 
Non-

Smoke 
15 3 8 5 0.0101 

Total 66 27 14 15 0.0144 
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  8.   1   1         2     15  
  7.   0   0         2      5  
  6.   1   0         2      3  
                               
  5.   1   1         1     51  
  4.   1   0         1     24  
  3.   0   1         1      6  
  2.   0   1         2      8  
  1.   0   0         1     10  
                               
       D   E   stratum   freq  
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                                                Pr>chi2 =    0.0083
                                Mantel-Haenszel chi2(1) =      6.96
                   Test that combined OR = 1:

Test of homogeneity (M-H)      chi2(1) =     0.01  Pr>chi2 = 0.9029
                                                                   
    M-H combined     3.404783      1.341535   8.641258              
           Crude     2.619048      1.016247   6.717228              (exact)
                                                                   
               2        3.125      .4483337   24.66091     .7741935 (exact)
               1     3.541667      1.011455   13.14962     1.582418 (exact)
                                                                   
         stratum         OR       [95% Conf. Interval]   M-H Weight
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3. Case-Control Studies: Matched Situation 

 
Given a case is sampled, a comparable control is sampled: comparable w.r.t. matching 
criteria 
 
Examples of  matching criteria  are age, gender, SES, etc. 
 

Matched pairs sampling is more elaborate:  
to be effective often a two stage sampling of controls is done:  

first stage, controls are sampled as in the unmatched case; 
 second stage, from the sample of controls.  

 
strata are built according to the matching criteria from which the matched controls are 
sampled 
 

Result: data consist of pairs: (Case,Control) 
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Because of the design the case-control study the data are no longer two independent 
samples of the diseased and the healthy population, but rather one independent sample 
of the diseased population, and a stratified sample of the healthy population, stratified 
by the matching variable as realized for the case 
 
 Case 1 (40 ys, man)     Control 1 (40 ys, man) 
 Case 2 (33 ys, wom)     Control 2 (33 ys, wom) 
     …. 
Because of the design of the matched case-control study, stratified analysis is most 
appropriate with  
each pair defining a stratum 
 
 
What is the principal structure of a pair? 
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Four Situations 

 

a) 
 Case Control 

exposed 1 1  
non-exposed    

   2 
 
 

b)  
 Case Control  

exposed 1   
non-exposed  1  

   2 
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c)  
 Case Control  

exposed  1  
non-exposed 1   

   2 
 
 

d)  
 Case Control  

exposed    
non-exposed 1 1  

   2 
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How many pairs of each type? 
 

Four frequencies 
 

a pairs of type a) 
 Case Control  

exposed 1 1  
non-exposed    

 2
 
 

b pairs of type b)  
 Case Control  

exposed 1   
non-exposed 1

   2 
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c pairs of type c)  
 Case Control  

exposed  1  
non-exposed 1   

 2
 

d pairs of type d)  
Case Control

exposed  
non-exposed 1 1  

   2 
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OR̂ MH= 
X1

(1) (m0
(1) -X0

(1)) /m(1)+ …+ X1
(k) (m0

(k) -X0
(k))/m(1)

 X0
(1) (m1

(1) -X1
(1))/ m(1) + …+ X1

(1) (m0
(1) -X0

(1))/ m(1)    

 

=
a × 1 × 0 /2 + b × 1 × 1 /2 +c × 0 × 0 /2 + d × 0 × 1 /2
 a × 0 × 1 /2 + b × 0 × 0 /2 +c × 1 × 1 /2 + d × 1× 0 /2    

 
= b/c 

= 
# pairs with case exposed and control unexposed
 # pairs with case unexposed and controlexposed  

 
In a matched case-control study, the Mantel-Haenszel odds ratio is estimated by the 
ratio of the frequency of pairs  with case exposed and control unexposed to the 
frequency of pairs  with case unexposed and control exposed: 
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(typical presentation of paired studies) 

 
 

  Control  

C
as

e  exposed unexposed  
exposed a b a+b 

unexposed c d c+d 
  a+c b+d  

 

OR̂ (conventional, unadjusted) = 
(a+b)(b+d)
(a+c)(c+d)  

OR̂ MH = b/c  (ratio of discordant pairs) 
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Example: Reye-Syndrome and Aspirin Intake 
 

 
  Control  

C
as

e  exposed unexposed  
exposed 132 57 189 

unexposed 5 6 11
 137 63 200

 
 

OR̂ (conventional, unadjusted) = 
(a+b)(b+d)
(a+c)(c+d) = 

189 × 63
137 × 11 = 7.90 

 

OR̂ MH = b/c  (ratio of discordant pairs) 
= 57/5 = 11.4 

 
Cleary, for the inference only discordant pairs are required! Therefore, inference is 
done conditional upon discordant pairs 
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What is the probability that a pair is of type (Case exposed, Control unexposed) given 
it is discordant? 
 

π = Pr ( Case E, Control NE | pair is discordant) = 
 

P(Case E, Control NE) / P(pair is discordant) = 
 

P(Case E, Control NE) / P(Case E, Control NE or Case NE, Control E)  
 

= q1(1-q0)/[ q1(1-q0) + (1-q1)q0]  

= 
q1(1-q0)
(1-q1)q0

 /( 
q1(1-q0)
(1-q1)q0

 +1 ) = OR/ (OR+1) 
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How can I estimate π ? 

 

π̂ = 
frequency of pairs: Case E; Control NE

frequency of all discordant pairs   

 
= b/(b+c) 

 
now, π = OR/(OR+1)  or OR = π/(1-π) 

 
How can I estimate OR? 

 

OR̂ = π̂ /(1-π̂ ) = (b/(b+c) / (1- b/(b+c)) = b/c 
 

which corresponds to the Mantel-Haenszel-estimate used before! 
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Testing and CI Estimation 

 
    

H0: OR = 1 or π = OR/(OR+1) = ½ 
   H1: H0 is false  
 

since π̂ is a proportion estimator its estimated standard error is: 
 

SE of π̂ : π (1-π)/m  = Null-Hpyothesis= ½  1/m  
 
where m=b+c (number of discordant pairs) 
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Teststatistic:  Z = (π̂ - ½ )/ (½  1/m )  
 
      = b+c (2 b/(b+c) –1) 
      = (b-c)/ b+c  
 

and χ2 = Z2 = (b-c)2/(b+c) is  McNemar’s Chi-Square test statistic! 
 
 
 

In the example:  
χ2 = (57-5)2/62 = 43.61 
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Confidence Interval (again using π) 

 

π̂ ± 1.96 SÊ  (π̂ ) = π̂ ± 1.96 π̂  (1-π̂ )/m  
  

and, to get Odds Ratios, use transform. OR = π/(1-π):  
 

 

π̂ ± 1.96 π̂  (1-π̂ )/m 

1-  π̂ ± 1.96 π̂  (1-π̂ )/m 
  

 
to provide a 95% CI for the Odds Ratio! 
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In the Example, 

 

π̂ = 57/62 = 0.9194, 

π̂ ± 1.96 π̂  (1-π̂ )/m = 0.9194 ± 1.96 × 0.0346 
= (0.8516, 0.9871) 

 
leading to the 95%-CI for the Odds Ratio: 

 
[0.8516/(1-0.8516), 0.9871/(1-0.9871) ] 

 
= [5.7375, 76.7194 ] 
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In Stata: 
 

 

. 

        odds ratio      11.4      4.610017   36.44671   (exact)

        rel. diff.  .8253968       .723037   .9277566
        ratio       1.379562      1.253398   1.518425
        difference       .26      .1867662   .3332338
                                                     
        Controls        .685     [95% Conf. Interval]
        Cases           .945
Proportion with factor

Exact McNemar significance probability       = 0.0000
McNemar's chi2(1) =     43.61    Prob > chi2 = 0.0000

           Total         137          63           200
                                                       
       Unexposed           5           6            11
         Exposed         132          57           189
                                                       
Cases                Exposed   Unexposed         Total
                   Controls                
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Introduction to Modelling 
Example: Does increased sugar consumption lead to dental 
caries? 
Data on sugar consumption and dental caries in 90 countries.  

• Response, or outcome = mean number of decayed, missing or 
filled teeth (DMFT) at age 12 years-old 

o DMFT score: a continuous response, or outcome 
• Exposure = average sugar consumption (kg/head of 

population/year) 
o A continuous exposure variable 

• Data from national surveys between 1979 and 1990, via the 
WHO Oral Disease Data Bank made available to Woodward and 
Walker (1994).  See Appendix 
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Exploratory Data Analysis 
Graphics: plot of DMFT score against sugar. 
[Stata: Graphics → Twoway graph (scatter, line, etc.)] 

0
2

4
6

8
D

M
FT

0 20 40 60
sugar consumption (kg/person/year)

 

Comments  
• DMFT score increases 

with increasing sugar 
consumption 

• Rough linear association 
• Large amount of random 

variability about the 
linear trend 
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A Statistical Model 
 
The simplest summary for the association between 2 continuous 
variables is a straight line model: 
 
Data =   mean (trend) +  random error 
 

  y  =      α + βx   +        ε 
                             
where  y  = DMFT score 
   x  = average sugar consumption 

ε = independent N(0,σ2) errors 

In the literature this regression model is often called a simple 
linear regression model, and is a special case of a general linear 
model.  
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Competing (nested) models: 
0

2
4

6
8

0 20 40 60

y DMFT

0
2

4
6

8

0 20 40 60
sugar

Fitted values DMFT

 
mean y = α 
DMFT score is not 
associated with sugar 
consumption 

mean y = α + βx 
DMFT score is 
associated with sugar 
consumption 

If there is truly no 
association between 
DMFT score and 
sugar consumption 
then β = 0.  
 
β represents the 
effect measure in this 
situation.  It is the 
rate of change in 
mean y per unit 
increase in x. 
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Regression Modelling in Stata 
Fit the model in Stata (v.11) to estimate effect of sugar consumption. 
[Stata: Statistics→Linear models and related→Linear regression] 
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Stata output: 
 
. regress dmft sugar 
 

  Source |       SS       df       MS         Number of obs =      90 
---------+------------------------------      F(  1,    88) =   25.60 
   Model |  49.8358297     1  49.8358297      Prob > F      =  0.0000 
Residual |  171.326395    88  1.94689085      R-squared     =  0.2253 
---------+------------------------------      Adj R-squared =  0.2165 
   Total |  221.162225    89  2.48496882      Root MSE      =  1.3953 
 

--------------------------------------------------------------------- 
    dmft |      Coef.   Std. Err.    t    P>|t|  [95% Conf. Interval] 
---------+----------------------------------------------------------- 
   sugar |   .0450854   .0089112   5.06   0.000  .0273763    .0627946 
   _cons |   1.296561   .3062384   4.23   0.000  .6879762    1.905145 
--------------------------------------------------------------------- 

β̂ = 0.045.   
For a 1 unit increase in sugar consumption, the estimated change in 
mean DMFT score is an increase of 0.045 units.  

95% CI = 0.027 to 0.063, i.e. 0.045 ± 0.018. 

α̂ = 1.30. Estimated mean DMFT score at 0 sugar consumption.   



 
  EPIDEMIOLOGIC METHODS 

Introduction to General Regression
 

 
© Statistical Services Centre, University of Reading, UK 

Lecture 8          Slide 9 
 

 

 

Hypothesis Testing: Model Comparisons 

If there is truly no effect of sugar consumption, then β = 0. This 
leads to testing: 

H0: 0β =  (No sugar effect) 
against 
H1: 0β ≠  (There is an effect of sugar) 

The F-test.  From Stata  
F(  1,   88)  =   25.60 

Prob > F      =  0.0000 

p-value = <0.001.  Hence, there is a statistically significant sugar 
consumption effect. The higher the sugar consumption, the higher the 
mean DMFT score. 
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Notes 

• The table of parameter estimates gives an equivalent t-test 
--------------------------------------------------------------------- 
    dmft |      Coef.   Std. Err.    t    P>|t|  [95% Conf. Interval] 
---------+----------------------------------------------------------- 
   sugar |   .0450854   .0089112   5.06   0.000  .0273763    .0627946 

• Remember the previous F-test (or t-test) is comparing the fit of 
two models to the data: 
o (1) y =  α +  ε 
o (2) y =  α + βx  +  ε 
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R2: Coefficient of Determination 

A crude summary measure of the goodness-of-fit of the fitted 
model. 
  Source |       SS       df       MS                                 
---------+------------------------------                              
   Model |  49.8358297     1  49.8358297                               
Residual |  171.326395    88  1.94689085      R-squared     =  0.2253 
---------+------------------------------                              
   Total |  221.162225    89  2.48496882                               

R2 = Model SS / Total SS = 0.225 or 22.5%.  

22.5% of the variation in the DMFT scores is explained by the 
fitted the model. 

This “low” R2 indicates that there is a lot of unexplained 
variability. 

The remaining 77.5% could be attributed to many other factors. 
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Confounding 

• 29 countries were classified as “industrialised” and the remaining 
61 as “developing”. 

• Consider type of country as a potential confounding factor 
o A categorical variable (2 levels) 

How does DMFT score depend upon sugar consumption adjusted 
for type of country? 

What about effect modification?  Is there an interaction between 
sugar consumption and type of country? 
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Exploratory Data Analysis 

0
2

4
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8
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M
FT

0 20 40 60
sugar

industrialised developing

  

Comments  
• Rough linear associations, more clear in the developing countries 
• The effect of sugar consumption may be modified by the type of 

country 
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Some competing (nested) models: 

sugar

D
M

FT

604530150

8

6

4

2

0

2.66

country
developing
industrialised

sugar

D
M

FT

604530150

8
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4

2

0

2.32

3.36

country
developing
industrialised

sugar

D
M

FT

604530150

8

6

4

2

0

country
developing
industrialised

sugar

D
M

FT

604530150

8

6

4

2

0

country
developing

industrialised

Scatterplot of DMFT vs sugar Scatterplot of DMFT vs sugar

Scatterplot of DMFT vs sugar Scatterplot of DMFT vs sugar

 
• Model 1: No effect of sugar or 

type. 
• Model 2: No sugar effect adjusting 

/allowing for type. 
• Model 3: Sugar effect, allowing for 

type. [Assuming no modification.] 
• Model 4: Sugar effect with 

modification. 

1 2 

3 4 
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No Effect Modification [Model 3] 
 

Data =       mean (trend)  +     random error 
y  =       α + countryi + βx  +             ε 
 
where  y   = DMFT score 

countryi = (main) effect of country, i = 0,1 corresponding 
   to industrialised and developing resepectively 

   x   = average sugar consumption 
 
Constraints 
• The model is over parameterised. 
• Impose a constraint, say country0 = 0 
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Note the pattern in the mean trend: 

Type = 0, industrialised 

0y = +country x xα +β = α +β  

Type = 1, developing 

1 1y = +country x ( country ) xα +β = α + +β  
 
Comments 
• Two parallel lines 
• β is the rate of change for a fixed country 

o For a 1 unit increase in sugar consumption, the estimated change 
in mean DMFT score, adjusted for type of country, is an increase 
of β units 

i.e. β represents the (linear) sugar effect adjusted for country 
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Fitting the model in Stata… 
[Stata: Statistics→Linear models and related → Linear regression] 
. regress dmft i.country  sugar 
------------------------------------------------------------------------------ 
        dmft |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
   1.country |  -.3479401   .3607644    -0.96   0.337    -1.064998    .3691182 
       sugar |   .0402757   .0102148     3.94   0.000     .0199726    .0605788 
       _cons |   1.677366   .4997554     3.36   0.001     .6840476    2.670684 
------------------------------------------------------------------------------ 

• t test: statistically significant sugar effect after adjusting for type of 
country (p-value = 0.0002) 

• ˆ 0.040β = , 95% CI = (0.020,0.061) 
• For a 1 unit increase in sugar consumption, the estimated change in 

mean DMFT score, adjusted for type of country, is an increase of 0.040 
units 



 
  EPIDEMIOLOGIC METHODS 

Introduction to General Regression
 

 
© Statistical Services Centre, University of Reading, UK 

Lecture 8          Slide 18 
 

 

 

Interaction - Effect Modification 

Use Model 4 to investigate effect modification: 

Data =        mean (trend)    +      random error 
y  =    α + countryi + βx + βix    +               ε 

where  y   = DMFT score 
countryi = (main) effect of country, i = 0,1 corresponding 

   to industrialised and developing resepectively 
   x   = average sugar consumption 
 
Constraints 
• country0 = 0 

• β0 = 0 
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Note the pattern in the mean trend: 

Type = 0, industrialised 

0 0y = +country x x xα +β +β = α +β  

Type = 1, developing 

1 1 1 1y = +country x x ( country ) ( )xα +β +β = α + + β+β  
 
Comments 
• Two ‘separate’ lines 
• Effect of increasing sugar depends upon the type of country 

o β1 represents the interaction effect, or effect modification 
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Fitting the model in Stata… 
. regress dmft i.country  sugar i.country#c.sugar 
------------------------------------------------------------------------------ 
        dmft |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
   1.country |   -2.74389   1.324808    -2.07   0.041    -5.377522   -.1102589 
       sugar |   -.013065   .0301432    -0.43   0.666    -.0729876    .0468576 
             | 
     country#| 
     c.sugar | 
          1  |   .0600413   .0319804     1.88   0.064    -.0035337    .1236163 
             | 
       _cons |   3.908571   1.286499     3.04   0.003     1.351096    6.466045 
------------------------------------------------------------------------------ 

Type = 0, industrialised 
ˆˆŷ = x 3.91 0.013xα +β = −  

Estimated slope: 
−0.013, 95% CI = (−0.073, 0.047) 
 

Type = 1, developing 

11
ˆ ˆˆŷ =( country ) ( )x

(3.91 2.74) ( 0.013 0.060)x
= 1.17 0.047x

α + + β+β
= − + − +

+
Estimated slope:  
0.047, 95% CI = (0.026, 0.068) 

From the t test for the interaction term: p-value = 0.064.  Weak 
evidence for effect modification. 
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Conclusions 

• No evidence for association between dental status and sugar 
consumption in industrialised countries 

• But there is in developing countries 

• A possible epidemiological explanation? 
o Greater use of fluoride toothpastes, and other dental 

hygiene products in industrialised countries 
o Wider access to dental care in industrialised countries 
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Extensions 

• The modelling framework naturally extends to more complex 
situations 
o E.g. Adjusting for several potential confounders 

• Provides a very flexible framework for statistical analysis 
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Appendix 1 
Sugar Consumption and Dental Caries Data 

 
Mean number of decayed , missing or filled teeth (DMFT) at age 12 years old and mean sugar consumption (kg/head of 
population/year) in 61 developing countries and 29 industrialised countries.  Codes for country are 0= industrialised, 1=developing. 
[Source: Woodward and Walker (1994).] 
 
 

 

country sugar DMFT  country Sugar DMFT country sugar DMFT 
0 22.16 3.4  1 54.24 2.8 1 36.6 2.3 
0 49.96 2  1 26.56 1.6 1 12 1.7 
0 47.32 4.4  1 4.36 0.4 1 34.56 3.4 
0 40.86 3.1  1 35.3 8.1 1 34.4 1.6 
0 48.92 3  1 40.65 2.7 1 34.86 1.3 
0 42.12 4.3  1 11.17 3.2 1 2.88 3.5 
0 49.92 3.6  1 24.18 1.5 1 63.02 4.4 
0 48.28 1.6  1 12.5 2.3 1 49.02 4 
0 41.96 2  1 43 2.7 1 35.6 0.5 
0 37.4 3  1 10.74 2.9 1 46.98 6.7 
0 39.42 5.2  1 45.98 6.7 1 7.56 1.5 
0 33.3 4.4  1 44.44 1 1 4.66 0.7 
0 48.98 5  1 11.56 0.9 1 37.76 4.8 
0 51.62 6.6  1 44.63 2 1 62.14 3.9 
0 48.56 2.9  1 7.76 4.4 1 34.1 2.5 
0 30.74 3  1 7.56 0.9 1 34.44 5.1 
0 47.62 1.6  1 35.1 3.9 1 3.92 0.4 
0 53.54 2.5  1 31.43 2.1 1 11.82 1.3 
0 50.16 2.4  1 5 2.2 1 18.1 1.9 
0 41.28 2.7  1 32.68 1.8 1 24.16 2.1 
0 49.28 4.4  1 1.44 1.1 1 40.18 1.7 
0 33.48 3.2  1 4.68 1.7 1 4.72 0.6 
0 45.6 2.2  1 10.15 2 1 15.34 1.5 
0 44.98 2.4  1 16.02 1.2 1 10.7 0.3 
0 28.32 2.7  1 23.93 2.2 1 27.3 2.1 
0 43.95 3.1  1 38.66 1.8 1 0.97 1.5 
0 32.14 1.8  1 14.26 1.5 1 19.1 2.5 
0 37.86 6.1  1 4.84 1.3 1 30 3.1 
0 23.32 4.9  1 49.56 2.5 1 22.33 0.7 
    1 27 1.2 1 2.66 1 
       1 18.53 2.3 
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Appendix 1I 
Estimating the Slope for Developing Countries 

 
From Model 4, allowing for effect modification, the estimated slope for developing countries is 0.047, but how do we obtain a 
corresponding confidence interval?  One way is to use a post-estimation command.  Having fitted the model including the interaction 
effect, ask Stata to explicitly estimate the relevant slope.  (To do this we need to specify the slope in terms of the sum of two model 
parameters, 1

ˆ ˆβ+β ) 
 

• Select Statistics →  Postestimation → Linear combinations of estimates. 
• Make the specifications below, which correspond to 1

ˆ ˆβ+β .  Click Submit. 
 

 
Output: 
 
. lincom sugar + 1.country#c.sugar 
 
 ( 1)  sugar + 1.country#c.sugar = 0 
 
------------------------------------------------------------------------------ 
        dmft |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         (1) |   .0469762   .0106835     4.40   0.000     .0257381    .0682144 
------------------------------------------------------------------------------ 
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Lecture 9: Logistic Regression Disease Modelling with Covariates

Outline

This lecture presents an overview of Logistic Regression as a tool
for evaluating several exposure or confounder effects.

Contents

1. Introduction to logistic regression

2. Confounding

3. Effect modification

4. Comparing different logistic regression models
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Introduction to Logistic Regression

Introduction to Logistic Regression

Simple logistic regression model

Let Y =

{
1, Person diseased

0, Person healthy

and let x =

{
1, if exposure present

0, if exposure not present

The simple model is

logit(px) = log
px

1− px
= α + βx

where
px = Pr(Y = 1|x)
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Introduction to Logistic Regression

Interpretation of parameters α and β

log
px

1− px
= α + βx

x = 0 : logit(p0) = log
p0

1− p0
= α (1)

x = 1 : logit(p1) = log
p1

1− p1
= α + β (2)

now

(2)− (1) = log
p1

1− p1
− log

p0

1− p0︸ ︷︷ ︸
log

p1
1−p1

p0
1−p0

=log OR

= α + β − α = β

log OR = β ⇔ OR = eβ
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Introduction to Logistic Regression

Example: Radiation Exposure and Tumor Development

cases non-cases

E 52 2820 2872

NE 6 5043 5049

Analysis in stata:
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Confounding

Confounding:

Consider the following illustrative example:

cases non-cases

E 60 1100 1160

NE 1501 3100 4601

OR
odds ratio:

OR =
60× 3100

1501× 1100
= 0.1126

This suggests that exposure has a protective effect on disease

However, suppose the data was actually from two strata.
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Confounding

Stratified Data:
Stratum 1:

cases non-cases

E 50 100 150

NE 1500 3000 4500

OR =
50× 3000

100× 1500
= 1

Stratum 2:

cases non-cases

E 10 1000 1010

NE 1 100 101

OR =
10× 100

1000× 1
= 1
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Confounding

+------------------+
| Y E S freq |
|------------------|

1. | 1 1 0 50 |
2. | 0 1 0 100 |
3. | 1 0 0 1500 |
4. | 0 0 0 3000 |
5. | 1 1 1 10 |
6. | 0 1 1 1000 |
7. | 1 0 1 1 |
8. | 0 0 1 100 |

+------------------+
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Confounding

The logistic regression model for simple confounding

log
px

1− px
= α + βE + γS

where
x = (E ,S)

is the covariate combination of exposure E and stratum S
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Confounding

Interpretation of model parameters

Stratum 1:

log
px

1− px
= α + βE + γS

E = 0,S = 0 : log
p0,0

1− p0,0
= α (3)

E = 1,S = 0 : log
p1,0

1− p1,0
= α + β (4)

now
(4)− (3) = log OR1 = α + β − α = β

log OR = β ⇔ OR = eβ

the log-odds ratio in the first stratum is β
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Confounding

Interpretation of model parameters

Stratum 2:

log
px

1− px
= α + βE + γS

E = 0,S = 1 : log
p0,1

1− p0,1
= α + γ (5)

E = 1, S = 1 : log
p1,1

1− p1,1
= α + β + γ (6)

now:
(6)− (5) = log OR2 = α + β + γ − α− γ = β

the log-odds ratio in the second stratum is also β

The confounding model assumes identical exposure effects in
each stratum
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Effect modification

(crude analysis) Logistic regression
Log likelihood = -3141.5658
---------------------------------------------------------------------

Y | Odds Ratio Std. Err. [95% Conf. Interval]
-------------+-------------------------------------------------------
E | .1126522 .0153479 .0862522 .1471326

---------------------------------------------------------------------

(adjusted for confounder) Logistic regression

Log likelihood =-3021.5026
--------------------------------------------------------------------
Y | Odds Ratio Std. Err. [95% Conf. Interval]

-------------+------------------------------------------------------
E | 1 .1736619 .7115062 1.405469
S | .02 .0068109 .0102603 .0389853

--------------------------------------------------------------------
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Effect modification

Effect modification
Consider the following data on passive smoking and lung cancer:

cases non-cases

E 52 121 173

NE 54 150 204

odds ratio:

OR =
52× 150

54× 121
= 1.19

However, suppose the above is actually combined data for males
and females
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Effect modification

Stratified analysis:

Stratum 1 (females):

cases non-cases

E 41 102 143

NE 26 71 97

OR =
41× 71

26× 102
= 1.10

Stratum 2 (males):

cases non-cases

E 11 19 30

NE 28 79 107

OR =
11× 79

19× 28
= 1.63

OR
odds ratio:

OR =
60× 3100

1501× 1100
= 0.1126
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Effect modification

interpretation:

The effect is different for males and females
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Effect modification

The logistic regression model for effect modification

log
px

1− px
= α + βE + γS + (βγ)︸︷︷︸

effect modif. par.

E × S

where
x = (E ,S)

is the covariate combination of exposure E and stratum S
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Effect modification

Interpretation of model parameters

Stratum 1:

log
px

1− px
= α + βE + γS + (βγ)E × S

E = 0,S = 0 : log
p0,0

1− p0,0
= α (7)

E = 1,S = 0 : log
p1,0

1− p1,0
= α + β (8)

now
(8)− (7) = log OR1 = α + β − α = β

log OR = β ⇔ OR = eβ

the log-odds ratio in the first stratum is β
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Effect modification

Interpretation of model parameters

Stratum 2:

log
px

1− px
= α + βE + γS + (βγ)E × S

E = 0,S = 1 : log
p0,1

1− p0,1
= α + γ (9)

E = 1,S = 1 : log
p1,1

1− p1,1
= α + β + γ + (βγ) (10)

now:

(10)− (9) = log OR2 = α + β + γ + (βγ)− α− γ = β + (βγ)

log OR = β ⇔ OR = eβ+(βγ)

the log-odds ratio in the second stratum is β + (βγ)
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Effect modification

The effect modification model allows for different effects in the
strata
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Effect modification

Data from passive smoking and LC example are as follows:

+-----------------------+
| Y E S ES freq |
|-----------------------|

1. | 1 1 0 0 41 |
2. | 0 1 0 0 102 |
3. | 1 0 0 0 26 |
4. | 0 0 0 0 71 |
5. | 1 1 1 1 11 |

|-----------------------|
6. | 0 1 1 1 19 |
7. | 1 0 1 0 28 |
8. | 0 0 1 0 79 |

+-----------------------+

20 / 34



Lecture 9: Logistic Regression Disease Modelling with Covariates

Effect modification

CRUDE EFFECT MODEL

Logistic regression

Log likelihood = -223.66016

--------------------------------------------------------
Y | Coef. Std. Err. z P>|z|

-------------+------------------------------------------
E | .1771044 .2295221 0.77 0.440

_cons | -1.021651 .1586984 -6.44 0.000
--------------------------------------------------------
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Effect modification

CONFOUNDING MODEL

Logistic regression

Log likelihood = -223.56934

-------------------------------------------------------
Y | Coef. Std. Err. z P>|z|

-------------+-----------------------------------------
E | .2158667 .2472221 0.87 0.383
S | .1093603 .2563249 0.43 0.670

_cons | -1.079714 .2101705 -5.14 0.000
-------------------------------------------------------
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Effect modification

EFFECT MODIFICATION MODEL

Logistic regression

Log likelihood = -223.2886

------------------------------------------------------
Y | Coef. Std. Err. z P>|z|

-------------+----------------------------------------
E | .0931826 .2945169 0.32 0.752
S | -.03266 .3176768 -0.10 0.918
ES | .397517 .5278763 0.75 0.451

_cons | -1.004583 .2292292 -4.38 0.000
-------------------------------------------------------
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Effect modification

interpretation of crude effects model:

log OR = 0.1771⇔ OR = e0.1771 = 1.19

interpretation of confounding model:

log OR = 0.2159⇔ OR = e0.2159 = 1.24

interpretation of effect modification model:

Females: log OR1 = 0.0932⇔ OR1 = e0.0932 = 1.10

Males: log OR2 = 0.0932+0.3975⇔ OR2 = e0.0932+0.3975 = 1.63
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Comparing different logistic regression models

Model evaluation:
The likelihood approach:

L =
n∏

i=1

pyi
xi

(1− pxi )
1−yi

is called the likelihood for models

log
pxi

1− pxi

=

{
α + βEi + γSi + (βγ)Ei × Si , (M1)

α + βEi + γSi , (M0)

where M1 is the effect modification model and

M0 is the confounding model
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Comparing different logistic regression models

Model evaluation using the likelihood ratio:

Let
L(M1) and L(M0)

be the likelihood for models M1 and M0

Then

LRT = 2 log L(M1)− 2 log L(M0) = 2 log
L(M1)

L(M0)

is called the likelihood ratio for models M1 and M0

LRT has a chi-square distribution with 1 df under M0
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Comparing different logistic regression models

Example: passive smoking and LC:

model log-likelihood LRT
crude -223.66016 -

homogeneity -223.56934 0.1816

effect
modification -223.2886 0.5615

note:
for valid comparison on chi-square scale: models must be nested
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Comparing different logistic regression models

Model evaluation in general:

Consider the likelihood

L =
n∏

i=1

pyi
xi

(1− pxi )
1−yi

for a general model with k covariates:

log
pxi

1− pxi

= α + β1xi1 + β2xi2 + ...+ βkxik (M0)

and for the model with an additional p covariates:

log
pxi

1− pxi

= α + β1xi1 + β2xi2 + ...+ βkxik

+βk+1xi ,k+1 + ...+ βk+pxi ,k+p (M1)
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Comparing different logistic regression models

Again let
L(M1) and L(M0)

be the likelihood for models M1 and M0

Then the likelihood ratio

LRT = 2 log L(M1)− 2 log L(M0) = 2 log
L(M1)

L(M0)

has a chi-square distribution with p df under M0
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Meta-Analysis of BCG vaccine against tuberculosis

Meta-Analysis:

Investigating the results from several independent studies with the
purpose of an integrative analysis

Example: BCG vaccine against tuberculosis, Colditz et
al. 1974, JAMA
The data consists of 13 studies with each study containing

I TB cases for BCG intervention

I number at risk for BCG intervention

I TB cases for control

I number at risk for control

Also two covariates are given: year of study and
latitude expressed in degrees from the equator
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Meta-Analysis of BCG vaccine against tuberculosis

Data analysis

This data can be analyzed by taking

I TB case as disease occurrence response

I intervention as exposure

I study as confounder
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Meta-Analysis of BCG vaccine against tuberculosis

intervention control
study year latitude TB cases total TB cases total

1 1933 55 6 306 29 303
2 1935 52 4 123 11 139
3 1935 52 180 1541 372 1451
4 1937 42 17 1716 65 1665
5 1941 42 3 231 11 220
6 1947 33 5 2498 3 2341
7 1949 18 186 50634 141 27338
8 1950 53 62 13598 248 12867
9 1950 13 33 5069 47 5808

10 1950 33 27 16913 29 17854
11 1965 18 8 2545 10 629
12 1965 27 29 7499 45 7277
13 1968 13 505 88391 499 88391
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Meta-Analysis of BCG vaccine against tuberculosis

Study | RR [95% Conf. Interval] M-H Weight

-------------+-------------------------------------------------

1 | .2048682 .0862974 .4863523 14.57143

2 | .4109387 .1343016 1.257398 5.164122

3 | .4556111 .3871323 .536203 191.5949

4 | .2537655 .1494209 .4309765 32.99024

5 | .2597403 .0734426 .9186087 5.634146

6 | 1.561916 .3736891 6.528374 1.548667

7 | .7122268 .5725137 .8860348 91.56356

8 | .2365605 .1792809 .3121408 127.4251

9 | .8044895 .5162931 1.253558 21.90337

10 | .9828351 .5821375 1.659341 14.10754

11 | .197721 .0783566 .4989192 8.018273

12 | .6253663 .3925763 .9961964 22.83805

13 | 1.012024 .894572 1.144897 249.5

-------------+-------------------------------------------------

Crude | .6138209 .5676759 .6637168

M-H combined | .6352672 .5881287 .6861838

---------------------------------------------------------------

BUT:

Test of homogeneity (M-H chi2(12) = 152.568 Pr>chi2 = 0.0000
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Meta-Analysis of BCG vaccine against tuberculosis

Conclusions from meta-analysis of BCG and TB

I most studies show preventive effect

I crude and MH-adjusted estimates are rather close

I but: homogeneity test is significant

what are the reasons for this heterogeneity in RR?

need to look at

I year effect

I latitude effect

This can be done using logistic regression
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The Poisson Distribution 

• Count data may follow such a distribution, at least approximately  

Examples: Number of  
o Deaths, diseased cases, hospital admissions and so on …. 

• Poisson distribution: Y∼Poi(μ)  

Y has density function: 
y exp( )  for y  0, 1, 2, ..., +

Pr(Y y) y!
0  otherwise

⎧μ −μ
= ∞⎪= = ⎨

⎪⎩

 

where μ > 0. 
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Properties of the Poisson Distribution 

• E(Y) = Var(Y) = μ 

• Shape 
o Skewed for small μ 
o Approximately normal for large μ 
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Introduction to Poisson Regression 
Example: BELCAP dental epidemiological study 
• A prospective study of school-children from an urban area of 

Belo Horizonte, Brazil 
o The Belo Horizonte caries prevention (BELCAP) study 

• The aim of the study was to compare different methods to 
prevent caries 

• Response (outcome) variable=DMFT index. (No. of decayed, 
missing or filled teeth.) 
o DMFT index was calculated at the start of the study and 2 

years later 
• Potential confounders: sex, ethnicity, baseline dental score 
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For simplicity consider only 

y = DMFT2, post-intervention DMFT index 
and  
two interventions: control (i=0) and oral hygiene (i=1) 

Poisson regression model: 
(1) y∼Poi(μ)  

(2) ilog( ) interventμ = α +  ; intervent0 = 0 

Notes 
• Other functions of μ can be modelled but log(μ) will always 

result in μ̂ > 0. 
• iinterventα +  is known generically as the linear predictor. 
• The model is also called a log-linear model. 
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But why can’t we use a linear regression model (general linear model)?  
There are problems: 
 
(a) For a Poisson random variable E(Y)=Var(Y).  This violates the 

constancy of variance assumption. 
 

(b) A linear regression model assumes we are dealing with normal 
distributions – the Poisson may not look very normal! 

 

(c) Linear regression may give negative predicted means. 
 
 
Continuing with the Poisson regression model… 
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Interpretation of the Poisson Regression Model 

For children in the control group the model says: 

0log( ) intervent
exp( )

μ = α + = α

μ = α
 

For children in the oral hygiene group the model says: 

1

1

log( ) intervent
exp( intervent )

μ = α +
μ = α +

 

Hence,                    oral
1

control

exp(intervent )
μ

=
μ

 

exp( 1intervent )=ratio of true means(oral hygiene/control)=effect 
measure 
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Note the interpretation: 
 
exp( 1intervent ) < 1: intervention effect, oral hygiene doing better 

exp( 1intervent ) = 1: no intervention effect 

exp( 1intervent ) > 1: intervention effect, oral hygiene doing worse 
 
Stata refers to exp( 1intervent ) as an incidence rate ratio, so 

1intervent  is a log incidence rate ratio. 
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Stata fits the model using the method of maximum likelihood. 
[Stata: Statistics→Count outcomes→Poisson regression] 
. poisson dmft2 i.intervent 
 

Iteration 0:   log likelihood = -505.90325   
Iteration 1:   log likelihood = -505.90325   
 

Poisson regression                                Number of obs   =        259 
                                                  LR chi2(1)      =       9.11 
                                                  Prob > chi2     =     0.0025 
Log likelihood = -505.90325                       Pseudo R2       =     0.0089 
------------------------------------------------------------------------------ 
       dmft2 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
 1.intervent |  -.2620432   .0874031    -3.00   0.003    -.4333501   -.0907363 
       _cons |   .8525362   .0559893    15.23   0.000     .7427993    .9622731 
------------------------------------------------------------------------------ 
 

1 ˆintervent 0.262,  0.853= − α =   

1exp(intervent ) exp( 0.262) 0.77= − =  
Mean DMFT index for the oral hygiene method is estimated to 
77% of that for the control.
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Confidence Intervals  
An approximate [Wald type] 95% confidence interval for the ratio 
of true means may be calculated using the Stata output. 

Stage 1 
From the output, an approximate 95% CI for β is 

–0.433 to –0.0907 
Stage 2 
An approximate 95% CI for exp(β) is then 

exp(–0.433) to exp(–0.0907) 
i.e. 0.65 to 0.91 
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Hypothesis Testing: Model Comparisons 

If there is truly no intervention effect then β = 0, i.e. exp(β)=1.  
This leads to the hypotheses: 

H0: 0β =  (No intervention effect) 
vs. 
H1: 0β ≠  (There is an intervention effect) 

Stata gives an approximate likelihood ratio test for this: 
LR chi2(1)      =    9.11 
Prob > chi2     =  0.0025 

Likelihood ratio, statistic Χ2= 9.11 (1 df), p-value = 0.0025.  Hence, 
there is evidence for an intervention effect.  Oral hygiene improves 
dental status. 
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Notes 

• The previous likelihood ratio test is comparing the fit of two 
nested models to the data: 
o (1) log( )μ = α  
o (2) ilog( ) interventμ = α +  

 
Model ˆlog L 

(1) log( )μ = α  −510.456
(2) ilog( ) interventμ = α +  −505.903  
 Χ2= ˆ ˆ2[log L(2) log L(1)] 9.11− =  (1 df)  
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Confounding and Effect Modification 

• Ignoring the pre-intervention (baseline) DMFT index is clearly 
not a good idea 

• How can the intervention effect be adjusted for baseline? 

• Let DMFT1 = Pre-intervention DMFT index 

• Böhning et al. (1999) uses log(DMFT1+0.5) as a linear effect… 
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Poisson regression model: 
(1) y, DMFT2∼Poi(μ)  
(2) ilog( ) log(DMFT1) interventμ = α +β× +  ; intervent0 = 0 
 
Hence, the intervention effect, adjusted for baseline DMFT is 
 

                        oral
1

control

exp(intervent )
μ

=
μ

 

• Perform statistical analysis as before 

• Similarly, effect modification may be assessed by introducing an 
interaction term into the above model 
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Effect of Adjusting for Pre-intervention Dental Status 
 

Analysis Intervention effect 
(Ratio of means) 

95% CI  p-value 
(LRT) 

Unadjusted 0.77 0.65 to 0.91   0.0025 
Adjusted 0.93 0.78 to 1.10     0.40  
 
Ignoring pre-intervention dental status gives a misleading result. 

Further, there is no evidence for effect modification. 
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Extensions 

• The models discussed naturally extend, to allow the inclusion 
of other factors 
o E.g. the potential confounders sex and ethnicity 

• Interactions (effect modifications) may also be assessed 

• Poisson regression may also be used to model rates and ratios.  
See Practical 3 
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Appendix 

The BELCAP Study 
Background 
• Dental epidemiological study 
 

• A prospective study of school-children from an urban area of Belo 
Horizonte, Brazil 

 

o The Belo Horizonte caries prevention (BELCAP) study 
 

• The aim of the study was to compare different methods to prevent 
caries 

 
Details 
• Children were all 7 years-old and from a similar socio-economic 

background 
o See Mendonça and Böhning (1994) and Mendonça (1995) 
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• Interventions: 
o Control, 
o Oral health education, 
o School diet enriched with rice bran, 
o Mouthwash, 
o Oral hygiene, 
o All four methods together 

 

• Response (outcome) variable=DMFT index. (No. of decayed, missing 
or filled teeth.) 
o DMFT index was calculated at the start of the study and 2 years 

later 
o Only the 8 deciduous molars were considered 

 

• Potential confounders: sex, ethnicity 
 

• Data on 797 children analysed by Böhning et al. (1999) 
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• Lesions of the tooth were also included in the index.  Graded as: 

 

o 0 = healthy, 
1 = light chalky spot, 
2 = thin brown-black line, 
3 = damage, not larger than 2mm wide, 
4 = damage, wider than 2mm 

 

o The D1-4MFT index.  Pilz (1985) 
 

• In the BELCAP study a lesion graded 1-4 contributed 1 to the DMFT 
index 
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