A Capture—Recapture Approach for Screening Using
Two Diagnostic Tests With Availability of Disease
Status for the Test Positives Only
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The article considers screening human populations with two screening tests. If any of the two tests is positive, then full evaluation of the
disease status is undertaken; however, if both diagnostic tests are negative, then disease status remains unknown. This procedure leads to
a data constellation in which, for each disease status, the 2 x 2 table associated with the two diagnostic tests used in screening has exactly
one empty, unknown cell. To estimate the unobserved cell counts, previous approaches assume independence of the two diagnostic tests
and use specific models, including the special mixture model of Walter or unconstrained capture—recapture estimates. Often, as is also
demonstrated in this article by means of a simple test, the independence of the two screening tests is not supported by the data. Two new
estimators are suggested that allow associations of the screening test, although the form of association must be assumed to be homogeneous
over disease status. These estimators are modifications of the simple capture—recapture estimator and easy to construct. The estimators are
investigated for several screening studies with fully evaluated disease status in which the superior behavior of the new estimators compared
to the previous conventional ones can be shown. Finally, the performance of the new estimators is compared with maximum likelihood
estimators, which are more difficult to obtain in these models. The results indicate the loss of efficiency as minor.

KEY WORDS: Capture—recapture; Capture—recapture estimator under screening test dependence; Diagnostic test accuracy; Testing inde-

pendence.

1. INTRODUCTION

Screening a population for a specific disease is a fundamental
aspect of disease surveillance and health care. Screening pro-
grams for cancer are a well-established component of health
care in many countries. Examples of screening tests for can-
cer include mammography for breast cancer, serum prostate-
specific antigen (PSA) levels for prostate cancer, and the pap
smear for cervical cancer. Screening is considered highly im-
portant in other diseases as well. In cardiovascular diseases,
screening typically focuses on risk factors. According to Galen
and Gambino (1975), screening for heart disease focuses on
blood pressure, electrocardiography, and X-ray. Other risk fac-
tors include smoking and high serum cholesterol levels. Chaisiri
et al. (1997) used the urine stick and fasting blood sugar to
screen a rural population in northeast Thailand for non—insulin-
dependent diabetes mellitus. Due to the popularity of these
screening devices and the arising data from numerous studies,
determining the appropriate methodology for modeling screen-
ing studies with incomplete evaluation of disease status is a
matter of concern.

1.1 Setting and Notation

In particular, we are interested in the following setting.
A population of known size n is screened using two screening
tests, 71 and T», for having a specific disease D with d differ-
ent states of disease. In the simplest case, there are two states:
healthy and nonhealthy. To give a simple example, we might
think of screening for prostate cancer using the digital rectal
examination and PSA level. In these screening situations, the
point is to find cancer cases in an early stage in the develop-
ment of any disease or disease-related symptoms. This means
that the screening is applied to large populations. In most cases,
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the results of both diagnostic tests are negative, and no further
medical diagnostics are applied. If one of the tests leads to a
positive finding, then further medical diagnostics are usually
applied to evaluate the correct disease status. This diagnostic
situation is usually referred to as verification restricted to screen
positives (Pepe 2003). This setting leads to the following data
constellation: the frequency of screened persons with outcome
j=0,1 for test 1 and outcome k = 0, 1 for test 2 and disease
statusi =1, ..., d is denoted by xj'k) Note that x(()lo) is unknown
fori =1,...,d. In addition, let pyk) denote the probability that
test 1 is having outcome j =0, 1 and test 2 is having outcome
k =0, 1 conditional on being in disease state i. Furthermore,
at various times we use the abbreviation a;+ = a;o + a1 or
ay; = ag; + ay; for 2 x 2 matrices g;;. If there are only two
(d =2) disease states (healthy, 1; diseased, 2), then pﬁz is the
sensitivity of test 1 and pfi is the sensitivity of test 2, whereas
p(()lﬁ is the specificity of test 1 and pgrl()) is the specificity of test 2.
In addition, let g; denote the proportions of the disease states in
the population, i =1, ..., d. Again, if there are only two states,
then g is just the disease prevalence.

If all frequencies x](lk) are observed, then all conditional prob-

abilities pﬁik) can be estimated simply by their corresponding

observed proportion ﬁj.ik) = Elk) /ni, an.d the true proportiong qi
can be estimated by their corresponding observed proportion
gi = ni/n, where n; = x_(ﬂr However, xélo) is not known for all
i, and developing estimates for it is the focus of this article. To

do so, some modeling is required.

1.2 The Latent Class Model for Partially Available
Disease Status

Latent class models for estimating diagnostic error have a
long tradition (see Hui and Walter 1980; Hui and Zhou 1998;
Albert and Dodd 2004). For the special situation of availability
of the gold standard for the test positives only, Walter (1999)
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developed a particular latent class model with a required latent
class approach for the test negatives only. The Walter model
(Walter 1999) uses independence of the screening tests condi-
tional on disease status and assumes that pill) = pii p +)1 for
alli =1,...,d. For a 2 x 2 table, this implies that all of the
(conditional) joint probabilities are the product of the respec-
tive two (conditional) marginal probabilities, p ; k = pyi pgi,)(
In general, this means that there are 2d parameters determining
the conditional probabilities and d — 1 proportion parameters,
in total 3d — 1. If there are only two disease states, then we have
only two sensitive parameters, two specificity parameters, and
one prevalance parameter, leading to the Walter model in five

parameters. In general, the likelihood is provided by

d 0 d
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Note that x(,” = x + -+ x(()g) is known even though the in-
dividual frequencies x()o are unknown. To find maximum like-
lihood estimates (MLES), the likelihood (1) must be maximized
in pYJ)r, pjf)l , and g;. The last term in (1) is a mixture likelihood
and inhibits a closed-form solution for the maximum likelihood
estimation. Walter (1999) used the Newton—Raphson procedure
to maximize (1), which provides as a byproduct an estimate
of the covariance matrix of the parameter estimates. Alterna-
tively, we might use the EM algorithm (McLachlan and Krish-
nan 1997; McLachlan and Peel 2000), Wthh delivers as an ad-
vantageous byproduct an estimate of xoo Whatever algorithm

) 5D and § g; denote the MLEs under the Walter

is used, let p1+, p+1,

model. Then,
Af =nxg; 2

gives the needed size estimates for i = 1,...,d. To provide
valid inference, it is crucial that the model of screening test in-
dependence conditional on disease status is acceptable. Pepe
(2003), among others, expressed concerns about the realistic
nature of the conditional independence assumption. This as-
sumption can be relaxed to develop realistic estimators of n;.
This is the major focus of this article, which is organized as fol-
lows. In the next section we present four study data sets that we
used for illustration throughout the remainder of this article. In
Section 1.4 we provide a simple approach to test the assump-
tion of screening test independence and show that the hypothe-
sis of screening test independence is not supported for the four
data sets. In Section 2 we relax the assumption of screening
test independence conditional on disease status and suggest a
capture—recapture estimate of xélo) based on two homogeneity
models. In Section 3 we introduce the two models for captur-
ing screening test dependence more formally and discuss max-
imum likelihood estimation. In Section 4 we present a simu-
lation study that compares maximum likelihood with capture—
recapture estimation, and in Section 5 we conclude with a dis-
cussion that puts the findings in perspective.
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1.3 Case Studies Considered

Before we proceed with modeling, we present four screen-
ing studies in which the disease status has been evaluated only
for those persons who tested positive for at least one of the
two tests. These case studies will serve as examples for illus-
tration and evaluation throughout the remainder of the article.
The first study has been discussed by numerous authors, in-
cluding Walter (1999), Strax, Venet, Shapiro, and Gross (1967),
Schatzkin, Connor, Taylor, and Bunnag (1987), and Cheng and
Macaluso (1997). It consists of data from the Health Insur-
ance Plan Study (HIP) for breast cancer screening in New York.
A total of 20,211 women were screened for breast cancer using
physical examination (test 1) and mammography (test 2). The
observed frequencies are provided in Table 1 under study 1. In
brief, 307 women who tested positive for breast cancer by ei-
ther mammography or physical examination underwent biopsy,
according to which they were classified into two (d = 2) dis-
ease states: no cancer and cancer. Smith, Bullock, and Catalona
(1997) screened 18,527 white men (study 2) and 949 black men
(study 3) for prostate cancer using digital rectal examination
(test 1) and PSA (test 2). According to Pepe and Alonzo (2001),
the PSA level was considered suspicious for cancer if it ex-
ceeded 4.0 ng/mL. Persons with positive screening test results
on either DRE or PSA were referred for ultrasound-guided nee-
dle biopsy, which is considered a gold standard in this setting.
According to biopsy, the men were classified into two (d = 2)
disease states: no cancer (i = 1) and cancer (i = 2). De Sut-
ter et al. (1998) conducted a multicenter study to compare cer-
vicography with the standard pap smear cytology test for de-
tecting cervical cancer. This study will serve here as study 4
(Table 1). According to Pepe and Alonzo (2001), subjects who
were positive for either test were referred for colposcopy with
directed biopsy, which is considered the gold standard in this
example. A total of n = 5,192 women completed the protocol,

Table 1. Observed frequencies in four screening studies

Observed

frequency Study 1 Study 2 Study 3 Study 4
x 13 138 3 11
) 144 717 38 20
x) 95 976 26 81
o

X 10 179 10 6
P 24 264 28 29
) 21 137 8 48
X0

xl(?) 14
xl(?)) 15
Y 4
X0

n 20,211 18,527 949 5,192

NOTE: Study 1, Health Insurance Plan Screening Study for Breast Cancer in New York
(Strax et al. 1967). Studies 2 and 3, Screening for prostate cancer (Smith et al. 1997) in
white men (study 2) and black men (study 3). Study 4, Screening for cervical cancer (De
Sutter et al. 1998).



214

of whom 228 underwent biopsy. Histological examination of
the biopsy was used to classify the disease into three (d = 3)
states: not present (i = 1), low grade (condyloma) (i = 2), and
high grade (invasive cancer) (i = 3).

1.4 Testing Conditional Independence

Application of the Walter model for these kinds of screening
studies is popular in epidemiology. However, valid application
of the Walter model requires independence conditional on dis-
ease status.

A Test Based on Maximum Likelihood. To test conditional
independence, we could follow the conventional chi-squared
approach, as suggested by Walter (1999). After having achieved
MLEs for p(’J)r, pi)k, and g;, we could compute expected values

e = r20in, ) = ). and )= 1,

+ d
as well as e(()o) =) i, p(()ﬁ)rp%qln to form
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There are 3d + 1 observed frequencies in the table and 3d — 1
parameters to be estimated, which leaves 1 degree of freedom
for the null distribution of (3). Applying the test statistic (3)
to the HIP study yields a chi-squared value of 177.565 (see
also Walter 1999). This very large value indicates that the con-
ditional independence model is inappropriate. Walter (1999)
noted that “one interpretation of this pattern is that there are
correlated errors between the two tests.” We have applied the
test statistic to the other data sets mentioned earlier. The re-
sults, given in Table 2, show empirical evidence for departure
from the null hypothesis of conditional independence, with the
exception of the screening study on prostate cancer in black
men, which has a chi-squared value of 2.185, which is not sig-
nificant.

A Test Based on the Lincoln—Petersen Estimator. The con-
ventional chi-squared approach requires knowledge of the
MLEs under the null hypothesis of conditional independence.
We now look into a setting in which algorithm construction
by means of the EM algorithm or Newton—Raphson is not re-
quired. Evidently, only the entry xé’o) is unknown, and we might
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consider the Lincoln—Petersen estimate for it. Using indepen-
dence and replacing parameters by their sample estimates, we
have x(l)/nl = (l)/n )(x<l) /n;), which is easily solved for n;
to provide

@) ()

I+7+1 )

(@)
11

=

This estimator is connected with the work of Petersen (1896)
and Lincoln (1930), who derived it independently for different
settings (see also Bishop, Fienberg, and Holland 1975, pp. 232—-
233, where large-sample variances are also given). However, for
reasons of stability, we use the more robust estimator

_ G+ DG+
(l) - ]1 (5)
Xy +1

~

5?

as suggested by Chapman (1951), and used and recommended
by others, including Borchers, Buckland, and Zucchini (2002).
This estimator was also used by Goldberg and Wittes (1978)
to estimate the false negatives in screening situations. It is ap-
proximately unbiased in general and exactly unbiased if x(') +

f’}r > n; (Seber 1970; Wittes 1972). Summing the estimator
(5) over all disease states gives 1 = Zi n;. Because the size of
the screened population is known to be n, we can compare 7
with n to form

n—n

Z=—— (6)

V/ Var(i)
(@) (@)

_ @D+ DY+ DR
Var(ii) = . @)
,; o+ 126 +2)

The variance estimator (7) is a stratified version of the variance
estimator provided by Seber (1970) for the unstratified case.
We apply the test to the four screening studies of Section 2.
Evidently, in all studies 7 is below n, leading to significant
test results. An exception is again the prostate cancer study for
black men, in which Z is smallest in absolute value although
still significant, whereas the corresponding chi-squared value
is not (see Table 2). This might indicate that the statistical test
based on Z is more liberal than that based on the conventional
chi-squared test. Also, the Z value provides insight into the type
of dependence, in the sense that estimates lower than the size of

with

Table 2. Values of the test statistics in the four screening studies

0
Screening study Chi-squared z n n (95% confidence interval) a
HIP study 177.565 —66.537 1,330 20,211 15.169 19.06
(10.716,26.120)
Prostate cancer
White men 148.442 —21.858 7,646 18,527 2.423 3.07
(2.149,2.777)
Black men 2.185 —4.541 380 949 2.497 2.92
(1.517,7.031)
Cervical cancer 83.062 —47.176 566 5,192 9.175 13.84

(6.849, 13.895)
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the population indicate a positive dependence of the two screen-
ing tests. To sketch the argument for this phenomenon, we fol-
low Hook and Regal (1995) and consider the expected value of
(4), which can be roughly approximated by

@ (@) O] (@)

Pl Piy Piy _ni

— - il 8)
NG) Moo ST T g (
P P/ Py Pij 0

where p”1 is the probability for the test 1 being positive, con-
ditional on test 2 being positive, and 6 = pﬁ)] / p(l) is the ratio
of conditional and unconditional probabilities of test 1 being
positive, which we call the dependence parameter. If the tests
are not associated, then pﬁ)l = pi’)_ or § =1, and the estimator
is approximately unbiased. However, if there is a positive asso-
ciation, then pil‘)l > pilj_ or 6 > 1 and the expected value will
be below n;. The amount of underestimation is determined by
the value of 6; the higher the value of 6, the larger the under-
estimation. Similarly, for negative associations of the screening
procedures, we will observe values of 6 < 1. Looking again at
Table 2, we see that positive associations have occurred in all
four cases. The last column in the Table also provides an esti-
mate of the dependence factor 6, which is significantly above
1 in all four cases. Note the similarity of the dependence para-
meter for the two screening studies for prostate cancer in white
men and black men. The likely interpretation for this is that the

two screening procedures worked similarly in both populations.

2. ESTIMATORS FOR THE FREQUENCIES OF TEST
NEGATIVES UNDER DEPENDENCE

The data structure contains 3d + 1 observed frequencies.
The capture-recapture model under conditional independence
requires estimation of the parameters pYJ)r, Pi)l’”i for i =
1,...,d,in total 3d parameters. This means that we can include
one additional, estimatable parameter into the model.

2.1 The Model With a Homogeneous
Dependence Parameter

Let us first consider the model of homogeneous dependence,
E(;) ~ n;/ for i =1,....d. In more detail, 0 = p{{}/p{’.
the ratio of conditional (conditional on test 2 being positive) and
unconditional probabilities of test 1 being positive, is allowed
to differ from 1 but is assumed homogeneous over all disease
states. This model allows the association of the screening pro-
cedures, but this association is assumed similar in all disease
states. Models implying heterogeneity in the dependence para-
meter will not be estimatable from the data structure available
here. This model is more flexible than the conditional indepen-
dence model but it is also limited in allowing dependencies. To
accomplish estimation for 6 in this model, we simply consider
the moment estimator, 871;, which makes the sum of the esti-
mated sizes of the disease states equal to the size of the screened
population, Zflzl En;) =6 Zf-lzl E(j) =Y ;n; =n. Re-
placing the theoretical expected value E(n;) by its “observed
value” n; gives 0 Z _1hi=n,or

é:n/iﬁi. 9)

i=1
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From (9), an adjusted disease state size estimator can be con-
structed,

(10)

for i =1,...,d, which evidently meets Zi v; = n. Different
versions of (9) and (10) will occur according to the form of
estimator ;. We use (5) to estimate n;. A direct argument using
Seber’§ variance estimator (7) provides the estimated variance
for 1/6,

-

Var(1/6) =

@) + DY+ Dyl
— Z (11)

o1 (l)+1)2(x(l)+2)

Finding an analytical expression for the variance of 7; is more
elaborate. We use bootstrap approach to provide estimates for
it.

2.2 The Model With Homogeneous Odds Ratio

The association of the two tests conditional on disease status
also can be measured using the odds ratio. The odds ratio para-
meter o; is defined as o; = pill) p(()lo) /( pilo) p(()ll)) in the ith disease
state; we let a; = x{ll)x(()lo) /(x f’o)x(()ll)) denote its estimate. Under
homogeneity, all disease status—specific odds ratios should co-
incide: o; = « for all i. Clearly, using &; = & and solving for

x(go) , we find that

(@) @)

N X0 X
fio == (12)
X1
where & in (12) is found as
(+)
- *00
&= , (13)
d @) (@), ()
D im1 XioXor /1]

using the fact that Zld 1)?(()’0) = x(()g), for example, the total of

screened negative persons is known. If we have independence
conditional on disease status (e.g., @ = 1 and § = 1), then

)2(()6)+x(’)~|—x(’)~|— @)
@@ (1) @) @) @@ () @) (@)
_ XioXor XX+ X%+ Yo ¥

(i)
11

[
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so that (12) and (10) agree, if we use n; = xi?_ g/xﬁ) in
(10); otherwise, they will be different. To avoid undefined cases
and to achieve a stabilized estimator, we again use pseudoval-
ues in the construction process. Let @; = (x(l) + 1)(x(') +1)
/ ((x(l) 1)(x(’) + 1)) denote the estlmate of the odds ratio in
the ith disease state. Solving for xoo
geneity leads to

under odds ratio homo-

) _ <x“) + D)+ D)

Xo0 =
xfll) +1

-1, (14)
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with
xéar) +d
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From (14), we can construct an estimator of n; as

&:

(i) (i)
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vi=x§’1)+x{’o)+x(§’l)+a( o * D0 #D
0
x4 1

1. (15

We use this form of the estimator in all data analysis.

2.3 An lllustration of the Estimators in the Four
Screening Studies

Table 3 gives all estimated sizes of the disease classes for
the four studies mentioned in Section 1.3 according to the
four methods (2), (5), (10), and (15). First, all estimators meet
the constraint that their sum equals the size of the screened
population except for the unconstrained Lincoln—Petersen es-
timator (5), which underestimates the size of the screened pop-
ulation in all four studies. For the two estimators under inde-
pendence according to the Walter model (2) and the uncon-
strained Lincoln—Petersen estimator (5), the results are similar
for the diseased population, although considerably different for
the healthy population. The two capture-recapture estimators
under dependences (10) and (15) differ in size, although their
dimensions are similar. It can be expected that the latter two
are more flexible in coping with potential dependence struc-
tures, although this question can be answered only be looking
at data structures with completely evaluated disease status. We
consider this issue in the next section.

2.4 Estimators in a Screening Study With Completely
Known Disease Status

Here we illustrate the performance of the estimators in stud-
ies with completely evaluated disease status. According to
Galen and Gambino (1975), screening for cardiovascular dis-
eases focuses on risk factors, such as systolic blood pressure,

Table 3. Estimated sizes of disease classes in four screening studies

Screening study ard AP ;€ ;4
HIP
1 20,105 1,229 18,679 19,204
2 106 101 1,532 1,007
Prostate cancer
White men
1 17,740 6,685 16,635 17,324
2 787 781 1,892 1,203
Black men
1 880 314 783 835
2 69 66 166 114
Cervical cancer
1 264 247 2,266 2,097
2 4,891 282 2,586 2,989
3 37 37 340 106

a

b

n; estimated using (2) with the EM algorithm in the Walter model.
n; estimated using (5).
©n; estimated using (10).

dn,- estimated using (15).
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Table 5. Estimated sizes (with 95% confidence intervals) of disease
classes in the four studies with completely known disease status

Data set nia ﬁib \A)l'c ﬁid
Set 1
1 226 234 (203,264) 226 (204,249) 225 (204,247)
2 191 197 (174,220) 191 (168,213) 192 (171,214)
Set 2
1 226 238 (202,274) 227 (203,252) 226 (203,249)
2 188 196 (170,221) 187 (162,211) 188 (166,212)
Set 3
1 226 166 (131,201) 225(195,255) 242 (209,277)
2 187 138 (113,163) 188 (158,218) 171 (137, 205)
Set 4
1 226 199 (162,225) 223(198,249) 231 (205,259)
2 190 172 (143,190) 193 (167,218) 185 (158,212)

a

b

n; is known for this evaluation.
n; estimated using (5).
®n; estimated using (10).

dn,- estimated using (15).

smoking, serum cholesterol, and body mass index. Data for
these risk factors were found from a subset of the Framingham
Heart Study (Shurtleff 1974). Four study sets were formed from
these four risk factors by defining a combination of risk fac-
tor 1 (test 1) and risk factor 2 (test 2) as follows: systolic blood
pressure and smoking (set 1), serum cholesterol and smoking
(set 2), serum cholesterol and body mass index (set 3), and sys-
tolic blood pressure and body mass index (set 4). Their frequen-
cies are provided in Table 4. Note that for the first two sets,
conditional on disease status, the two risk factors under consid-
eration are negatively associated, although not significantly as
when measured by the Mantel-Haenszel odds ratio with sum-
mary taken over disease status. In the last two sets, conditional
on the disease status, the risk factors are positively and signifi-
cantly associated. For the latter two sets, we can expect stronger
differences among the estimators under consideration. For this
evaluation, we assume that x(()i)) is not known and use the estima-
tors 1, V;, and U; for predicting the known n;. We can evaluate
these estimators by comparing predicted and known n;. Table 5
provides the estimates for all four sets with 95% confidence
intervals. Not surprisingly, the confidence intervals for the un-
constrained capture—recapture estimator do not include the true
size of the screened population for the significantly associated
screening factors in sets 3 and 4. In all other cases, the confi-
dence intervals cover the sizes of the screened population. The
estimator v;, based on (10), appears to be closer to the observed
values in all four sets.

3. MAXIMUM LIKELIHOOD FOR MODELS
WITH DEPENDENCE

Here we provide a more formal investigation of the two mod-
els of screening test dependency using likelihood methods. As
will be seen in the following, maximum likelihood estimation
is cumbersome in both models, and MLEs are used here only
as a benchmark method for efficiency considerations.

We recall that the marginal probabilities are p;l}r =P(T, =

jID=1i)and p{) = P(T> = k| D = i), whereas py,g = P(T) =

Jj, To = k|D = i) denotes the cell probabilities (j,k =0 or 1).
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Table 4. Frequency data constellation for four data sets defined by the risk factor (RF) combination in screening for coronary heart disease
(CHD) with Mantel-Haenszel summary odds ratios (summing over disease status) and test for homogeneity of
odds ratios between disease status

Set 1 Set 2 Set3 Set 4
(@) @) @) (@)

CHD RF 1 RF2 Xk Xk Xik Xk
1 1 1 65 50 51 54
1 1 0 24 20 19 35
1 0 1 106 121 70 67
1 0 0 31 35 86 70
2 1 1 95 69 69 78
2 1 0 28 20 20 45
2 0 1 57 83 38 31
2 0 0 11 16 60 36
ORyy 73 74 4.18 1.78
(95% CI) (144,1.22) (.42,1.16) (2.69,6.77) (1.17,2.72)
Xiom 14 03 1.23 29
p value 71 .87 27 .59

NOTE: OR, odds ratio.

Unfortunately, there is no unique way to model dependency. In
Section 2 we distinguished between two different dependency
measures, one based on the ratio of conditional and uncondi-
tional probability for one test being positive and the other based
on the odds ratio. Here we provide the associated likelihoods for
both models.

3.1 The 6 Model

The dependency parameter is defined as

(@)
_ Py _
==
Py

P(Ty=1|T»,=1,D =)
P(T1=1D=i)

assumed to be identical for all i. We must express pﬁ), pf’g,

p(()i]) ,and P(()io) as functions of p%i}r, pﬁ)l, and 6. By easy algebra,

we obtain
P =P =1Ta=1,D=i)P(Ty=1|D =)
=0P(T)=1|D=i)P(T,=1|D=i)
OIN0)

= 0P Py
and
@ _ @ (@) @ _ @ (@)
Py —P1+[1 _9p+1]’ Py —P+1[1 _9P1+]’
and
@ _ (i) (i) @@ ()
Py =1=pPiy =Py +0p i Py

Let us also define ¢; =6p\) = P(Ty = |, = 1, D = i), b; =
Gpi)l =P(T» =1|T1 =1, D =i), and n = 1/6, and rewrite the
cell probabilities as

@) (@)

P\ =naibi,  pl =na;(1—b),  pi)=n—apb;,
and
PO =1 p@ — p @ 50 (i — a1 — b+ 11—,

Note that this gives a reparameterization of the four cell prob-
abilities pﬁ'k) for each i in three independent parameters 7, a;,

and b;. The log-likelihood function with incomplete observa-
tions (i.e., x(glo) is not known but only xég) = x(()g)) +--- 4 x(()g) is

known) is
d

> {xl) n(aibigi)

i=1

+x\ Infna; (1 — bj)gi1 + x3) n[n(1 — a;)big;1)

d
+ x50 ln[Z{qi[na —a)(l=b)+1- n]}}. (16)
i=1

For maximum likelihood estimation, (16) must be maximized
in n,ay,...,aq, b1,...,bg, q1,-..,qq4, which turns out to be
tedious. Formulation of the EM algorithm proves unfruitful in
this problem, because the complete likelihood has no closed-
form maximizers. Thus we argue that we should work directly
with the observed log-likelihood and use the readily available
routines for maximization.

3.2 The o« Model

In the model with the homogeneous odds ratio, the parameter
« is defined as
@) @)
_ P11 Poo
O 0
10 Po1

and is considered to have the same value for all i. Using the
parameterization of the other model, we can write

@) @)

Pii Py _ naibiln(1—ai)( —bi) +1 -1l
Y())P(()il) nai (1 —bi)nbi(1 — a;)
1—
—y— "
77(1 _ai)(l _b,‘)

This relationship between o and n shows that in general, the
two types of homogeneity hypothesis (i.e., n constant or o con-
stant) are different in nature. More precisely, both, only one, or
no homogeneity conditions may be satisfied.
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In general, for the « model, the (incomplete, observed) likeli-
hood is

d d )
x X
|:| |{p§l1)‘h ”:| |:| | pil())ch 101|
&)

*00
} [Zpé’o)q,} . an

What remains to be done is to express p,((’l) as functions of a set
of independent parameters and the likelihood maximized with
respect to these parameters. For comparison purposes (the sim-
ulations in the next section are performed in this way), we take
as fixed parameters pYJ)r, pi)l
meters with one constraint g1 + - - -

provides some details of this process.

4. SIMULATION-BASED COMPARISON
OF ESTIMATORS

d
|:1_[{P(()l1)ql

i=1

o, and g;, that is, 3d + 1 para-
+ g4 = 1. The Appendix

Because the likelihood approach turns out to be tedious, the
simpler and easier to perform and understand capture—recapture
estimators might be of interest. We compare these estimators
with the maximum likelihood approach by means of a simula-
tion study.

4.1 Design of the Simulation Study

The design of the simulation study chooses values for the
sample size n, the disease strata weights g;, the marginal con-

(@)

ditional probabilities p; | that test 77 is positive given disease

status i, the marginal conditional probabilities p(l) that test 7»
is positive given disease status i, and « or 6. All other model
parameters are functions of these.

For each design considered, we generated 2,000 samples, and
for each sample, we computed the estimators under study us-
ing a SAS/IML code. For the optimization problems, we used
the NLPNMS function of SAS/IML (version 8.2) based on
the Nelder—-Mead simplex optimization method. We considered
two disease strata, and fixed the parameters as

(i PiY) = C1,.3),

(). p2) = (05, 25),
(g1, 92) = (.85, .15).

In the 6 model (resp. @ model), we used three different values
for 6 (resp. «): 1.1, 2, and 3. The sample sizes considered were
n = 1,000, 5,000, 10,000, and 25,000. We used the true values
of the parameters as starting values in the optimization proce-
dures.

and

(18)

4.2 Results

The simulation study was designed with d = 2 disease stata.
Consequently, we consider, for given n, ny = g1 x n and
no, = g2 X n to be the true values and define the bias as
(E(n;) —n;i)/n, where n; is n x g; for the MLEs, and otherwise
is the capture-recapture estimate as defined in (10) and (15).
The mean E(#1;) is estimated by the average of the 2,000 val-
ues of n; computed. Note that the bias is measured in a normed
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way, independent of the size of n, to enable comparisons over
different values of n. Because of the symmetry, we can restrict
our discussion to the results for one of the n;’s, say n1. Two
situations should be clearly kept apart. In the first case, data
are generated under the & model and MLEs are computed un-
der this model, whereas capture—recapture estimates (10) and
(15) are easily available for both models. In addition, MLEs for
the Walter model have been included for comparison. As can
be seen in Figure 1(a), the bias of the MLE and the capture—
recapture estimate (10) are close and get closer when the sam-
ple sizes increases. For sample size >5,000, differences in bias
appear negligible. Not surprisingly, the bias for the capture—
recapture (15) is large and remains large (because it assumes
the wrong model in this situation). Similarly, the bias of the
Walter model is severe in all situations. Look at the standard er-
rors of estimates (again normed by the sample size), it appears
from Figure 1(b) that the capture—recapture estimate (10) has a
standard error close to the standard error of the MLE even for
the smaller sample sizes considered. The standard errors in the
Walter model are small, in fact smaller than in all other models,
which this seems reasonable if we recall that the Walter model
can be viewed as a constrained 6 or o model.

In the second case, data are generated under the o model
and MLEs are computed under this model, whereas capture—
recapture estimates (10) and (15) are again computed for both
models. As it turns out (omitting details here for the sake of
brevity; available on request), the bias of MLE and the capture—
recapture estimate (15) are close and grow closer with increas-
ing sample sizes. Again for large sample sizes, differences
in bias appear negligible. Not surprisingly, the bias for the
capture—recapture (10) is large and stays large (because it as-
sumes the wrong model in this situation). Looking at the stan-
dard errors of estimates (again normed by sample size), it turns
out (omitting details to save space; available on request) that
the capture—recapture estimate (10) has a standard error close to
the standard error of the MLE for even the smaller sample sizes
considered. In summary, only a small loss of efficiency results
from using the capture-recapture estimates (10) and (15).

Finally, we considered a configuration in which the cell prob-

abilities p ) do not satisfy any of the two models under study.
To compute the cell probabilities in this case, we used the para-
meterization described in Section 3.1 with the same values as in
(18) but with different values 6 for each i, denoted by 6; and 6,.
Two cases are reported: 61 =2, 6, =1.5and 61 =1.5,6, =2
In addition to the MLE for 6 and capture—recapture estimators
(10) and (15), we computed the MLE in the Walter model. The
results are shown in Figure 2. In the first case (61 = 2, 0, = 1.5),
the bias of the MLE in the Walter model is close to the bias
obtained in the 6 model (with MLE and capture—recapture es-
timates) in absolute value but with the opposite sign. The very
small bias obtained with the capture—recapture estimator in the
o model can be explained by the configuration that is close to
homogeneity of the odds ratios, indeed, p(()'o) p”)/ { pi'o) p(()'])} is
equal to 2.389 for i = 1 and to 2.455 for i = 2. The standard
error of the MLE in the Walter model is smaller than that for
the other estimates. In the second case (61 = 1.5, 0, = 2), the
6 model produces the smallest bias, whereas the Walter model
yields the largest. When n increases, the estimate in the « model
has a standard error close to that of the MLE in the Walter
model, which is again the smallest among the four estimates.
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Figure 1. Bias (a) and standard error (b) of the estimates for n| based on the MLE for 6 (+), on the CRE for 8 (x), on the CRE for « (o),

and MLE in the Walter model (A). The true model is the & model.

5. DISCUSSION

The methods of estimation described in the previous sections
are applicable to many practical screening situations in which
evaluation of the disease status is restricted to those for which
at least one of the screening tests is positive. Screening is most
effective when applied to large populations where evaluation of
the disease status is limited to the test positives. Thus large data
bases exist that allow assessment of diagnostic measures as well
as disease prevalence estimates with good precision.
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Previous approaches have used the assumption of screening
test independence to a large extent. However, as we have seen
here, this assumption appears to be questionable in many data
sets. Procedures using this assumption of independence con-
ditional on disease status can be grouped into two categories.
The first group is a variant of the latent-class model that uses
the axiom of local independence of the diagnostic tests condi-
tional on disease status. In full generality, these models require
no evaluation of the disease status. Estimation in this specific

(b)
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Figure 2. Bias (a) and standard error (b) of the estimates for n1: MLE for 6 (+), CRE for 6 (x), CRE for « (o), and MLE in the Walter model

(A). The true model is neither the & model nor the o model.
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mixture model is frequently done using the EM algorithm or the
Newton—Raphson algorithm. (For an overview of these models,
see Greiner 2003.) The model of Walter (1999) uses the addi-
tional partial knowledge from the evaluated screened persons to
achieve a specific latent class model. The other category com-
prises of capture-recapture procedures, such as the proposal by
Goldberg and Wittes (1978). However, Goldberg and Wittes
(1978) targeted only procedures for estimating the size of the
diseased population (false negatives), and thus their procedures
do not use knowledge on the test positives with negative disease
status evaluation (false positives). In cases of independence, the
results of their procedure (in fact, it corresponding to 7; here)
and the modified estimators suggested here will be similar. In
cases of dependence, the results will differ.

Indeed, the screening tests in HIP study were associated, as
shown in Section 3. Consequently, the estimates provided by
Goldberg and Wittes (1978) likely were to be too low.

The main focus of the article was to develop estimators un-
der dependency. Section 1 mentioned simple statistical tests to
illustrate that the assumption of screening test independency is
violated in many case studies. It might well be possible to con-
struct that more powerful statistical tests. On the other hand,
in many application studies the independence of screening tests
will not be of substantial interest itself, but rather interest will
lie in constructing estimators of the sizes of the disease classes.

In Section 2 two simple estimators for the diseased and
screened-negatives were suggested, one based on the # model
and the other based on the o« model. The ability to discriminate
between these two models would be of interest. This is impos-
sible, however, because both provide a full model; therefore,
some uncertainty remains when using any of the models. But
which is better, using an independence model which in most
cases fails to be valid, or using a model that allows homoge-
neous forms of dependencies, even though failure of homo-
geneity might not be detectable? We would argue that the latter
approach should be preferred, because it is more likely to hold
than the independence model.

Turning to the results of the simulation study (a full doc-
umentation of all results is available on request), it appears
that no great loss of efficiency occurs when using the capture—
recapture estimates instead of the MLEs. This is good news,
because MLEs are more difficult to obtain. The Walter model
has surprisingly small standard error in all situations, although
the bias is, as expected, severe. Here there seems to be a slight
tendency for the  model to perform better than the 6 model
(mostly smaller in standard error, and often smaller in bias is
as well), but in general this depends on the true data-generating
process, of course.

But a major question remains: How can the homogeneity as-
sumption within the # or « model be justified? One possibility
is to look at empirical cases where the disease status is com-
pletely known, such as in the situation of Section 2.4 and Ta-
ble 4. None of the four constellations considered in Table 4
shows any evidence of violation of the assumption of homo-
geneity as indicated by the test of homogeneity (the last two
lines in Table 4).

Another strategy appears to be to incorporate a design el-
ement into the screening study that allows testing of the ho-
mogeneity model. This element could be a small subset of the
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screened population with gold standard evaluation of all units
in the subsample. A further strategy (particularly if the deter-
mination of the gold standard for healthy individuals might be
considered unethical) might involve sampling from a popula-
tion of confirmed cases and determine the two tests for this
sample. This would seem particularly attractive if the two tests
were noninvasive. Both strategies would allow estimation of a
heterogeneous 6 or o model.

We would like to conclude by discussing one with a final is-
sue. As pointed out by a referee, the idea of incorporating some
form of dependency of the two screening tests had been men-
tioned previously. Van der Merve and Maritz (2002) modeled
the odds ratio as 1 (independence of the two tests) for the dis-
ease population, whereas they allow an extra parameter y for
the odds ratio of the two tests within the healthy population.
This idea could be extended and combined with previous idea
of estimating the odds ratio first for a confirmed case popula-
tion (with all four cells defined by the combination of the two
tests available) and then estimating a ratio parameter y of the
two odds ratio by means of the screening sample.

APPENDIX: SOME DETAILS FOR THE « MODEL

We need to write the cell probabilities pliil) involved in likelihood
(17) as functions of a set of independent parameters. For comparison
purposes, let us take as fixed parameters pgl_i)_, pi'j_, o, and ¢;, thatis,
3d +1 parameters with one constraint, g1 +- - - +¢q4 = 1. We may write
thg follov&{ing 0bvi0u§ relatiqnships: pilo) — p(()ll) = pi’_?_ — p:l-)l '
p(()’o) — pi’l) =1- pil_)k - pfi)l Moreover, by definition, p(()lo) pill) =
ap\ pll). Clearly, all of the probabilities py,

and

can be expressed as
functions of the fixed parameters as soon as this can be done for pgo)
By simple algebra, for each i, the probability p(()io) is a solution of the
equation

N .
(@— D[P + @B; + A; —2aCp)pll) +a(C? — BiC;) =0,
(A.1)
with A; =1 — pYJ)r - pYJ)r, B; = pglJ)r - pﬁl}r, and C; =1— pﬁi)l It
easy to see that (A.1) has only one solution in the interval (0, 1) which
can be found by elementary algebra. Next, we write pill), pilo), and p(()ll)
@ @)
1+ P14
likelihood (17) can be written as a function of the parameters p
pi'_‘)_, o, and g;.
[Received September 2003. Revised August 2006.]

as functions of p and «. Finally, the (incomplete, observed)
()
1+
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