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A new estimator for estimating the size of an elusive target population is presented using
frequency counts from capture–recapture sampling. The proposed estimator is developed
by extending the idea of Chao’s estimator usingmonotonicity of ratios of neighbouring fre-
quency counts under a specific Poissonmixture sampling framework, the Poisson–Gamma
mixture or negative binomial. The new estimator is achieved using a simple linear model
on the basis of the log-ratio of neighbouring frequency counts as dependent variable which
is valid under the Poisson–Gamma mixture. A simulation study is provided to study the
performance of the proposed estimator under a variety of heterogeneous Poisson capture
probabilities. Confidence interval estimation is done bymeans of an approximating normal
approach and a modified bootstrap method, and was found to perform well. A variety of
real data sets were also examined in order to illustrate the use of the proposed method.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Estimation of the size of an elusive target population is of considerable interest in several fields. For example, ecologists
commonly consider how to estimate the number of species in awildlife population. In social sciences, there ismajor concern
about certain social problems and determining its amount in a target population such as illicit drug users, violators of a law
or the number of illegal immigrants. In medicine, there is wide interest in estimating the hidden disease occurrence, the
unobserved part of the disease iceberg (Woodward, 1999). In public health and epidemiology, there is the frequent problem
of determining the completeness of a disease registry (e.g. Corrao et al., 2000; Gallay et al., 2000; Hook and Regal, 1995;
Nardone et al., 2003).

Capture–recapture models have been ordinarily used to estimate animal abundance or population size in the ecological
sciences (see, for a review, Chao and Bunge, 2002; Darroch, 1958; Eberhardt, 1969; Edwards and Eberhardt, 1967;McDonald
and Palanacki, 1989; North, 1981; Pollock, 2000). The origin of capture–recapture modelling goes back to Petersen and
Lincoln (Seber, 2002), who used the independent information of two identifying sources or lists to construct an estimator
of population size.

Capture–recapture models currently tend to be generally applied in a variety of applications including estimation of
the size of a human target population, usually defined by a specific disease experiencing potential severe undercount
(e.g. Böhning et al., 2004; Corrao et al., 2000; Gallay et al., 2000; Hay et al., 2009; Hook and Regal, 1995; Nardone et al.,
2003; Smit et al., 2002; van Hest et al., 2008), as well as estimation of an elusive target population in the social sciences such
as illegal gun owners or car drivers without licence (e.g. Carothers, 1973; Chang et al., 1999; Hay, 1997; Hope et al., 2005;
van der Heijden et al., 2003a,b).
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Several estimators have been proposed to estimate the size of a target population when several identifications of the
same unit are available. These include maximum likelihood methods, Zelterman’s estimator (Zelterman, 1988), and Chao’s
lower bound estimators (Chao, 1987). However, several aspects of these estimators are critical. The maximum likelihood
estimator is usually efficient only under Poisson homogeneity, whereas Chao’s lower bound estimator – although developed
under Poisson heterogeneity – uses only part of the available information and, hence, suffers under a lack of efficiency. To be
more precise, let f1 denote the frequencies of individuals which have been identified exactly once in the capture–recapture
study, f2 the number of individuals with exactly two identifications, and so forth, with m being the largest number of re-
identifications. Then, n = f1 + f2 + · · ·+ fm is the size of the observed sample. Chao’s estimator is given as N̂ = n+ f 21 /(2f2)
and it is clear from its form that it uses only part of the available information, namely the proportion (f1 + f2)/n.

In this paper we propose a modification of this estimator, namely N̂ = n + (3f1f3)/(2f 22 ) × f 21 /(2f2) which extends the
estimator of Chao by incorporating the adjustment factor γ̂ = (3f1f3)/(2f 22 ). The central point of the paper is to show that
this adjustment improves bias and efficiency of Chao’s estimator under a wide class of models allowing heterogeneity.

2. The proposed estimator

The purpose of a capture–recapture model is to provide an estimator of the population size N or, equivalently, of
the frequency of unobserved individuals f0. From the individual capture–recapture history we can determine the count
X of repeated identifications per individual. Let f1, f2, f3, . . . , fm denote the frequencies of distinct individuals identified
exactly 1, 2, 3, . . . ,m times during the period of study, and f0 is the frequency of individuals that were never identified
in the study period and hence remain unobserved. Consequently, the total number of population size N can be written as
N = f0 + f1 + f2 + · · · + fm = f0 + n, where n =

∑m
j=1 fj is the total number of distinct individuals observed. Furthermore,

let p0 be the probability that an individual remains unobserved, so that E(f0) = Np0. Therefore, we can also write the
expected population size as N = Np0 + N(1 − p0). Estimating N(1 − p0) with n leads to N̂ =

n
1−p0

, the Horvitz–Thompson
estimator (Horvitz and Thompson, 1952). The key issue is to estimate p0.

Let pj denote the probability for identifying an individual exactly j times, j = 0, 1, 2, . . . ,m. Under the Poisson
distribution these probabilities are given as p0 = e−λ, p1 = e−λλ, p2 =

e−λλ2

2! , . . . , pm =
e−λλm

m!
and p1

p0
= 2 p2

p1
. Replacing

the unknown Poisson probabilities by observed frequencies provides f1/f0 = 2f2/f1 as an estimating equation for f0 and
Chao’s estimator f̂0 = f 21 /(2f2) follows. However, Poisson homogeneity is rarely met in practice and it is more appropriate
to incorporate heterogeneity of the identifying probability it is more reasonable to assume that the actual target population
may consist of a variety of subgroups. This leads to a Poisson mixture model of the form

pj =

∫
∞

0

e−λλj

j!
f (λ)dλ, (1)

where f (λ) represents the heterogeneity distribution of the model parameter in the population. A prominent example for
f (λ) is the Gamma distribution f (λ) = λk−1 exp(−λ/θ ′)/(θ ′

k
Γ (k))with parameters θ ′, k > 0, so that pj is Poisson–Gamma

mixture, or if the marginal is worked out, the negative binomial distribution. Let rj =
jpj
pj−1

, where pj =
Γ (k+j)

Γ (j+1)Γ (k)θ
k(1 − θ)j

with θ ′
= (1 − θ)/θ , then we achieve rj = (k + j − 1)(1 − θ). This clearly implies that there is a linear relationship

rj = (k − 1)(1 − θ) + (1 − θ) j between rj and j. Plotting rj against j leads to the ratio plot, and specific patterns indicate
a certain distribution, such as linearity indicates a negative binomial, a horizontal line means the presence of a Poisson
distribution and a line passing through the origin indicates a geometric distribution.

To derive our estimator we consider a Taylor expansion of log rj around (k − 1) so that

log rj = log(k + j − 1) + log(1 − θ) ≈ log(1 − θ) + log(k − 1)  
α

+

β  
1

k − 1
j. (2)

Themotivation for the approximation (2) is as follows. Using a logarithmic transformationwill guarantee that our population
size estimate is feasible (which is not necessarily so when working on the rj scale). Now, for j = 2 or j = 3 in (2) we get
log(r2) = log( 2f2

f1
) = α + 2β and log(r3) = log( 3f3

f2
) = α + 3β . Solving these equations in α and β can easily be achieved

as α̂ = 3 log( 2f2
f1

) − 2 log( 3f3
f2

) and β̂ = log( 3f3
f2

) − log( 2f2
f1

). Then, plugging α̂ and β̂ into (2) and using j = 1, (2) provides

log(r1) = log( f1
f0
) = α + β , or

log

f1
f0


= 3 log


2f2
f1


− 2 log


3f3
f2


+ log


3f3
f2


− log


2f2
f1


= 2 log


2f2
f1


− log


3f3
f2


.
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Finally, we achieve that log(f0) = log(f1) − log( 4f 22
f 21

) + log( 3f3
f2

) = log( 3f 31 f3
4f 32

). Hence, our estimator for f0 and N , respectively,

is

f̂0New =
3f 31 f3
4f 32

and N̂New = n +
3f 31 f3
4f 32

. (3)

3. Properties of the proposed estimator

In this sectionwe summarize someproperties of the newestimator. Firstly, it should be noted that (3) is closely associated

with Chao’s estimator N̂Chao = n +
f 21
2f2

(Chao, 1987) in that we can think of (3) as an adjusted Chao estimator of the form

N̂New = n +
f 21
2f2

γ̂ ; where γ̂ =
3f1f3
2f 22

. Hence, we investigate the effect of this adjustment factor.

Theorem 1. Under arbitrary mixing in (1) we have that

lim
N→∞

E(N̂New)

N
≥ lim

N→∞

E(N̂Chao)

N
and

lim
N→∞

E(γ̂ ) = lim
N→∞

E

3f1f3
2f 22


=

3p1p3
2p22

≥ 1.

Proof. As a consequence of the Cauchy–Schwarz inequality we have for arbitrary mixing that the ratios of neighbouring
count probabilities experience a monotonicity property as follows (see Chao, 1987)

p1
p0

≤
2p2
p1

≤
3p3
p2

≤
4p4
p3

≤ · · · ,

so that in particular 2p2
p1

≤
3p3
p2

. Now, E(f̂0New)/N = E(
3f 31 f3
4f 32

)/N →
3
4 (

p31p3
p32

) =
3
2 (

p1p3
p22

)(
p21
2p2

) and E(f̂0Chao)/N →
p21
2p2

for

N → ∞. It remains to show that 3
2
p1p3
p22

≥ 1. The latter follows from 2p2
p1

≤
3p3
p2

which also implies the second part of the

theorem, and this ends the proof. �

Chao’s estimator is a lower bound estimator in the sense that E(N̂Chao)/N ≤ 1 for N → ∞ using that p1
p0

≤
2p2
p1

.
Hence typically Chao’s estimator will underestimate the population size. The property in Theorem 1 is remarkable since
it guarantees that the asymptotically expected value of (3) is larger than that of Chao’s estimator – under fairly general
conditions. Next we show that (3) is asymptotically unbiased under Poisson homogeneity – as is Chao’s estimator.

Theorem 2. Under Poisson homogeneity pj = e−λλj/j! we have that

lim
N→∞

E(N̂New)

N
→ 1.

Proof. E(fj/N) converges with N → ∞ to pj. Hence, E(
f̂0New
N ) = E(

3(f1/N)3(f3/N)

4(f2/N)3
) converges to 3p31p3

4p32
= e−λ. Finally,

E(N̂New/N) = E(n + f̂0New)/N converges to (1 − e−λ) + e−λ
= 1 and ends the proof. �

The next result compares the asymptotic biases for the new and Chao’s estimator.

Theorem 3. Under Poisson heterogeneity according to a Gamma distribution, e.g. (1) is the negative binomial pj =
Γ (k+j)

Γ (j+1)Γ (k)

θ k(1 − θ)j for j = 0, 1, 2, . . . we have that

lim
N→∞

E(N̂New)

N
= 1 −

θ k

(k + 1)2

and

lim
N→∞

E(N̂Chao)

N
= 1 −

θ k

k + 1
,

with 1 −
1

k+1 ≤ 1 −
1

(k+1)2
≤ 1.
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Proof. We have for N → ∞ that

E(f̂0New)/N = E

3f 31 f3
4f 32


/N

→
3
4

 k!3

(k−1)!3
θ3k(1 − θ)3 (k+2)!3

3!(k−1)!θ
k(1 − θ)3

(k+1)!3

2!3(k−1)!3
θ3k(1 − θ)6


=

k(k + 2)
(k + 1)2

θ k,

so that E(N̂New)/N → (1 − θ k) +
k(k+2)
(k+1)2

θ k
= (1 − θ k

+
k(k+2)
(k+1)2

θ k) = 1 − θ k/(k + 1)2. On the other hand,

E(f̂0Chao)/N = E


f 21
2f2


/N

→
1
2

 k!2

(k−1)!2
θ2k(1 − θ)2

(k+1)!
2!(k−1)!θ

k(1 − θ)2


=

k
k + 1

θ k,

and N̂Chao/N → (1 − θ k) +
k

k+1θ
k
= (1 − θ k

+
k

k+1θ
k) = 1 − θ k/(k + 1).

The result in Theorem 3 indicates the large potential of reducing bias with the new estimator. To explore this a bit further
we consider exponential mixing in (1). �

Corollary 1. Let the mixing density f (λ) in (1) be the exponential, k = 1, so that the marginal (1) is the geometric. Then:

lim
N→∞

E(N̂New)

N
= 1 −

θ

4
and lim

N→∞

E(N̂Chao)

N
= 1 −

θ

2
.

The condition in Corollary 1 might appear difficult to be checked. However, exponential mixing means that the shape
parameter k equals one which implies that the line in the ratio plot passes through the origin. This can be simply diagnosed
and formally tested. An asymptotic unbiased Chao-type estimator for this case (k = 1) is provided as n + f 21 /f2 and an
asymptotic unbiased estimator incorporating the first three capture frequency counts is also available as n + f 31 f3/f

3
2 .

Note that (3) is only well-defined as long as f2 is positive. Therefore, we suggest to use a modification of (3) which allows
f2 = 0, as follows

N̂NewMo = n +
3
4

f1(f1 − 1)(f1 − 2)f3
(f2 + 1)(f2 + 2)(f2 + 3)

. (4)

The modification (4) has been suggested by an anonymous reviewer for which we are grateful. The reviewer argued that
E(

f3f1(f1−1)(f1−2)
(f2+1)(f2+2)(f2+3) ) ≈

E(f3)(E(f1))3

(E(f2))3
. Indeed a small simulation confirm this results as follows. Since the original bias-corrected

version of Chao’s estimator N̂Chao = n +
f 21
2f2

is N̂BChao = n +
f1(f1−1)
2(f2+1) we looked at a bias-corrected version (modification) of

our new estimator N̂New = n +
f 21
2f2

×
3f1f3
2f 22

in the form N̂NewMo = n +
3
4
f1(f1−1)
(f2+1) ×

(f1−C1)f3
(f2+C2)(f2+C3)

with constants (C1, C2, C3) to

be chosen. Notice that the denominator form arises to avoid a division by 0. As it turned out in our simulation the values
providing the smallest bias were frequently given by the combination C1 = 2, C2 = 2, C3 = 3 (or C1 = 2, C2 = 3, C3 = 2
giving the identical form).

In addition, we consider the following truncated version of N̂New to improve its variance. It can be seen from Theorem 3
(and by replacing fj by their theoretical value pj) that the expected value of γ̂ =

3f1f3
2f 22

approaches

3Γ (k + 1)Γ (k + 3)Γ (3)2Γ (k)2

2Γ (2)Γ (k)Γ (4)Γ (k)Γ (k + 2)2
=

k + 2
k + 1

for N becoming large assuming the negative binomial distribution for the count probabilities pj, j = 0, . . . ,m. Note that

1 ≤
k + 2
k + 1

≤ 2
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for 0 ≤ k ≤ ∞. Hence, truncation at the upper and lower bound of the asymptotically expected value of the multiplier γ̂

appears reasonably and leads to an adjusted form N̂New as follows:

N̂NewAdj =



n +
f 21
2f2

, if
3f1f3
2f 22

≤ 1

n +
f 21
2f2


3f1f3
2f 22


, if 1 <

3f1f3
2f 22

< 2

n +
f 21
f2

, if
3f1f3
2f 22

≥ 2.

(5)

When f2 = 0 we replace f2 by f2 + 1, so that (5) is always well-defined. The adjusted form (5) can be expected to show an
improved performance in terms of reducing the variance while retaining the reduction in bias, which will be seen in the
simulation study section.

4. Variance estimator and confidence interval

4.1. Variance estimator

In order to investigate the variance of the proposed estimator we simply derive it by conditioning. It can be noted that

the variation of N̂New = n +
3f 31 f3
4f 32

is arising from two sources, the random variation of sampling n individuals from N

and the random variation with respect to estimation of λ̂0 where λ̂0 =
3f 31 f3
4f 32

. Böhning (2008) provided a simple formula

for variance computation of population size which can be also applied to derived the variance approximation of the new
proposed estimator as follows:

Varλ̂0|n(n + λ̂0) = En{Varλ̂0|n(n + λ̂0)}  
[1]

+ Varn{Eλ̂0|n
(n + λ̂0)}  

[2]

, (6)

where En and Varn refer to the marginal distribution of n and λ̂0 =
3
4
f 31 f3
f 32

. Assuming that Eλ̂0|n
(n + λ̂0) in the second term

[2] of (6) can be estimated by n + λ̂0 we have that

Varn{Eλ̂0|n
(n + λ̂0)} = Varn{n + λ̂0} = Varn{n} = Np0(1 − p0). (7)

Since p̂0 =
f̂0

n+f̂0
and N(1 − p0) = n, (7) can be estimated by

Varn{Eλ̂0|n
(n + λ̂0)} =

3n
4 f 31 f3

nf 32 +
3
4 f

3
1 f3

. (8)

Now, consider the first term in (6), En{Varλ̂0|n(n + λ̂0)}, and assume again that En{Varλ̂0|n(n + λ̂0)} can be estimated by

Varλ̂0|n(n + λ̂0) = Varλ̂0|n(
3
4
f 31 f3
f 32

). Using the multivariate delta-method (see Bishop et al., 1975) we are able to achieve that

Varλ̂0|n = ∇g

f1
f2
f3

T

Cov

f1
f2
f3


∇g

f1
f2
f3


, (9)

where g(f1, f2, f3) =
3
4
f 31 f3
f 32

and ∇ig(f1, f2, f3) =
∂
∂ fi

g(f1, f2, f3). It is easy to see that

∇g

f1
f2
f3


=


9
4
f 21 f3
f 32

−
9
4
f 31 f3
f 42

3
4
f 31
f 32

T

. (10)

Recall that the covariance matrix of the multinomial vector (f1, f2, f3)T is estimated by

ˆCov

f1
f2
f3


=


f1


1 −

f1
n


−

f1f2
n

−
f1f3
n

−
f1f2
n

f2


1 −

f2
n


−

f2f3
n

−
f1f3
n

−
f2f3
n

f3


1 −

f3
n


 . (11)
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Hence (9) becomes ultimately

Varλ̂0|n


3
4
f 31 f3
f 32


=


9
4

2 f 51 f
2
3

f 62


f1
f2

+ 1


+


3
4

2 f 61 f3
f 62


1 −

f3
n


. (12)

Substituting (8) and (12) into (6), we finally have that

Varλ̂0|n


n +

3
4
f 31 f3
f 32


=


9
4

2 f 51 f
2
3

f 62


f1
f2

+ 1


+


3
4

2 f 61 f3
f 62


1 −

f3
n


+

3n
4 f 31 f3

nf 32 +
3
4 f

3
1 f3

. (13)

It is seen from (13) that the first term ( 9
4 )

2 f 51 f 23
f 62

{
f1
f2

+1}+ ( 3
4 )

2 f 61 f3
f 62

{1−
f3
n } is estimating the random variation stemming from

sampling n units from the target population and the second term
3n
4 f 31 f3

nf 32 +
3
4 f

3
1 f3

is the approximating the random variation due

to estimating the number of unobserved cases f0.

4.2. Confidence interval

Once we have provided an estimator of the variance of the estimator of interest, a confidence interval of the population
size N can be constructed using the normal approximation as N̂ ± 1.96Se(N̂), where Se(N̂) is the estimated standard error
of N̂ . Alternatively, we can also investigate the confidence interval by using the bootstrapmethod. Themain benefit of using
bootstrap method is that it does not require a formula for a variance estimator and might be preferable for small sizes. We
focus here on the percentile bootstrapmethod. The procedure for constructing 95% confidence intervals using the percentile
bootstrap method is as follows:

(1) A sample of size N̂ is drawn with replacement from the data set which contains both observed individuals (n counts of
1, 2, 3, . . . ,mwith associated frequencies f1, f2, . . . , fm) and estimated unobserved frequency f̂0 of individualswith zero
counts. N̂ is determined according to the estimator under investigation. We do not only bootstrap from the observed
sample of size n because the variance of estimating N arises from two sources, the random variation due to drawing
n individuals from the target population of size N and the random variation from estimating the parameter of interest
from the observed n units, as just mentioned in Section 4.1 (see, for a review, van der Heijden et al., 2003a; Böhning,
2008).

(2) Then, the resampled zero counts of individuals never identified are omitted. Then, using only the new sample of size n∗

a new estimate N̂∗ is calculated.
(3) Steps (1) and (2) are repeated B times. This provides N̂∗

1 , N̂∗

2 , N̂∗

3 , . . . , N̂
∗

B .
(4) The lower and upper bound of the 95% confidence interval are calculated from P2.5 and P97.5, the 2.5th and 97.5th

percentile of the data set obtained in (3), respectively.
(5) The standard error of estimate is now found from the sample N̂∗

1 , N̂∗

2 , N̂∗

3 , . . . , N̂
∗

B .

5. Real data examples and empirical applications

There exist a variety of published studies applying the ideas of capture–recapture to the estimation of the total number
(adjusted for hidden cases) of patients with infectious diseases such as tuberculosis, HIV/AIDS, legionnaires disease, or
malaria (e.g. Gallay et al., 2000; Nardone et al., 2003; van Hest et al., 2008). However, most studies use frequency data from
multiple sourceswith problems ofmatching andpotentially different target areas. Here,we illustrate the use of our proposed
estimator in particular data sets with repeated identifications from only one source which is the underlying assumption to
apply the model in (1). To achieve a better judgement of the proposed estimator we include the following estimators in the
comparison:

• Chao: N̂Chao = n + f 21 /(2f2),
Var(N̂Chao) =

1
4
f 41
f 32

+
f 31
f 22

+
1
2
f 21
f2

−
1
4

f 41
nf 22

−
1
2

f 41
f2(2nf2+f 21 )

• MLE: N̂MLE =
n

1−exp(−λ̂)
where λ̂ is the maximum likelihood estimator under Poisson homogeneity,
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the latter being suggested by Zelterman (1988). We apply these estimators to studies from illicit drug use and biodiversity.
We have also computed confidence intervals according to both, the approximate normal and Bootstrap method, outlined in
the previous section.
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Table 1
The frequency of individual contacts at Scottish needle exchange, in 1997; n = 647.

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14
fj 175 85 50 47 37 38 32 16 17 17 15 11 9 12

j 15 16 17 18 19 20 21 22 23 24 25 26 27 28+
fj 13 7 6 2 3 5 8 2 6 1 2 3 3 25

Table 2
Estimated total number of Scottish drug injectors in 1997.

Method N̂ Se(N̂) 95% CI Se(N̂)BT 95% CI
(Approximate normal) (Bootstrap percentile)

MLE 648 0.67 646–650 1.00 646–649
Chao 828 34.85 759–897 36.91 763–907
New 975 137.99 704–1246 150.94 788–1379
NewAdj 975 – − 103.76 779–1169
NewMo 948 – − 145.78 774–1326
Zel 1042 85.25 874–1210 87.44 909–1246

Table 3
The frequency count of times that heroin users contacted health treatment centres in Bangkok, Thailand in 2002; n = 9, 302.

j 1 2 3 4 5 6 7 8 9 10 11
fj 2176 1600 1278 976 748 570 455 368 281 254 188

j 12 13 14 15 16 17 18 19 20 21
fj 138 99 67 44 34 17 3 3 2 1

Table 4
Estimated total number of heroin users in Bangkok, Thailand 2000.

Method N̂ Se(N̂) 95% CI Se(N̂)BT 95% CI
(Approximate normal) (Bootstrap percentile)

MLE 9,454 12.84 9,428–9,480 13.40 9,518–9,573
Chao 10,782 80.21 10,624–10,940 85.71 10,625–10,945
New 11,714 250.16 11,223–12,205 265.07 11,256–12,279
NewAdj 11,714 – − 249.39 11,257–12,241
NewMo 11,701 – − 255.71 11,250–12,216
Zel 12,078 184.54 11,716–12,440 188.45 11,728–12,476

5.1. Drug use

5.1.1. Scottish drug users
Hay and Smit (2003) provide data on drug user contact to a Scottish needle exchange programme in 1997. As the authors

say

Data were collated on individuals who have visited a Scottish needle exchange in the year 1997. We prefer not to
explicitly state the needle exchange from which we obtained these data; however the data were collated during a
programme of drug misuse prevalence research in Scotland and was the only one operating in that area at that time.
The needle exchange assigns a unique identifier number to each individual accessing the service, thus enabling it to
produce statistics on the number of people who had contacted the service over a given period.

The system provided a record of the number of individuals accessing the service over the time period from January to
December 1997. The number of visited drug users over this 12 months was 647 and the frequency count of contacting
this treatment centre is shown in Table 1, with a maximum number of contacts of 105. Here, only the frequency count up to
28 is shown. We are able to compute all estimators of the total estimate of drug users for this data set. The result is shown
in Table 2.

5.1.2. Bangkok heroin users
We are interested in estimating the total number of heroin users in Bangkok (Thailand) in 2002. The data was collected

by the Office of the Narcotics Control Board (ONCB), Ministry of the Prime Minister, in cooperation with the Drug
Abuse Prevention and Treatment Division, Health Department and Medical Service Department, Bangkok Metropolitan
Administration. The database recorded all replicated treatment contacts of drug users from the 61 health treatment centres
in Bangkokmetropolis. The treatment episodes for heroin users are shown in Table 3 (Source: Viwatwongkasem et al., 2008).
We use this frequency table as basis for all estimators considered as provided in Table 4.
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Table 5
Malayan butterfly data (Fisher et al., 1943).

j 1 2 3 4 5 6 7 8 9 10 11 12 13
fj 118 74 44 24 29 22 20 19 20 15 12 14 6

j 14 15 16 17 18 19 20 21 22 23 24 24+ n
fj 12 6 9 9 6 10 10 11 5 3 3 119 620

Table 6
Estimated total number of Malayan butterfly species.

Method N̂ Se(N̂) 95% CI Se(N̂)BT 95% CI
(Approximate normal) (Bootstrap percentile)

MLE 624 1.80 620–628 2.23 616–624
Chao 715 22.07 671–759 24.78 672–766
New 754 63.49 629–879 85.33 659–1017
NewAdj 754 – − 66.17 670–919
NewMo 741 – − 62.80 664–898
Zel 868 67.04 736–1000 64.61 711–973

As can be seen in Table 4, the estimated number of heroin users from our method is between the estimators obtained
using Chao’s and Zelterman’s methods. However, similar to the previous application, the proposed estimator shows larger
variation.

5.2. Butterfly data

The Malayan butterfly data go back to Fisher et al. (1943) (see also Chao and Bunge, 2002) and have been frequently
serving as test data for estimators under development. The frequency count of identifying distinct species is shown in Table 5.
There are in 620 observed distinct species. Table 6 shows the result of estimated numbers of Malayan butterfly species.

In this example, the overall impression is that all estimators show similar results in terms of estimated numbers of species
for both point and interval estimations. As expected, theMLE provides not only the smallest estimate (underestimation bias),
but also gives the least variation. In contrast, our proposed estimator and Zelterman’s method yields a larger estimate and
variation. In addition, the new estimator provides a similar estimate for this data as the Poisson–Gamma-based estimator
suggested by Chao and Bunge (2002) who also used the Malayan butterfly data to illustrate their estimator.

6. Simulation study

6.1. Simulation scenarios

A simulation experiment is undertaken to study the performance of the proposed estimator and some competitors such
as maximum likelihood, Zelterman’s and Chao’s estimator. The scope of study covers a variety of situations of heterogeneity
in the capture probabilities. Counts have been sampled from the following distributions: negative binomial (k, θ); k =

2, 3, θ = 0.4, 0.6 and k = 4, 5, θ = 0.6, 0.8, Geometric (θ); θ = 0.3, 0.4, 0.5 and two-component Poisson Mixture;
0.5Poi(λ)+0.5Poi(µ), λ = 0.5, 1, µ = 2, 3, 4.Weused a population size of 100, 1000, 10,000 and 100,000, respectively, and
each scenario is repeated 10,000 times. To evaluate performance of estimation, we look at relative bias (RBias =

E(N̂)−N
N ) and

relative mean square error (RMSE =
E(N̂−N)2

N2 ). Furthermore, both simulated approximation variance of the new proposed
estimator and bootstrap percentile method (using a resample size of 1000) is investigated.

6.2. Simulation results

We start with an illustration and show the results of estimating population size from one sample from a population with
a known capture probability and a known population size. The artificial data set of frequency counts of identifications
of distinct individuals was generated from fj = E(fj) = Npj. We assume that N = 1000 and pj corresponds to a
negative binomial NB(4, θ = 0.6, 0.7, 0.8), a Geometric Geo(θ = 0.3, 0.4, 0.5) and a two-component Poisson mixture
0.5Poi(0.5) + 0.5Poi(µ; µ = 1, 2, 3, 4). To illustrate the behaviour of the estimators a sample was generated from each
of the above three scenarios, for example, for N = 1000 and NB(4, 0.7), we got f0 = 240, f1 = 288, f2 = 216, f3 =

130, f4 = 68, f5 = 33, f6 = 15, f7 = 6, f8 = 3 and f9 = 1. Then, f0 was omitted and only the remaining zero-truncated
frequencies f1, f2, . . . , fm with n =

∑m
j=1 fj were used to estimate f0 and N . The results for all estimators are shown in Table

7 (see Supplementary data). It is clear that if heterogeneity becomes more pronounced our proposed estimator noticeably
provides the most accurate results. However, these are the results from only one simulated sample. We now undertake a
more profound simulation investigation.
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6.2.1. Heterogeneity in identification
As a summary result it can be said that under a negative binomial the MLE and Chao’s estimator show a clear underes-

timation of population size, whereas Zelterman, the new estimator and the adjusted form tend to overestimate for a small
population size; see Table 8 in Supplementary data. It can also be seen from Table 8 that the proposed estimator and its ad-
justed form perform similarly in cases of large population size. In addition, the adjusted form also significantly reduces the
variance if compared with its original form, in particular for small size. Furthermore, the proposed estimators show a good
performance for estimating population size as does Chao’s and Zelterman’s estimator, in particular they provide smallest
RBias and RMSE for the larger sample size. In summary, it is reasonable to state that the proposed estimators (in particular
the adjusted versions) are suitable under the negative binomial distributional model.

For the case that the identification probabilities arise from the Geometric distribution, the new estimator generally
shows a good performance in terms of accuracy as it gives on average the smallest RBias in almost all cases; see Table
9 in Supplementary data. According to RMSE, although the new estimator seems to be of lack of precision for the small
population size, it shows excellent performance against the other methods for larger size; see Table 9.

Similar to the results under a negative binomial distribution, Zelterman and the new estimator seem to provide
overestimation of population size, in contrast to the MLE and Chao’s estimator which always show underestimation for
all two-component Poisson Mixture scenarios; see Table 10 in Supplementary data. If large population sizes are considered
under a discrete Poisson mixture, our proposed estimators not only shows high performance in terms of accuracy, but it
also performs similar to the other methods in terms of precision. However, the new proposed estimator is less satisfactory
for smaller size as well as it shows high variance; see Table 10.

6.2.2. Variance approximation
This section presents the results on variance approximation of the new estimator. We compared the variance

approximation of the new estimator in Eq. (13) with estimating variance using the bootstrap and simulation methods. To
define the investigated statistics in Table 11 (see Supplementary data), Se(N̂) denotes standard error of the new estimator

computing based 10,000 repeated simulation samples, whereas Mean(Se(N̂)) and Mean( Se(N̂)Bt) represent an average
estimated standard error from Eq. (13) and the bootstrap percentile method, respectively. It is seen from Table 11 that,

Se(N̂), Mean(Se(N̂)) and Mean( Se(N̂)Bt) are quite similar in their values. Mean(Se(N̂)) is slightly smaller than Se(N̂) and

Mean( Se(N̂)Bt). As a result, it is reasonable to state that the variance approximation of the new estimator in Eq. (13) can be
utilized to represent the true variance.

According to the bootstrap percentile confidence interval for N , the coverage probabilities of our proposed estimator and
its modified forms are close (sometime very close) to the desired confidence level; see Table 12 in Supplementary data. We
have noted previously that the newly proposed estimators N̂New , N̂NewMo, and N̂NewAdj experience increased variance. This
– evidently unfavourable property – turns out to be beneficial when it comes to coverage probability, as we see here. In
contrast, the other estimators, in particular MLE and Chao’s estimator, show lack of sufficient coverage probability due to
the fact that the MLE and Chao’s estimator are underestimating and yield also a small variance. In short, with respect to
coverage probability in confidence interval estimation, the new estimator(s) tend to perform noticeably well.

7. Conclusions and discussion

A diversity of estimators in the capture–recapture field exists such as the estimators of Chao (1987) and Zelterman
(1988), being widely applied in many areas of interest, especially in public health and social sciences. Here, we have
introduced a new method of estimating the population size under a specific form of heterogeneity for the identification
probability of distinct individuals. We have also been able to see how accurate and precise the method is performing when
it is compared to other frequently used estimators. Overall, the proposed estimator is more accurate as well as providing
small bias in the homogeneous Poisson case which asymptotically disappears. It is also found that the new estimator
compares well with Chao’s estimator since its expected value is equal to or greater than the one of Chao’s estimator. Hence,
it improves Chao’s estimator which is known to provide a lower bound. In a simulation study, the new estimator tended
to overestimate, whereas all the other methods under consideration provided the known underestimation phenomenon
in almost all scenarios of heterogeneous identification probabilities. However, although the proposed estimator showed
superior performance in terms of accuracy, it evidently gave also the largest variation. The reason for this increased variation
is likely the use of high-order frequencies which are generally not as stable as the frequencies of the first two orders
(e.g. number of singletons and doubletons). Hence, the new method has lack of precision; nonetheless, the variation of the
new estimators considerably decreased for large population size (1000 andmore)which is typically the case for situations of
interest in surveillance andpublic health. In addition, the adjusted forms of the newestimator can be utilized for sample sizes
below1000which significantly reduces the variance.We also currently view themodified estimators (4) and (5) as the better
choices and the ones to be used in practice.We also provided a formula of variance approximation of the new estimator. This
variance formula is not only useful to determine the efficiency of estimating, but it can be also used to construct confidence
intervals. In short, the newestimator can be an alternative formof population size estimation especially for large populations
and heterogeneous capturing probabilities.
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