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SUMMARY

In the last decades, considerable attention has been paid to the collection of antimicrobial resistance data,
with the aim of monitoring non-wild-type isolates. This monitoring is performed based on minimum inhi-
bition concentration (MIC) values, which are collected through dilution experiments. We present a semi-
parametric mixture model to estimate the entire MIC density on the continuous scale. The parametric first
component is extended with a non-parametric second component and a new back-fitting algorithm, based
on the Vertex Exchange Method, is proposed. Our data example shows how to estimate the MIC density
for Escherichia coli tested for ampicillin and how to use this estimate for model-based classification. A
simulation study was performed, showing the promising behavior of the new method, both in terms of
density estimation as well as classification.
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2 S. JASPERS AND OTHERS

1. INTRODUCTION

Finite mixture models are very popular in various scientific areas since they provide a powerful tool to
model unobserved population heterogeneities and latent structures. An extensive overview of the theory
of these models can be found in McLachlan and Peel (2000), while Titterington and others (1985) provide
a wide range of data applications. The application of interest in this paper concerns one of the main public
health burdens of the last decades, namely the field of antimicrobial resistance (AMR) and antimicrobial
susceptibility testing. In order to study and monitor the emergence of isolates with reduced susceptibility
against antimicrobials, minimum inhibitory concentrations (MIC) are collected. MIC is the lowest concen-
tration of an antimicrobial that inhibits the visible growth of a microorganism after overnight incubation.
The MIC is commonly measured via an agar or broth dilution method, in which a standardized amount of
the isolate is exposed to successive 2-fold concentrations of the antimicrobial (i.e. 0.25, 0.5, 1, 2 mg/L, . . .).
The MIC is defined as the lowest concentration with no visible growth after a prescribed incubation period.
Consider, for example, a bacterial isolate that is subjected to an antimicrobial at concentrations 0.5, 1, 2,
and 4 mg/L. In case the isolate shows inhibition of growth at values of 2 and 4 mg/L, but growth at lower
values, the reported MIC value is equal to 2 mg/L. However, the true inhibition occurs between the con-
centrations of 1 and 2 mg/L, so the obtained MIC value is interval censored. See, for example, Andrews
(2001) and Wiegand and others (2008) for a detailed description of how to obtain these MIC values.

The common way of representing a dilution experiment is by drawing an MIC distribution, i.e. the
frequency of occurrence of each given MIC plotted against the MIC value. Figure 1(a) shows an MIC dis-
tribution determined for 1890 isolates of Escherichia coli tested for susceptibility against ampicillin in the
year 2010. For a given bacterial species, the multi-modal pattern of the MIC distribution can usually enable
the separation of the wild-type population of microorganisms from those non-wild-type populations which
show a reduced susceptibility to the antimicrobial in question. The wild-type susceptible population, typ-
ically located on the left of the MIC distribution, is assumed to have no acquired or mutational resistance.
It commonly shows a uni-modal distribution reflecting a slight biological variability around a mode whose
value will not be altered by changing circumstances over time. The second component, representing the
non-wild-type isolates, is often multi-modal since it represents different non-wild-type sub-populations
which are characterized by different degrees of reduced susceptibility conferred by different mechanisms.
However, the number of these non-wild-type sub-populations as well as their distributions are unknown a
priori. This becomes apparent when regarding Figure 1(b), which also shows an MIC distribution for the
combination E. coli–ampicillin. It can be noted that while the first component is comparable to that of
Figure 1(a), the non-wild-type component of the distribution shows an additional mode and a higher spread.

Let the univariate random variable X represent the MIC value with probability density function f (x).
In our context, a two-component mixture

f (x) = π f1(x; θ1) + (1 − π) f2(x; θ2) (1.1)

is assumed, in which f1 and f2, respectively, represent the wild-type and non-wild-type component of
the MIC distribution and the prevalence of wild-type isolates is denoted by π . Despite the importance of
analyzing AMR data, the statistical literature regarding this topic is rather limited. It is current practice to
classify an isolate into the wild-type or non-wild-type sub-population based on an epidemiological cut-off
(ECOFF) value, defined as the upper limit of the wild-type distribution. According to the guidelines of the
European Committee on Antimicrobial Susceptibility Testing (EUCAST), the ECOFF can be determined
based on visual inspection of the histogram resulting from the dilution experiment or, alternatively, it can
be statistically calculated using the approach of Turnidge and others (2006). The latter approach aims at
providing an estimate for the wild-type density function ( f1), from which the ECOFF is derived as the
99.9th percentile. In a similar fashion, Jaspers and others (2014) also adopt a local view, focusing on
the wild-type first component only. They proposed an improved likelihood-based procedure, called the
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Fig. 1. Histogram of E. coli isolates tested for susceptibility against ampicillin—sources EFSA (a) and EUCAST
(b). Overlaid are the estimated density using the back-fitting algorithm (solid) with its simultaneous 95% bootstrap
confidence limits (dashed) and the estimate resulting from the PM approach (dotted).

multinomial based method (MBM) to identify the most suitable distribution of the first component and to
estimate its parameters.

Model-based classification is a valuable alternative for determining the sub-population of a specific
isolate. With this technique, isolates are classified to the wild-type sub-population when the posterior
probability

π f1(x; θ1)

π f1(x; θ1) + (1 − π) f2(x; θ2)
(1.2)

is larger than 0.5. It is clear that this option requires an estimate for the entire mixture density f . Craig
(2000) suggested to approximate the entire density f in (1.1) by a mixture of Gaussian density functions.
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4 S. JASPERS AND OTHERS

This approach was followed by Annis and Craig (2005), who assumed two fixed components, representing
the wild-type and non-wild-type sub-populations. However, no a priori information is available on the
number of components for the non-wild-type density, nor on the shape of these component density func-
tions. Therefore, a non-parametric second component seems more appealing. Jaspers and others (2014)
provide a two-stage semi-parametric mixture model to estimate the mixture density of interest. The first
stage determines the estimates of the first component using the MBM. Fixing the so-obtained estimates as
being the true parameters of the wild-type component, i.e. θ1, the density of the second component is deter-
mined using an extended version of the penalized mixture (PM) approach by Schellhase and Kauermann
(2012). Nevertheless, a drawback of this two-stage procedure is that the parameters of the first component
are not updated, but kept fixed at the initial estimates provided by the MBM. This provides inadequate
estimates of the standard errors. In addition, there seemed to be some kind of discontinuity in the region
of overlap between the first and second component, resulting from the used two-stage approach. Hence,
although attempts have been made, there still is no satisfactory methodology which is able to estimate the
mixture distribution of interest, taking into account the underlying complexities.

The major aim of this paper is to present a new method which is able to jointly estimate the paramet-
ric first component, f1, and the non-parametric second component, f2. In this respect, we will consider
a non-parametric maximum likelihood estimate (NPMLE) for the second component, using the Vertex
Exchange Method (VEM), introduced by Böhning (1986). This directional derivative-based algorithm
will be adjusted in such a way that it can cope with the censored nature of the MIC data. Although it
was already used for survival data, the presented approach is a new application regarding the VEM in
a censored setting. The new approach can play a profound role in the monitoring of AMR data, with
emphasis on prevalence estimation and model-based classification. In addition, an adequate descrip-
tion of the distribution of the non-wild-type component is necessary when the goal is to discover shifts
over time.

Some data examples are presented in Section 2. In Section 3, we will give a small review of the VEM
and present the final estimation procedure of the semi-parametric mixture model. An application of the
new method can be found in Section 4 and a simulation study shows its performance in Section 5. Finally,
a discussion ends the paper in Section 6.

2. DATA

Escherichia coli is a Gramm-negative bacterium that is usually a commensal of humans and animals.
Nevertheless, pathogenic variants can cause intestinal and extra-intestinal infections, including urinal
tract infections and meningitis. The preferred treatment depends on the nature of the infection and
antimicrobial treatment is not recommended for every type of infection (Igarashi and others, 1999).
Several studies have shown that resistance in E. coli isolates is relatively high and has been emerg-
ing over the last decades (Kronvall, 2010; Tadesse and others, 2012). In this report, we will focus
on the susceptibility of E. coli against ampicillin, with the major aim of estimating the MIC value
density.

Across Europe, several institutions are concerned with collecting data on AMR and identifying possible
threats to the human health. On a yearly basis, the European Centre for Disease Prevention and Control and
the European Food Safety Authority (EFSA) jointly prepare an annual European Union Summary Report
on AMR in zoonotic and indicator bacteria from humans, animals, and food. Since 2010, data are collected
from EU member states on an isolate-based level. For the purpose of this modeling study, an exemplary
MIC distribution summarizing the results of ampicillin susceptibility testing of indicator E. coli isolates
in 2010 has been provided by EFSA. Four member states provided information regarding this antibiotic–
bacterium combination, resulting into a subset of 1890 isolates. A graphical representation of the MIC
value distribution can be found in Figure 1(a).
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Another important organization within the field of AMR is the EUCAST. This organization is mainly
concerned with breakpoints and technical aspects of phenotypic in vitro antimicrobial susceptibility testing.
Most antimicrobial MIC breakpoints (e.g. ECOFF values) in Europe have been harmonized by EUCAST.
An interesting collection of MIC distributions can be found on their website. These distributions are based
on collated data from a total of almost 20 000 MIC distributions from worldwide sources. For comparison
purposes, the same antibiotic–bacterium combination has been selected for our analysis: ampicillin–E. coli.
The resulting MIC distribution consists of 39 220 isolates that were obtained from 48 distinct sources. The
observed MIC values ranged from 0.125 to 512 mg/L, with the first mode being located around the value of
2 mg/L. A graphical representation of the data is given by the histogram in Figure 1(b). Two large peaks are
clearly visible at the values of 2 and 4 mg/L, probably representing the center of the wild-type component.
Towards the larger MIC values, two smaller peaks are located at the values of 64 and 256 mg/L, which
could represent distinct strains of the non-wild-type isolates.

3. METHODOLOGY

With X denoting the MIC value of a certain isolate, the probability density function of interest is
represented by f (x;�) = π f1(x; θ1) + (1 − π) f2(x). As argued above, the first component, f1, can
be assumed to be of a fixed parametric form depending on certain parameters θ1. In this paper, the
primary focus for the first component will be on the log-normal assumption, with θ1 representing the
mean and standard deviation of the first component. The proportion of isolates corresponding to this
wild-type component is reflected in the prevalence parameter π . Because less information is present on
the second component, a non-parametric estimate will be considered. Bordes and Vandekerkhove (2010),
Hohmann and Holzmann (2013), Xiang and others (2014), and Ma and Yao (2015) all consider a similar
model in which the second component is assumed to be symmetric but unknown. Nevertheless, in the
AMR setting, this symmetry does not apply. We therefore consider a basis-function representation of

f2, given by f2(x;�) = ∑k
c=1 πcg(x; λc), where � denotes the mixing distribution in which weights

π1, . . . , πk are given to support points λ1, . . . , λk . For identifiability reasons, some assumptions on f2

are required (Bordes and others, 2006; Ma and Yao, 2015). In this paper, g is assumed to be log-normally
distributed and the support points λc correspond to the means of these log-normal densities. In order to
obtain enough flexibility to estimate the unknown second component, a generous number of log-normal
densities will be employed. These densities are located at fixed equidistant support points which are
assumed to cover the range of observed MIC values. However, since we do not want to overfit the
data, the standard deviations of these basis functions will be kept fixed at a predetermined common
value. A grid search will be performed to determine the right amount of smoothing based on the Akaike
Information Criterion (Akaike, 1974): AIC = −2l + 2K, with K the number of parameters. In conclusion,
the density of the MIC value X is given by f (x;�) = π f1(x; θ1) + (1 − π)

∑k
c=1 πcg(x; λc), where

� = (π, θ1,�).
The typical application of maximum likelihood estimation concerns a random sample of individual data

points of X. In practice, however, it frequently occurs that the collected data are only present in grouped
form, meaning that the frequencies of observations in fixed intervals are reported. This is also the case for
MIC data, a direct consequence of the collection using dilution experiments. Suppose therefore that the
sample space is partitioned into m mutually exclusive intervals, for which the boundaries are denoted by
a0, a1, . . . , am . The reported data are the number of isolates ni falling into the interval [ai−1, ai ]i=1,...,m ,
where n = ∑m

i=1 ni corresponds to the total number of independently collected MIC values. In what
follows, yi = (ai , ni ) denotes the observed grouped data. In order to construct the log-likelihood to be
optimized, the distribution function F(x) of the MIC values is required. In this regard, let F1(x; θ1) =∫ x

−∞ f1(t; θ1) dt and F2(x,�) = ∑k
c=1 πcG(x; λc) with G(x; λc) = ∫ x

−∞ g(t; λc) dt , for c = 1, . . . , k.
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6 S. JASPERS AND OTHERS

Then, F(x) = π F1(x; θ1) + (1 − π)F2(x;�). With the m-dimensional vectors A and N represented by
A = πP1 + (1 − π)P2, with P j = [Fj (ai ) − Fj (ai−1)]i=1,...,m for j = 1, 2 and N = [ni ]i=1,...,m , the final
log-likelihood is given by

l(π, θ1,�|y) =
m∑

i=1

ni log{F(ai ) − F(ai−1)} = N log{AT}. (3.1)

3.1 The VEM algorithm

The VEM is a directional derivative-based method, used to obtain the NPMLE of a mixing distribution.
The main idea of the method is to search in each iteration for the direction that maximizes the log-
likelihood increase � = l(�(it+1)) − l(�(it)), where l(�) is a shorthand notation for l(�|π, θ1), while
�(it) and �(it+1) refer to the current and updated estimates of � at iterations (i t) and (i t + 1), respectively.
Once the optimal direction is found, weights are exchanged between the support points that contribute the
most and the least to this difference. These points are identified based on the definition of the directional
derivative of the log-likelihood from one distribution �(it) to the other �(it+1). When �(it+1) is degenerate
at λc (i.e. πc = 1) then �(it+1) = �λc . In particular, the directional derivative D(�(it),�λc) of l(�) at �(it)

in the direction of �λc for interval-censored data is defined as

D(�(it),�λc) = lim
s→0+

l((1 − s)�(it) + s�λc) − l(�(it))

s

= ∂l(θ1, (1 − s)�(it) + s�λc)

∂s

∣∣∣∣
s=0

=
m∑

i=1

[
ni

F(ai ; λc) − F(ai−1; λc)

F(ai ;�(it)) − F(ai−1;�(it))

]
− n. (3.2)

A single step of the VEM consists of finding the directions that, respectively, minimize and maximize
this directional derivative. More specifically, after evaluating the directional derivative for each of the

k support points λc, we can identify λ− = argminλc
D(�̂

(it)
,�λc) and λ+ = argmaxλc

D(�̂
(it)

,�λc) and

update their weights as π̂
(it+1)
λ− = (1 − s�)π̂

(it)
λ− and π̂

(it+1)
λ+ = s�π̂

(it)
λ− + π̂

(it)
λ+ with the step length s� ∈ [0, 1]

defined as s� = argmaxs[l(�(it+1)(s)) − l(�(it))]. In order to obtain a complete NPMLE, the EM algorithm
is required to refine the location of the support points, i.e. the λc’s. In this regard, one can follow the
approach by McLachlan and Jones (1988). This is especially of importance when interest is in calculating
standard errors. Indeed, it was noted that the improvement in the obtained point estimate after performing
an additional EM step is rather limited. Therefore, when interest is only in point estimation, one could
restrict to the VEM only (Tsonaka and others, 2009).

3.2 Back-fitting algorithm

We are required to estimate two sets of parameters. First of all, there are the parameters inherent to the
parametric distribution assumed for the first component, i.e. θ1. In addition, we also need to estimate the
weights attached to the distinct components, i.e. π̃ = (π, π1, . . . , πk). In this respect, we adopt a back-
fitting algorithm, based on the work of Tsonaka and others (2009). The grid of basis densities consists of
log-normal density functions, with their support points placed at equidistant values (on the log2-scale) that
cover the observed range of MIC values. A dense grid was found to be most optimal, meaning that in the
following applications the distance between two support points, i.e. λ j − λ j−1, will equal 0.1. Regarding
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Application of the VEM in antimicrobial resistance 7

the choice of the standard deviation, we adopt a model-based approach in which the procedure is repeated
for several fixed values for the standard deviation and the most optimal value is determined with the
AIC criterion. Consecutively, the grid of basis functions for the second component is extended with a
component density for the first component, which is placed at the initial estimate according to the MBM,
i.e. at θ̂1 = (μ̂MBM, σ̂ MBM). The weights attached to these basis components are determined using the
VEM algorithm, while the parameters of the first component are updated using maximum likelihood. For
notational simplicity, all weight parameters are assumed to be within �. The procedure is detailed upon in
the following points:

1. Obtaining initial values. Regarding the first component parameters, we can obtain initial values
using the MBM as described in Jaspers and others (2014). This procedure provides an initial estimate
for the prevalence parameter π as well. In order to obtain initial values for the other weights, the
VEM algorithm is applied until the maximal value of the directional derivative in each direction is
smaller than ε1 = 1e − 3 or terminated in case the step size s� is reduced below 1e−7. In this initial
procedure, the values of π and θ1 are kept fixed. At the start of the VEM, a zero weight is attached
to the support points which are located below the initial value of the first component mean.

2. Updating of the weights. For fixed θ̂
(it)

1 , we perform one step of the VEM algorithm to obtain �̂
(it+1)

,
which contains the weights for all the components. Note that compared with the procedure for obtain-
ing the initial estimates, we also allow π to be updated.

3. Updating of the first component parameters. Keeping the weights fixed at their estimate from step

(1), i.e. �̂
(it+1)

, we update the parameters of the first component by maximizing l(θ1|�̂(it+1)
), to

obtain θ̂
(it+1)

1 .

4. Convergence. The steps described in (1) and (2) are repeated until l(θ̂
(it)

1 , �̂
(it)

) − l(θ̂
(it−1)

1 , �̂
(it−1)

) <

ε2(1 + |l(θ̂1
(it−1)

, �̂
(it−1)

)|), with ε2 = 1e − 8.

Applying the above back-fitting algorithm, it was noted that upon convergence, the weight of the first
component π was occasionally decreased to zero and replaced with several non-parametric components.
In order to resolve this apparent identifiability problem, we impose a little penalty on the standard
deviation of the first component. More specifically, prior knowledge on the parameter is present from
the MBM and we state that the final estimate cannot differ too much from this initial estimate by subtract-
ing, from the likelihood in (3.1), the following penalty term: τ ∗ (σ − σ̂ MBM)2. A large value for τ implies
a great prior belief in the initial estimate and does not allow the new estimate to differ from that initial
estimate. On the other hand, a small value for τ still allows the updated estimate to deviate in some extent
from the initial value. Based on the performed simulation studies and the considered data examples, τ = 2
was found to be an acceptable penalty. In addition, we determine AIC values at every iteration step of the

algorithm: AIC(it) = −2l(θ̂
(it)

1 , �̂
(it)

) + 2K . The number of parameters K corresponds to the number of
non-zero weights, added with the number of parameters of the first component. In this way, models with
more components of the non-parametric second component are penalized more heavily.

3.3 Estimation of standard errors

Consider the observed Hessian of l(θ1,�), denoted by H = Hθ1θ1 Hθ1 π̃

Hπ̃θ1 Hπ̃ π̃
, where Hθ1θ1 = ∂2l(θ1,�)/∂θ1∂θ1

and analogous definitions for Hθ1π̃ and Hπ̃ π̃ . Regarding the estimation of standard errors, the negative
of H needs to be inverted and evaluated at (θ̂1, �̂). Nevertheless, H can become substantially large and
can therefore suffer from singularity. In this paper, we will consider a generalized inverse of H in order
to report standard errors for the parameter estimates of particular interest, i.e. θ̂1 and π̂ . On the contrary,
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8 S. JASPERS AND OTHERS

problems still occur for the second component weights which are located near the boundary of the param-
eter space. Since these distinct component weights are not of direct interest, we consider simultaneous
bootstrap confidence intervals for the entire estimated density f̂ (x). In this respect, B = 2000 bootstrap
samples are taken and the estimated densities are evaluated in a finite number of grid points {x1, . . . , xI }.
Let r (t)

i denote the rank of the t th bootstrap estimate at grid point xi . Define tl as the lth order statis-
tic of [max{max1�i�I (r

(t)
i ); B + 1 − min1�i�I (r

(t)
i )}; t = 1, . . . , B]. Then, by construction, the interval

[ f̂ ∗(xi )
[B+1−tl ]; f̂ ∗(xi )

[tl ]] has a global confidence level of at least 100(l/B)%. In the examples below,
95% confidence intervals are considered.

4. DATA ANALYSIS

The newly developed back-fitting algorithm is applied to the two sets of MIC data introduced in Section 2.
The MBM will not be detailed upon, but the reader is referred to Jaspers and others (2014) for a detailed
description and analysis. Rather, the focus will be on the estimation of the entire mixture distribution for
the combination E. coli–ampicillin.

4.1 Data from EFSA

From the visual investigation of the histogram in Figure 1(a), we could identify a first mode around the
value of 2 mg/L. Application of the MBM resulted into an estimated prevalence for the wild-type com-
ponent of 0.86 (s.e. 1.70e−2). The mean and standard deviation were estimated to be 1.05 (s.e. 2.25e−2)
and 0.69 (s.e. 1.81e−2) on the log2-scale. These values can be used as starting values for the developed
back-fitting algorithm. The final density estimates are shown on Figure 1(a). It is observed that the esti-
mated density consists of two modes. The final estimates for the mean and standard deviation of the first
component were (on the log2-scale) equal to 1.04 (s.e. 2.08e−2) and 0.54 (s.e. 2.01e−2), respectively.
Therefore, the first mode is located at an MIC value of 2 mg/L. This wild-type component receives an esti-
mated weight of 0.78 (s.e. 2.20e−2), corresponding to the estimated prevalence of wild-type isolates. It
appears that there is only a unique sub-population of non-wild-type isolates in this dataset, with the mode
of their distribution at an MIC value of 32 mg/L. For comparison purposes, the final estimate from the
PM approach is also added to the plot in Figure 1(a). In this two-stage procedure, the mean and standard
deviation are fixed at the initial estimates from the MBM and the wild-type prevalence is estimated at 0.81
(s.e. 1.76e−2). The model-based classification rule in (1.2) identifies isolates with an MIC value larger
than 8 mg/L as being non-wild-type, which coincides with the harmonized ECOFF. A classification line
is plotted in Figure 2, with the simultaneous bootstrap confidence limits overlaid. The limits are rather
wide in the region of overlap, which is probably a consequence of the rather scarce amount of data in that
specific region.

4.2 Data from EUCAST

Similar to the analysis above, we could again identify a wild-type distribution around the value of 2 mg/L.
Figure 1(b) presents graphically the result for the EUCAST data. The mean and standard deviation (on
the log2-scale) of the wild-type components are estimated at 1.04 (s.e. 7.5e−3) and 0.70 (s.e. 7.2e−3),
respectively, and the prevalence of this sub-population is estimated to be 0.66 (s.e. 4.9e−3). In contrast to
the EFSA data, the non-wild-type component is now composed of three sub-groups. A first, relatively
small, mode is observed at an MIC value of 16 mg/L, while two larger sub-groups can be identified
at 64 and 256 mg/L. Due to an increased sample size, the bootstrap confidence intervals are also more
narrow compared with the previous example. Application of the model-based classification rule identi-
fies again 8 mg/L as being the MIC value separating the wild-type from the non-wild-type component.
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Fig. 2. Probability to belong to the wild-type class for EFSA (left) and EUCAST (right) data.

The probability for an isolate to belong to the wild-type component, shown in Figure 2, gradually dimin-
ishes with increasing MIC values.

5. SIMULATION STUDY

A small simulation study is performed to assess the performance of the presented method. In general, we
considered a mixture distribution with two main components, reflecting the two major sub-populations
of the isolates of interest. Two different scenarios were investigated. In the first one, data are generated
from a special case of the proposed model. The wild-type component is assumed to be log-normally dis-
tributed with mean 2 and standard deviation 0.8. The non-wild-type component is a 50:50 mixture of two
log-normal densities with (on the log2-scale) means equal to 4.5 and 7.5, respectively, and standard devi-
ations equal to 0.7 and 0.6, respectively. On the other hand, the second scenario considers a gamma first
component with shape and scale equal to 3 and 1.6, respectively. The non-wild-type component is a 50:50
mixture of two slightly skewed t-distributions. For both scenarios, the prevalence of wild-type isolates is
set to 0.6, resulting into the following mixture densities:

X1 ∼ 0.6 logN (2, 0.8) + 0.4{0.5 logN (4.5, 0.7) + 0.5 logN (7.5, 0.6)}, (5.1)

X2 ∼ 0.6
(3, 1.6) + 0.4{0.5 st(4, 1, 1, 10) + 0.5 st(7.5, 0.8,−1, 10)}. (5.2)

The considered sample sizes are 500, 1000, and 5000. In each case, the 1000 obtained samples were
censored in order to resemble real-life datasets as closely as possible. The developed back-fitting algorithm
is compared with the two-stage PM approach presented in Jaspers and others (2014).

Figures 3 and 4 present the results for mixtures (5.1) and (5.2), respectively. The estimates for each of
the samples are shown in gray, with the mean estimate (dashed) and the true density (solid) overlaid. The
plots on the left correspond to the PM approach, while the results of the new back-fitting algorithm can
be found on the right. An important difference between the two approaches is the placement of the basis
densities related to the second component. While the newly developed method puts no restriction on these
locations, the two-stage PM approach allows only basis densities after a certain starting point. More details
on how this starting point is determined can be found in Jaspers and others (2014). A direct consequence
of this difference is the improved estimate in the region of overlap. This is observed most clearly on the
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10 S. JASPERS AND OTHERS

Fig. 3. Graphical representation of the simulation results for mixture (5.1). Figures on the left correspond to the PM
approach, while the figures on the right resulted from the back-fitting algorithm. The individual estimates are rep-
resented in gray-scale, with the true density (full), and averaged estimate (dashed) overlaid. Sample sizes: 500 (top),
1000 (middle), 5000 (bottom).
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Application of the VEM in antimicrobial resistance 11

Fig. 4. Graphical representation of the simulation results for mixture (5.1). Figures on the left correspond to the PM
approach, while the figures on the right resulted from the back-fitting algorithm. The individual estimates are rep-
resented in gray-scale, with the true density (full), and averaged estimate (dashed) overlaid. Sample sizes: 500 (top),
1000 (middle), 5000 (bottom).
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12 S. JASPERS AND OTHERS

Table 1. IMSE values and mis-classification percentages (MP) for the two simulation scenarios

IMSE (×10−5) MP (×10−2)

Sample size PM VEM PM VEM

Scenario 1: mixture (5.1)
500 34.086 21.027 7.011 6.709
1000 19.218 11.578 6.682 7.029
5000 5.675 3.064 6.648 6.648

Scenario 2: mixture (5.2)
500 25.771 23.543 7.890 5.958
1000 16.279 15.085 8.863 5.848
5000 7.295 3.802 10.475 7.598

plots in Figure 3. For sample size 500, the PM approach results into some extreme estimates in the region
of overlap, while these do not occur for the back-fitting algorithm. As sample size increases, these extreme
estimates become less pronounced and both methods show a similar behavior. Nevertheless, there seems
to be a slight advantage to the method introduced in this paper. A similar observation can be made for
mixture (5.2). In Figure 4, the most apparent result can be seen for size 5000. The PM approach seems to
provide an appropriate mean estimate, but there is a lot of variability in the first component. Again here,
the back-fitting algorithm is more stable and provides better results.

Finally, for all grid values xi , i = 1, . . . , I , the MSE is calculated as MSE f̂ (xi )
= Bias2

f̂ (xi )
+ Var f̂ (xi )

,

with Bias f̂ (xi )
= E[ f̂ (xi )] − f (xi ), and Var f̂ (xi )

= E[( f̂ (xi ) − f (xi ))
2]. A numerical comparison between

the methods can be made based on the integrated mean squared error (MSE), defined as IMSE f̂ =
(1/I )

∑I
i=1 MSE f̂ (xi )

. The results are summarized in Table 1. In addition, this table also shows the mis-
classification probabilities after application of the model-based classification in (1.2). It is observed that
the newly introduced back-fitting algorithm outperforms the PM approach for both summary measures
under consideration.

6. DISCUSSION

In this paper, we presented a new method to estimate a semi-parametric mixture model representing a
continuous MIC density. The developed procedure was applied to E. coli isolates tested for susceptibil-
ity against ampicillin. The considered population of E. coli isolates was assumed to be composed of two
large sub-groups, termed as the wild-type and non-wild-type sub-populations, respectively. A log-normal
assumption was made for the underlying density of the wild-type component. On the other hand, very
few restrictions are put on the second component density, since less information is present regarding the
related sub-group. Therefore, a flexible mixture with a large number of log-normal component densities
was assumed to model the density of the non-wild-type isolates in a non-parametric way. Based on the
introduced back-fitting algorithm, optimal estimates were obtained for the weights of the distinct com-
ponent densities and for the parameters related to the parametric first component. A key role within this
method is put aside for the VEM (Böhning, 1986). Once the density estimate is obtained, model-based clas-
sification can be used to determine class-membership of the isolates under investigation. In this respect,
the method provides a valuable alternative to standard methods such as visual investigation of histograms
of MIC values or the statistical method provided by Turnidge and others (2006), which is based on an
estimate for the first component only.
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The approach presented above is an extended and improved version of the two-stage strategy intro-
duced in Jaspers and others (2014). This latter method fixed the first component to its initial esti-
mate and obtained a non-parametric density estimate for the second component using the PM approach
(Schellhase and Kauermann, 2012). With the new approach, the initial values for the first component are
updated as well. In addition, with the PM approach, there were some difficulties with the location of the
component densities constituting the non-parametric second component. These issues are resolved with
the new procedure. As a result, the simulation study revealed a clear improvement in the obtained esti-
mates, especially in the region of overlap between the wild-type and non-wild-type components. Also the
evolution of MSE values over the fitted range shows an advantage of the new approach compared with its
competitor.

In order to incorporate the uncertainty related to the estimation process, simultaneous bootstrap confi-
dence intervals for the density estimates were considered. Due to a singular hessian, no exact confidence
intervals could be obtained. However, these singularities only prevailed for weights at the boundary of
the parameter space and the generalized inverse could be used to calculate standard errors for the most
important parameters, i.e. the prevalence π and the parameters related to the first component.

Finally, although we focused on a log-normal assumption for the first component, the method can
be extended to incorporate other parametric assumptions. Different densities can be compared and the
most the optimal one can be selected based on the AIC values. As discussed above, monitoring of
AMR data is of high importance. Therefore, further research includes the estimation of time trends in
the MIC densities, which can aid in the identification of possible public health risks. In addition, we
are also studying the use of Bayesian methods to obtain a semi-parametric estimate of the MIC density
(Jaspers and others, 2015).
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