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This investigation deals with the question of when a particular population can be con-
sidered to be disease-free. The motivation is the case of BSE where specific birth cohorts
may present distinct disease-free subpopulations. The specific objective is to develop a sta-
tistical approach suitable for documenting freedom of disease, in particular, freedom from
BSE in birth cohorts. The approach is based upon a geometric waiting time distribution
for the occurrence of positive surveillance results and formalizes the relationship between
design prevalence, cumulative sample size and statistical power. The simple geometric wait-
ing time model is further modified to account for the diagnostic sensitivity and specificity
associated with the detection of disease. This is exemplified for BSE using two different
models for the diagnostic sensitivity. The model is furthermore modified in such a way
that a set of different values for the design prevalence in the surveillance streams can be
accommodated (prevalence heterogeneity) and a general expression for the power function
is developed. For illustration, numerical results for BSE suggest that currently (data status
September 2004) a birth cohort of Danish cattle born after March 1999 is free from BSE
with probability (power) of 0.8746 or 0.8509, depending on the choice of a model for the
diagnostic sensitivity.

Key Words: Design prevalence heterogeneity; Diagnostic accuracy; Freedom of disease;
Geometric waiting time; Power function.

1. INTRODUCTION

This article focuses on the development of statistical methodology for evaluating a
specific population for being free of a particular disease which has recently stirred up
considerable interest (Martin, Cameron, Greiner, and Jorgensen 2003; Cameron et al. 2003,
2005). As a particular application we have cattle birth cohorts which are free of BSE for
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several European countries for a considerable time period [while it is declining in others
(Donelly et al. 1999; Morignat et al. 2002)], and it is of some importance to have a statistical
tool available that allows us to evaluate the current evidence for freedom of BSE.

1.1 THE IDEA

Consider a stream of surveillance data obtained from individuals of a population. In
terms of the application we think of surveillance data representing the independent testing
for BSE in a population of cattle which are obtained in temporal order. Let the binary
variable Yt denote the test result for unit t, where yt = 1 will denote that the individual is
positive and yt = 0 otherwise. For t /= t′, it is assumed that Yt and Yt′ are independent.
For the time being it is assumed that the test is perfect with sensitivity and specificity both
100%. Interest is in the null hypothesis H0 : π = 0, where π is the prevalence parameter of
interest. Clearly, the null hypothesis is equivalent to H0 : Yt = 0, for t = 1, 2, . . . implying
that P (Yt = 1|H0) = 0 for all times t = 1, 2, . . ., in other words, the probability of a
Type I error is zero. Suppose now as the alternative hypothesis that there is some positive
(potentially small) prevalence π > 0. Given the series Y1, Y2, . . ., what is the waiting time T

such that the first unit is tested positive? Clearly, this waiting time T is defined by sequences

1, 01, 001, 0001, 00001, . . . , (1.1)

where the 1 denotes the first unit tested positive. In the hypothesis testing framework, no
further diagnostic investigation is required after observing the first event of Yt = 1 and the
population is considered not free of the disease. Because the probability for testing positive
is π and testing is independent, the associated probabilities for the sequences in (1.1) are

π, (1 − π)π, (1 − π)2π, (1 − π)3π, (1 − π)4π, . . . , (1.2)

implying that the waiting time T has a geometric distribution

P (T = t|π) = (1 − π)(t−1)π, (1.3)

for t = 1, 2, . . ., given that π > 0. The waiting time is discrete and refers to the number of
trials up to and including the last trial, which gives a positive outcome. As a consequence
of the geometric distribution we have that

P (T > 0|π > 0) =
∞∑

t=1

(1 − π)(t−1)π = 1, (1.4)

implying that with probability one, there exists some positive waiting time for the first unit
testing positive, conditional π > 0. Now, on the contrary, if the entire series Y1, Y2, . . .

equals 0, 0, . . ., in other words, all units have been tested negative, then it is quite plausible
to conclude that π = 0, for example, the cohort is disease free. Because it is impossible to
wait for all times t to establish freedom of disease, we are looking for some stopping time
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s < ∞ such that P (0 < T ≤ s|π > 0) is close to 1. More precisely, given any β > 0 we
are interested in the smallest stopping time s such that

P (0 < T ≤ s|π > 0) =
s∑

t=1

(1 − π)(t−1)π ≥ 1 − β, (1.5)

where β will be small. However, if the Type II error (concluding that π = 0 when in fact
π > 0) has serious consequences, a choice for β of 0.01 or 0.001 may be more appropriate.
If the trial tests positive before reaching s, the population is not disease-free. From the
viewpoint of statistical inference, the diagnostic testing can be discontinued, because there
is no more interest in the hypothesis testing. If the trial reaches the stopping time s without
testing positive, it is taken as evidence for freedom of disease and the trial is terminated. It
should be pointed out that the power of this procedure is at least (1 − β). We will consider
the power

ϕ(π, s) = P (0 < T ≤ s|π > 0) (1.6)

as a function of the prevalence π and the stopping time s and ϕ(π, s) will be the major
object of interest here.

The article is organized as follows. In Section 2, we will address the question: Which
stopping time is required to reach a predetermined power? Alternatively, given a certain
waiting time with associated negative test series, what is the achieved power? To answer
these questions, assumptions on the prevalence are necessary. In this context it is important
to see that the power function is monotone increasing, both as a function of π and s.
Consequently, all that is needed is to specify a threshold value (sometimes called the design
prevalence) such that prevalences below this value are practically of no interest. In Section
3, nonperfect testing is incorporated. Not all diseased units might be detectable as when
not all cattle are BSE-detectable, in particular in the young ages. Therefore, an age-group
specific sensitivity lower than one is incorporated. In Section 4, since prevalence is not
homogeneous within the population, heterogeneity is included in the modeling. In Section
5, these results are applied to data from Denmark.

2. SOME RESULTS FOR THE POWER FUNCTION

According to (1.5) we have that

ϕ(π, s) = P (0 < T ≤ s|π > 0) =
s∑

t=1

(1 − π)(t−1)π, (2.1)

which can be simplified to

ϕ(π, s) =
s∑

t=1

(1 − π)(t−1)π = 1 −
∞∑

t=s

(1 − π)tπ

= 1 − (1 − π)s
∞∑

t=1

(1 − π)(t−1)π = 1 − (1 − π)s. (2.2)
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Figure 1. Monotonicity of ϕ(s|π) for three different values of the design prevalence, namely 1 in s = 1,000,
10,000, 100,000.

where we used that
∑∞

t=1(1 − π)(t−1)π = 1.

Monotonicity of the power function. As direct consequence of the above analytical
result ϕ(π, s) = 1 − (1 − π)s we can establish strict monotonicity of the power function.

Result 1. The power function is strictly monotone increasing as a function of s as
well as a function of π.

Figure 1 illustrates the monotonicity of ϕ(s|π). The power that is reached at stopping
time s = 20,000 for design prevalences 1/100,000, 1/10,000, and 1/1,000 is 0.18, 0.86,
and 1.0, respectively. In addition, note that if s1 < s2 and π1 < π2, then also ϕ(π1, s1) <

ϕ(π2, s1) because of the monotonicity in π, and also ϕ(π2, s1) < ϕ(π2, s2) because of the
monotonicity in s. Consequently, ϕ(π1, s1) < ϕ(π2, s2) and ϕ(π, s) is strictly monotone
as a simultaneous function of s and π.

Waiting time conditional upon design prevalence and desirable power. Because the
power function is monotone increasing in the prevalence, any prevalence larger than the
chosen prevalence value will reach a power at least as large as the power for the chosen
prevalence. This enables the practitioner to overcome the problem of the unknown preva-
lence parameter. In the following we will think of π as the design prevalence (see, e.g.,
Wilesmith and Morris 2004). Suppose that the trial should reach a power of at least 1 − β.
Equating ϕ(π, s) to (1 − β) provides

ϕ(π, s) = 1 − (1 − π)s = 1 − β (2.3)
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Table 1. Achieved Power ϕ(π, s) Given Waiting Time s = 286, 742 (in units cattle).

design prevalence:
1 in Power

10,000 1.00000
20,000 1.00000
30,000 0.99993
40,000 0.99923
50,000 0.99677
60,000 0.99160
70,000 0.98337
80,000 0.97224
90,000 0.95866

100,000 0.94316

and the stopping time

s =
[

log(β)
log(1 − π)

]

having power of at least (1 − β). Note that [x] is the smallest integer larger than x. For
example, for β = 0.001 and π = 1/10, 000 we have s = 6,905. Clearly, the higher the
design prevalence, the higher the power. The lower the design prevalence, the longer we
have to wait (the more cattle have to be tested) before the trial can be stopped.

Power conditional upon design prevalence and waiting time. On the other hand, we
might be interested in determining the power the trial has reached at time s. We can simply
calculate ϕ(π, s) = 1 − (1 − π)s for various scenarios, as shown in Table 1.

In Table 1 we have computed the power for some scenarios. The waiting time has been
chosen according to the number of tested animals in the BSE/TSE database in Denmark.
For the application to BSE, the design prevalence follows a recommendation given by the
European Commission:

“. . . since surveillance to date shows BSE prevalence in apparently healthy adult cattle to range
from 10 to 100 per million adult bovines in most member States . . .” (EC 2001)

a view adopted here. The prevalence values in the opinion of the European Commission
(EC 2001) is reflected in Table 1 (first column).

It is remarkable to see that, even if the design prevalence goes down to 1 in 100,000,
the number of units to be tested is sufficient to reach a power of at least 94%, given the
current practice of testing for BSE in the European Union.

Design prevalence as a function of the power. In this section we turn the relationship
of design prevalence, stopping time s, and power ϕ(π, s) = 1 − (1 − π)s around once
more. Given a desirable power (1−β) and a size s of the trial, what is the associated design
prevalence? That is we have to solve the equation

ϕ(π|s) = ϕ(π, s) = 1 − (1 − π)s = (1 − β)
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Figure 2. Design prevalence π = ϕ−1(1 − β|s) as a function of the desired power 1 −β for s = 50,000 and s
= 100,000.

for π given of a particular value of desirable power, conditional upon a specific value of s.
The solution is simply

ϕ−1((1 − β)|s) = 1 − s
√

β. (2.4)

As can be seen in Figure 2, the design prevalence (minimum prevalence that can be detected
to reach the desired power) is a monotone increasing function of the power (the higher the
desired power, the higher the detectable prevalence, or to put it better: the smaller the desired
power, the smaller the detectable prevalence). As can be seen directly from Figure 2, for
a desired power of 99% the associated smallest detectable prevalence is 4 in 100,000 for
s=100,000 and 9 in 100,000 for s = 50, 000.

Design prevalence as a function of the stopping time. Finally, suppose that the trial
has reached a stopping time s. What is the associated smallest detectable prevalence so that
the trial with the given stopping time s achieves a fixed power 1 − β? In other words, we
are looking for a solution π = π(s) such that

ϕ(π, s) = 1 − [1 − π(s)]s = 1 − β,

where β is a fixed power. The solution is simply

π(s) = 1 − s
√

β

identical to (2.4), though the solution is now a function of s. For example, after testing
s = 30,000, a design prevalence of 16 or 24 out of 100,000 can be reached with power of
1 − β = 0.99 and 0.999, respectively.
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3. EXTENDING THE METHODOLOGY TO NONPERFECT
DIAGNOSTIC TESTING

Up to now it is assumed that diagnosis of disease can be achieved without error. It is
more realistic to invoke the general diagnostic setting. The probability for the diagnostic
test to deliver a positive result will be denoted by π+ and can be further written as

π+ = P (T = 1) = P (T = 1|D = 1)P (D = 1) + P (T = 1|D = 0)P (D = 0)

= απ + (1 − δ)(1 − π), (3.1)

where T = 1 or D = 1 denote that the test is positive or disease is present, respectively.
P (T = 1|D = 1) = α is the test sensitivity and P (T = 0|D = 0) = δ is the test specificity.
For the situation of BSE testing, it can be validly assumed that a BSE-free animal is detected
correctly, in other words, we assume that δ = 1 leading to

π+ = απ ≤ π. (3.2)

We incorporate this modification into the computation of the power function, which leads
to

P (0 < T ≤ s|α, π > 0) =
s∑

t=1

(1 − π+)(t−1)π+, (3.3)

where 0 < T ≤ s is again the event that the waiting time for the first animal testing positive
is not above s. Now, as before

s∑
t=1

(1 − π+)(t−1)π+ = 1 − (1 − π+)s = 1 − [1 − απ − (1 − δ)(1 − π)]s,

where we have used the fact that π+ = απ+(1−δ)(1−π) to express the power as function
of the prevalence parameter, the sensitivity and the specificity. In the case of BSE, the power
computation simplifies to 1 − (1 − απ)s.

Capturing the age effect on sensitivity in the case of BSE. Unfortunately, the sensitivity
is not identically the same for all cattle as it is dependent on the age as a proxy for the stage
of infection. In fact, if the animal is younger than 24 months the test is very unlikely to
detect an infection. Therefore, cattle younger than 24 months cannot contribute to the power
and are excluded from the analysis. (Alternatively, one might include animals younger than
24 months, but choose a zero-sensitivity for this age-group, leading to the same result
as excluding them in the beginning. However, we did not have this option since animals
younger than 24 months did not enter into the register). For ages 2 years and above, we have
to incorporate the age-dependence of the sensitivity into the modeling. Let P (Ta > sa >

0|αa, π > 0) = (1 − αaπ)sa denote the likelihood for the event that the waiting time Ta

for the first animal from the subpopulation of cattle aged a years testing positive is above
sa, where a goes from age class 1 to A. This means, (1 − αaπ)sa denotes the probability
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for a Type II error of incorrectly assigning the cohort of cattle as negative based on all
infected cattle with age a having a negative test outcome. Given a vector of positive, integer
stopping times s = (s1, s2, . . . , sA)′, we are then interested in the event that there exists
an age-group a such that the waiting time Ta ≤ sa, since in this case the trial would be
stopped. Note that inference is made on the basis of all cattle of the birth cohort, regardless
of the age at testing. Now, given the prevalence π and a vector of age-specific sensitivities
α = (α1, . . . , αA)′ we have that the power is provided as

ϕ(π, α,  s) = P (there exists at least one age group a where the waiting time

Ta ≤ sa|α, π > 0)

= 1 − P (Ta > sa for all age groups a|α, π > 0)

= 1 − P
(
(T1, T2, . . . , TA)′ > (s1, s2, . . . , sA)′|α, π > 0

)

= 1 −
A∏

a=1

P (Ta > sa|αa, π > 0) = 1 −
A∏

a=1

(1 − αaπ)sa . (3.4)

Note that this is in fact a probability, since (1 −αaπ) ≤ 1 for all ages a and, consequently,
(1 − αaπ)sa ≤ 1 for all ages a, and with this the product

∏A
a=1(1 − αaπ)sa ≤ 1, and

it follows that (3.4) is a probability. In addition, the previous result (2.1) is contained as a
special case if all age-specific sensitivities coincide.

Before we go ahead to apply these results we consider the effects of incorporating
sensitivity into the power computation. Naturally, we expect a loss of power due to the loss in
ability to detect disease. Indeed, (1−αaπ) ≥ (1−π) for all ages, so that

∏A
a=1(1−αaπ)sa ≥

(1 − π)
∑

a
sa and the following result is achieved.

Result 2. Using the notation of this section and s =
∑

a sa we have

1 −
A∏

a=1

(1 − αaπ)sa ≤ 1 − (1 − π)s. (3.5)

Turning this result around, if sensitivity decreases, more cattle need to be tested to reach
the same power.

Using specific sensitivity values in the case of BSE. As mentioned previously, in
the situation of BSE, infected cattle can be detected only after considerable time. The
sensitivity of the test will depend on the stage of infection. The time from infection to
onset of disease is called incubation time and can be incorporated into the modeling of
age-specific sensitivities. In a key article, Ferguson, Donnelly, Woolhouse, and Anderson
(1997) investigated several incubation time models including the three-parameter density
given in (3.6)

f(a) =
1
c

[
γ2 exp(−a/γ1)

γ3

]γ2
2 /γ3

exp

[
−γ2 exp(−a/γ1)

γ3

]
, (3.6)

where c is the normalizing constant to achieve
∫ ∞

0 f(a)da = 1. Ferguson et al. (1997)
provided empirical evidence that the density (3.6) gives a well-fitting distribution and also
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Table 2. Age Distribution of Danish Age Cohort and Associated, Potential Sensitivities.1

Age group a 2 Frequency Sensitivity αa Sensitivity α′
a

2 113,197 0.0001 0.0001
3 119,439 0.0114 0.0113
4 50,888 0.1296 0.1196
5 3,218 0.3938 0.3035

1 Frequency data from the Danish TSE register
2 Age group a refers to years in the interval [a, a + 1).

derived maximum likelihood estimates using data from the UK for the three parameters
as γ1 = 1.146, γ2 = 0.0241, and γ3 = 5.71 × 10−4, inducing a normalizing constant
of c = 1.134964. We assume here that, given an infection, the distribution of the time to
the point where the disease becomes detectable is similar to the distribution of the time to
disease onset. One might compute the probabilities for disease detectability given infection
for discrete ages a as

∫ a+1
a

f(a′)da′, using the density (3.6). Next, we have to incorporate
the distributional character for the time at infection appropriately. Ferguson et al. (1997)
presented a model for the time at infection (AI) based on UK data according to which 95%
of the BSE cases would have been infected before the age of 1.6. The model has the form

g(a) = γ2(γ1a)γ2−1 exp[−(γ1a)γ2 ]
(
1 − exp[−(γ3a)γ2+γ4 ]

)
+ (γ2 + γ4)(γ3a)γ2+γ4−1 exp

[−(γ3a)γ2+γ4
] (

1 − exp[−(γ1a)γ2 ]
)
, (3.7)

with parameter estimates γ1 = 1.29, γ2 = 0.672, γ3 = 0.771, γ4 = 4.64. Ferguson
et al. (1997) continue to combine the distribution of age-at-infection and incubation time
distribution in a basic convolution to yield the distribution of an animal becoming a case. We
will denote by αa =

∑a
a′=2 λa′ the likelihood that an animal becomes a case in the interval

from a to a + 1 or before. It might be argued that this represents a good approximation of
the sensitivity and is listed as column three of Table 2 (for the available age groups in the
Danish BSE-surveillance data).

Alternatively, it might be argued that, since the animal has lived disease-free up to age
a, the likelihood of disease being detectable should be computed conditional upon having
survived disease-free at age a as

α′
a =

λa∑A
a"=a λa"

,

as listed in numerical values in column four of Table 2. The values of α′
a are lower than

those of αa. It can be shown that this is a general property.

Result 3.

α′
a ≤ αa for all age groups a = 1, . . . , A.

This result is easily proved using the lemma provided in the Appendix.
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4. EXTENDING THE METHODOLOGY TO HETEROGENEITY
IN THE DESIGN PREVALENCE

In the previous sections it was assumed that the prevalence is homogeneous in the
population of interest. However, it appears to be more realistic to assume that the prevalence
varies in the population of interest. In particular, for BSE, prevalence might differ from
surveillance stream to surveillance stream.

It is assumed that all covariates are discrete (typically of few categories), so that it
is possible to summarize them in covariate combinations or risk scores with values r,
from 1 to R. Typically, in the case of BSE, we have in mind as risk scores the groups of
healthy slaughtered, emergency slaughtered, fallen stock, and clinical suspects. For each
of the subpopulations r, there is an associated prevalence πr. For given stratum specific
sensitivities αa and specificities δa, let

P (Tar > sar > 0|αa, δa, πr > 0) = {δa + [(1 − δa) − αa]πr}sar

denote the likelihood for the event that the waiting time Tar for the first unit from the
subpopulation of units in stratum a and risk score r testing positive is above sar, where a

goes from stratum 1 to A and r from risk score 1 to R. In the case of BSE, the strata will
be the different age classes of the cattle. Given a matrix of positive, integer stopping times

 s =




s11 s12 . . . s1R

s21 s22 . . . s2R

. . . . . . . . .

sA1 sA2 . . . sAR


 ,

and a similarly defined matrix of waiting times T, then we are interested in the event that
there exists a stratum a and a risk score r such that the waiting time Tar ≤ sar, since in
this case the trial would be stopped. Now, given a vector of risk score specific prevalences
π = (π1, ..., πR)′ and vectors of stratum-specific sensitivities α = (α1, . . . , αA)′ and
specificities δ = (δ1, . . . , δA)′ we have that the power is provided as

ϕ(π, α, δ, s) =  P ( there exists at least one stratum

a and a risk score r where Tar ≤ sar|α, δ, π > 0)

= 1 − P (Tar > sar for all strata a and all risk

score groups r|α, δ, π > 0)

= 1 − P
(
T > s|α, δ, π > 0

)

= 1 −
R∏

r=1

A∏
a=1

P (Tar > sar|αa, δ, πr > 0)

= 1 −
R∏

r=1

A∏
a=1

{δa + [(1 − δa) − αa]πr}sar . (4.1)
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Table 3. Frequency of Cattle in Healthy Slaughtered and Risk Surveillance Streams by Age Group for
the Danish Birth Cohort

Age group1 2 3 4 5 All

Healthy slaughtered 90,511 107,692 46,161 3,029 247,393
Risk group 22,686 11,747 4,727 189 39,349
All 113,197 119,439 50,888 3,218 286,742

1 Age group a refers to years in the interval [a, a + 1).

5. A CASE STUDY: THE DANISH BSE-SURVEILLANCE DATA

In the following we will exemplify the developed model for the surveillance data on
BSE in Denmark and will use data coming from the Danish TSE-database. The database is
a public register for BSE-testing, controlled by the Danish Veterinary and Food Administra-
tion. It is pointed out that currently in Denmark the complete cattle population is included
in this registry. There is no random sampling or any other sample selection procedure in
place.

The TSE database is a part of GLR/CHR register and it contains information of all
animals (including small ruminants) tested for BSE since January 1, 2001. The main purpose
of the TSE database is to provide the information required by the EU concerning the number
of animals tested and the number of BSE and TSE cases detected. The database also serves
as a control system to check whether cattle reported dead in the CHR-register have had a
BSE test performed.

For the purpose of this study, the following variables have been used: Animal-ID:
The official Danish cattle identification number; Age: Age of the animal at the time of death
in months; Birthdate: Date of birth of the animal; Deathdate: Date of death of the
animal. Identical with the date of sampling; Submission cause: provides the reason
why the sample was submitted and has the levels: 1 = clinical suspect, 2 = emergency
slaughter, 3 = normal slaughter, 4 = dead and sent for render, 5 = AM-cattle (suspect cases
found in the Ante Mortem control by the vets at the abattoir), 6 = animal from positive
herd, 7 = animal from herd under public supervision, 8 = tested in connection with export;
Result: 1 = positive, 2 = negative. The variable Result was used to identify positive
cases in the database. There were 13 cases found and the last (youngest) case was born in
March 1999.

It is evident from the database that the majority of birth dates of the Danish BSE cases
lie between 1996 and 1997, though isolated cases were born in 1998 up to early 1999.
Therefore, it appears best to consider as population of interest the birth cohort all cattle in
the data base with birth date after March 1999.

Consider the power according to (2.2) that has been achieved with the Danish surveil-
lance data, where s = 286,742 is the total of tested aninals in the register. We can simply
calculate ϕ(π, s) = 1 − (1 − π)s for various scenarios, as shown in Table 1.

The power using the specific age distributions of the Danish birth cohort. Due to the
young cohort and the considerably reduced sensitivity in young ages, the previously reported
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Table 4. Achieved Power ϕ(π, α,  s) for the Danish Cohort Adjusted for Sensitivity1 and for Hetero-
geneity of the Design Prevalence.

Adjusted for heterogeneity Not adjusted for heterogeneity
Design

prevalence 2 sensitivity sensitivity sensitivity sensitivity
1 in αa α′

a αa α′
a

10,000 0.8746 0.8509 0.6029 0.5693
20,000 0.6459 0.6139 0.3698 0.3437
30,000 0.4994 0.4698 0.2650 0.2448
40,000 0.4049 0.3786 0.2062 0.1899
50,000 0.3398 0.3166 0.1687 0.1550
60,000 0.2925 0.2718 0.1427 0.1310
70,000 0.2566 0.2381 0.1236 0.1134
80,000 0.2286 0.2117 0.1090 0.0999
90,000 0.2060 0.1906 0.0975 0.0894

100,000 0.1875 0.1733 0.0882 0.0808

1 Age-specific sensitivity estimates αa, α′
a from Table 2.

2 The specified design prevalence applies to all surveillance streams when heterogeneity is ignored
and to the healthy slaughtered when heterogeneity is accounted for.

rather high power experiences some loss. This will be demonstrated as follows. Let us first
consider the age distribution of the Danish cohort as presented in Table 2. Note that the age
group of five years is rather sparse, due to the recent nature of the birth cohort. There are
no cattle yet above six years. However, the analysis will gain power when later born years
are included. As Table 2 shows, the Danish cohort currently experiences the problem that
more than 80% of all cattle are in the second and third age group where sensitivity is still
low. Consequently, the power, computed as 1 − ∏A

a=1(1 − αaπ)sa according to (3.4), is
dropping down, as Table 4 (columns 4 and 5) shows. In particular, if the design prevalence
drops below 1 in 10,000 the power becomes rather small.

Incorporating heterogeneity into the modeling. In the situation of BSE, we can validly
assume that the specificity is 100%, for example, δ = 1. Then, (4.1) simplifies to

ϕ(π, α, δ, s) = 1 −
R∏

r=1

A∏
a=1

{1 − αaπr}sar . (5.1)

If we consider the data of the Danish birth cohort, one of the most important covariates
is Reason for Submission. Almost 87% is recorded as slaughtered when healthy,
whereas about 13% is made up by the category dead and sent for render. We
have therefore grouped everything other than slaughtered healthy into the category risk
group. Table 3 shows the distribution of the surveillance stream by age group.

For each surveillance stream a value for the design prevalence is needed. The risk
ratios reported for Denmark are based on a total of 3 and 2 cases for the years 2002 and
2003, respectively, and are therefore associated with a large statistical uncertainty. Using
the data from all EU15 countries (EC 2003, 2004), the combined crude risk ratio and the
Mantel-Haenszel risk ratio were established as RRcrude = 29.3 and RRMH = 18.2 (95%
confidence interval 15.3-21.8) for 2002 and RRcrude = 27.3 and RRMH = 15.3 (95%
confidence interval 13.0-18.0) for 2003 (Stata Version 8.2; StataCorp, 2003). Based on
these empirical results, a risk ratio of 15 was chosen. For the power analysis, the differential
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design prevalences were specified such that the minimum value applies to the low-risk
group of cattle (HS) and the inflated design prevalence (by factor 15) applies to the high-
risk group of cattle. We now apply the result (5.1) to the data of the Danish birth cohort
as provided in Table 3 and using a ratio 15 of the design prevalences in risk animals
versus healthy slaughtered cattle. The results are given in Table 4 (columns 2 and 3). For
comparison we have also included the results, where the heterogeneity in the surveillance
stream is not incorporated into the modeling (columns 4 and 5). Clearly, the power improves
substantially which seems very natural and underlines the importance of sampling from the
risk components of the surveillance stream.

6. DISCUSSION

Statistical model. The important underlying assumption, leading to the geometric
waiting time distribution, is the independence of diagnostic testing. This assumption means
that if any two units are tested, the result of one test has no implication on the other. This
condition seems reasonable for BSE, because unlike in other diagnostic settings no cluster-
ing of infection within a herd occurs for BSE. A potential modification of the distributional
model to adjust for dependency would be to allow for a random effects distribution which
mixes the geometric distribution over the geometric parameter. This could be developed in
a very similar way to other areas where the geometric waiting time distribution has been
used, as in fertility studies (Ridout and Morgan 1991; Böhning 2000, p. 177)

Another assumption involved in the geometric distribution is that we are sampling from
an infinite population (in other words, the probability for a positive test does not change if
a number of units are already tested negative). Though the model could be adjusted for a
finite population characteristic, the assumption of an infinite population could be justified
by arguing that this is a conservative approach (power will be underestimated rather than
overestimated) and that the future population of units (cattle) is unlimited. On the other
hand, the adjustment might be necessary for countries with (cattle) populations too small
to reach the required power for the specified reference birth cohort.

The model could be also adapted for a null-hypothesis larger than 0. For example,
H0 : 0 ≤ π ≤ πDP . The major difference is that now a Type I error is possible. From
the fixed level for the probability of a Type I error, one can determine a number k, say, of
positively tested units, still in agreement withH0. Then, the sampling space would be the first
unit testing positive after having k units positive already. This leads to the negative binomial
distribution. The power-analysis would be the same, though technically more complex. For
determining the power one could use the right end point of H0: πDP . However, it should
be clearly seen that this generalization leads away from the idea of a disease-free cohort.
Therefore, this approach has not been deleveloped any further.

Choice of the statistical power. The question How much power is enough power? has
no definite answer and the choices will always be also a matter of external, nonstatistical
judgement. In experimental studies or clinical trials, typical values for the Type II error (β)
are 0.1 or 0.2. This may have important economical (the development of the drug is discon-
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tinued) or even public health consequences (e.g., if an unwanted side effect is the subject
of the study). The issue of selecting appropriate power values in medical research was re-
viewed by Muller and Benignus (1992). The authors emphasize the importance of analyzing
the power as function of characteristics of the study and conclude that, when ethical and
opportunity costs do not preclude it, power should be at least 0.84, and preferably greater
than 0.90. The analogy with but also differences between the described statistical test for
BSE freedom and experimental studies should be noted. In the latter, the investigator wishes
to establish a sample size such that the expected treatment effect can be demonstrated with
probability of 1 − β. Whereas the sample size in experimental studies is fixed beforehand,
the (BSE) surveillance data can be regarded as a continuously accumulating sample and the
choice of a sample size becomes very much a choice of a waiting time to reach sufficient
power of the study. In turn, a specified value for the power would determine the waiting time
for fixed design prevalence (or vice versa). Section 1 presents a framework for statistical
hypothesis testing. Important quantities in the hypothesis testing framework are the sample
size (in our case s), the design prevalence (π), and the achieved power (1 − β), where
β denotes the Type II statistical error. In the context of BSE surveillance, β denotes the
probability for classifying the age cohort as free of BSE, when in fact it is infected with an
unknown prevalence with the lower bound given by π. The achievable power is a function
of the principal size of the birth cohort as well as a function of the design prevalence. One
could ask the question: Which design prevalence is reasonable in the light of the size of
the birth cohort? Right now, it appears that in Denmark about 120,000 cattle older than
24 months are tested per birth year. If one assumes as smallest prevalence 1/50,000 we
would find, according to Table 4, a power of 17% or 15% (depending which sensitivity
model is used). This very low power indicates that surveillance needs to be continued for
a considerable amount of time. The OIE terrestrial code specifies a value of 95% for the
probability (confidence), to detect foot-and-mouth disease (FMD) or FMD virus infection
if present at a defined level of design prevalence (OIE 2004a). This probability has the same
interpretation as power in the statistical sense. The same level of power is specified in the
OIE Code for the demonstration of the absence of infection with highly pathogenic avian
influenza (HPAI) virus (OIE 2004b,c). Therefore, a level of 95% seems appropriate for the
application to BSE surveillance.

Finally, a consensus value for the required power for BSE surveillance must be found
by national and international bodies concerned with risk management. It should be noted
that the removal of risk materials from the human and animal food chains is the primary
risk mitigation measure, whereas the testing for BSE is one of the corner stones of the
geographical risk assessment.

APPENDIX

Lemma 1: Letλi be positive real numbers for i = 1, . . . , I such thatλ1+λ2+· · ·+λI =
1. Then

(λ1 + · · · + λi)(λi + · · · + λI) ≥ λi
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for all i with 1 ≤ i ≤ I .
Proof: Let us consider

(λ1 + · · · + λi)(λi + · · · + λI)

= (λ1 + · · · + λi−1)(λi + · · · + λI) + λi(λi + · · · + λI)

= (λ1 + · · · + λi−1)λi + λi(λi + · · · + λI)

+(λ1 + · · · + λi−1)(λi+1 + · · · + λI)

= λi + (λ1 + · · · + λi−1)(λi+1 + · · · + λI),

and the result follows, since (λ1 + · · · + λi−1)(λi+1 + · · · + λI) ≥ 0. ✷
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