Generalized Mixed Linear Models Practical 2

Dankmar Böhning

December 3, 2014

Prevalence of upper respiratory tract infection

The data below are taken from a survey on the prevalence of upper respiratory tract infection. The variable to be analysed is the number of swabs positive for pneumococcus during a certain period. Observations were made on 4 members in 18 families, i.e. on two adults and 2 children per family. Six families were a random selection of families living in "overcrowded" conditions, six were in "crowded" conditions and six were in "uncrowded" conditions.

			Family status			
			Adult		Child	
Crowding category	Family serial number	1	2	1	2	
Overcrowded	1	5	7	25	19	
	2	11	8	33	35	
	3	3	12	6	21	
	4	3	19	17	17	
	5	10	9	11	17	
	6	9	0	9	5	
Crowded	7	11	7	15	13	
	8	10	5	13	17	
	9	5	4	18	10	
	10	1	9	16	8	
	11	5	5	16	20	
	12	7	3	17	18	
Uncrowded	13	6	3	17	18	
	14	9	6	14	10	
	15	2	2	15	8	
	16	0	2	16	21	
	17	3	2	3	14	
	18	6	2	7	20	

Questions of interest arehow the prevalence of upper respiratory tract infection is related to overcrowding conditions and to family status. What are random and fixed effects here?

Solution

Family is considered as random effect whereas Family Status and Degree of Crowdedness are considered as fixed effects.

Since the outcome variable is a count (Number of Positive Swabs) we turn to **Mixed Poisson Regression**.

We start by considering Family and Degree of Crowdedness:

Mixed-effects Poisson regression				Number of	obs =	72
Group variable	: family			Number of	groups =	18
				Obs per g	-	4 4.0 4
Integration po	ints = 1			Wald chi2	(2) =	6.16
Log likelihood	= -303.14966			Prob > ch	.i2 =	0.0460
	IRR					
crowding						
1	1.475074	.2310807	2.48	0.013	1.085094	2.005213
2	1.237837	.1961639	1.35	0.178	.9073418	1.688714
 _cons	8.42314	.9625242	18.65	0.000	6.732959	10.53761
	ts Parameters					
family: Identi	ty) .22027				
LR test vs. Po	isson regress	ion: chibar	2(01) =	18.96 P	rob>=chibar	2 = 0.0000

Note: log-likelihood calculations are based on the Laplacian approximation.

We see that the random effect Family is needed and that the Overcrowded category has a significantly increased risk ratio (reference is Undercrowded).

We now include Family Status (child/adult):

Mixed-effects Poisson regression	Number	of	obs	=	72
Group variable: family	Number	of	groups	=	18

				Obs per g	-	4 4.0 4
Integration point					(3) =	
Log likelihood =	-221.58741			Prob > ch:		0.0000
swaps_pos +						Interval]
crowding						
1	1.475074	.2310808	2.48	0.013	1.085094	2.005214
2	1.237837	.1961639	1.35	0.178	.9073418	1.688714
I						
		.2140561				
_cons	4.616318	.5929517	11.91	0.000	3.588901	5.93786
Random-effects						
family: Identity						
	sd(_cons) .22027	06 .05	50381	.1349803	.3594537
LR test vs. Poisson regression: chibar2(01) = 18.96 Prob>=chibar2 = 0.0000						

Note: log-likelihood calculations are based on the Laplacian approximation.

The Family random effect is still needed and also the Overcrowded category remains still significant. In addition, children show a significantly increased risk for upper respiratory infections if comapred to adults.

Post-operative sore throat study

The aim of a study carried out at the Royal Berkshire Hospital, Reading, in 2004 was to investigate the incidence of sore throat in patients who had undergone orthopaedic, gynaecological, genitourinary or general surgery. Of particular interest was whether the occurrence of a sore throat was affected by the method used to deliver anaesthetic gas, and patients were allocated to one of three types of airway device, namely the laryngeal mask airway (LMA), the endo-tracheal tube (ETT), and the traditional face mask (FM). The decision on which of the three types of device to use for a particular patient was made by the consultant anaesthetist, and there were 12 anaesthetists involved.

The response variable was binary and concerned whether or not a patient experienced a sore throat in the 24 hour period following the operation. The values of certain explanatory variables were also recorded, including the age and sex of the patient, the duration of surgery, and, for LMA and ETT, whether or not the throat was lubricated before the airway was inserted. The following

eight variables are contained in the datafile sorethroat.dta.

PATIENT	Patient number (1 - 947)
AGE	Age of patient in years
SEX	Sex of patient $(0 = \text{male}, 1 = \text{female})$
DURATION	Duration of surgery in minutes
AIRWAY	Type of airway used $(0 = LMA, 2 = ETT \text{ or } 1 = FM)$
LUBRIC	Lubrication used in inserting mask $(0 = no, 1 = yes, . = n/a)$
CONSULT	Consultant anaesthetist $(1 - 12)$
SORE	Occurrence of sore throat $(0 = no, 1 = yes)$

How do the three types of airway compare in terms of the incidence of postoperative sore throat?

Is there any evidence that the probability that a consultant selects the face mask (FM) is dependent upon the age and sex of the patient or the duration of surgery?

Solution

Evidently, we need to evaluate the risks of FM(1), LMA(0) and ETT(2). We choose ETT as reference (arbitrary). We are now able to give a more satisfactory answer as we can include Consultant as a random effect. We get the following. Clearly, FM has the highest preventive effect.

Mixed-effects Group variable	0 0	ression			f obs = f groups =	
				Obs per	group: min = avg = max =	78.9
Integration po	oints = 1			Wald chi	2(2) =	13.74
Log likelihood	1 = -392.27112	2		Prob > c	hi2 =	0.0010
sore	Odds Ratio	Std. Err.				Interval]
airway						
0	.594771	.1759699	-1.76	0.079	.3330519	1.062154
1	.0599768	.0459854	-3.67	0.000	.013346	.2695355

Random-effects Parameters			
consultant: Identity sd(_cons)			0.
LR test vs. logistic regression:	chibar2(01)) = 0.00	Prob>=chibar2 = 1.0000

Note: log-likelihood calculations are based on the Laplacian approximation.

The consultant effect is not significant whereas FM has a high preventive effect where ETT is borderline.

But how is this influenced by other covariate such as gender and age?

					f obs f groups	
				Obs per	avg	n = 5 g = 78.9 x = 133
Integration po Log likelihood		L			2(4) hi2	= 32.53 = 0.0000
	Odds Ratio					
airway 0 1 age sex		.1650394 .0396385 .0061108 .5415278	-2.00 -3.85 0.16 4.37	0.045 0.000 0.871 0.000	.3022403 .0113676 .9890888 1.671424	1 .9876453 5 .2328946 5 1.013043 4 3.856546
	cts Parameters	-				
LR test vs. logistic regression: chibar2(01) = 0.00 Prob>=chibar2 = 1.0000 Note: log-likelihood calculations are based on the Laplacian approximation.						

We see that gender is important, but not age. Further analysis shows that also duration is not needed. The final analysis below shows that FM has a high preventive effect whereas ETT is borderline. Women have a significantly increased risk for a sore throat. Further analysis could look for an airway-gender interaction.

Logistic regre Log likelihood		6		LR chi	2(3) chi2	= 947 = 47.50 = 0.0000 = 0.0586
	Odds Ratio	Std. Err.			E//	f. Interval]
airway						
0	.5455191	.1647065	-2.01	0.045	.301863	.985848
1	.0514472	.0396343	-3.85	0.000	.011366	.2328718
sex	2.535186	.5402145	4.37	0.000	1.669668	3.849369
_cons	.1878986	.0595563	-5.27	0.000	.1009548	.3497198

Finally, we look at the question of FM selection and how this is affected by age and gender. We include consultant as a random effect.

Mixed-effects logistic regression Group variable: consultant	Number of obs = 947 Number of groups = 12
	Obs per group: min = 5 avg = 78.9 max = 133
Integration points = 1 Log likelihood = -259.25083	Wald chi2(2) = 8.04 Prob > chi2 = 0.0179
FM Odds Ratio Std. Err. z	P> z [95% Conf. Interval]
sex .7744962 .2041577 -0.97 age 1.020736 .0082147 2.55 _cons .0110163 .0095899 -5.18	0.332 .462 1.298364 0.011 1.004762 1.036965 0.000 .0020001 .0606769
Random-effects Parameters Estimate Std	. Err. [95% Conf. Interval]
consultant: Identity	.86995 1.063297 3.780065
LR test vs. logistic regression: chibar2(01) =	133.69 Prob>=chibar2 = 0.0000

Note: log-likelihood calculations are based on the Laplacian approximation.

In contrast to our previous analysis in Practical 1, there is a significant consultant. Also, the age of the patient influences the decision for using a FM but gender does not.