Lecture 5: Random coefficient models for non-normal data

Antonello Maruotti

Lecturer in Medical Statistics, S3RI and School of Mathematics University of Southampton

Southampton, 11 December 2014

-Outline

Summary

Random coefficient Poisson model

Random coefficient Logistic model

Mixed models

Mixed models state that observed data consist of two parts

- fixed effects
- random effects
- Fixed effects define the expected values of the observations
- Random effects result from variation between subjects and from variation within subjects.

<ロ > < 回 > < 臣 > < 臣 > < 臣 > 臣 3/22

Mixed models

- Measures on the same subject at different times almost always are correlated, with measures taken close together in time being more highly correlated than measures take far apart in time
- Observations on different subjects are often assume independent
- Mixed models are used with repeated measures data to accommodate the fixed effects of covariates and the covariation between observations on the same subject at different times

<ロ > < 回 > < 直 > < 直 > < 直 > 三 2000 4/22

Mixed models: Random coefficients

- To model the mean structure in sufficient generality to ensure unbiasedness of the fixed effect estimates
- Random intercept models allow the overall level of response to vary over *clusters* after controlling for covariates
- We include random coefficient or random slope in addition to random intercepts, thus also allowing the effects of covariates to vary over *clusters*
- In longitudinal settings, we have occasions (level-1 units) measured for different subjects (clusters). These models are also referred to as growth-curve models.

Model specification

Let Y_{ik} denote the value of the response measured at time k on subject i

• $g[E(Y_{ik} \mid \alpha_{i0}, \alpha_{i1})] = (\gamma_0 + \alpha_{i0}) + (\gamma_1 + \alpha_{i1})x_{ik}$

Covariance structure

- We assume that, given the covariates x_{ik}, the random intercept and random coefficient (collected in α) have a multivariate normal distribution with zero mean.
- Let us consider a model with a random intercept and a single random slope, the random terms have a bivariate normal distribution with zero mean and covariance matrix

$$\mathbf{\Sigma} = \begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{21} & \sigma_2^2 \end{bmatrix}, \quad \sigma_{12} = \sigma_{21}$$

The correlation between the random intercept and the random coefficient becomes

$$\rho_{12} = \frac{\sigma_{12}}{\sqrt{\sigma_1^2 \sigma_2^2}}$$

Covariance structure

independent: one variance parameter per random effect, all covariances zero; the default unless a factor variable is specified

exchangeable: equal variances for random effects, and one common pairwise covariance

identity: equal variances for random effects, all covariances zero; the default for factor variables

unstructured: all variances-covariances distinctly estimated

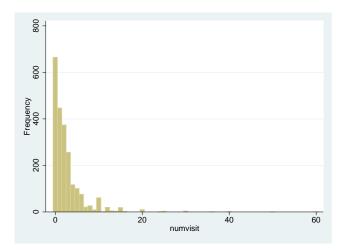
-Random coefficient Poisson model

Health-care reform data

- We analyze data from the German Socio-Economic Panel (see SOEP Group, 2001; Winklmann, 2004)
- A major health-care reform took place in 1997.
- We will consider a subset of data, comprised of women working full time in 1996 panel wave preceding the reform and the 1998 panel wave following the reform

4 日 > 4 日 > 4 目 > 4 目 > 目 2000 0/22

The dataset drvisits.dta is considered


-Random coefficient Poisson model

Data description

- id: person identifier
- numvisits: self-reported number of visits to a doctor during the 3 months before the interview
- reform: dummy variable for interview being during 1998
- age: age in years
- educ: education in years
- married: dummy variable for being married
- badh: dummy variable for self-reported current health
- loginc: logarithm of household income

-Random coefficient Poisson model

Data description

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><11/22

-Random coefficient Poisson model

Do data fit the Poisson assumptions?

		numvisit		
	Percentiles	Smallest		
1%	0	0		
5%	0	0		
10%	0	0	obs	2227
2 5%	0	0	Sum of Wgt.	2227
50%	2		Mean	2.58913
		Largest	Std. Dev.	4.016199
75%	3	40		
90%	6	40	Variance	16.1298
95%	10	50	Skewness	4.92272
99%	20	60	Kurtosis	45,41174

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

-Random coefficient Poisson model

xtmepoisson

Categorical outcomes Count outcomes	7		
Exact statistics	- F		4601 (fax)
Endogenous covariates	- F -	a for windows (network) perpet	ual license:
Sample selection models	- F 🛛	mber: 81910522497 d to: Universita' Luigi Bocco	
Multilevel mixed-effects models	- * i	Universita' Luigi Bocco	oni
Generalized linear models	- F		
Nonparametric analysis	- E p	ption or -set memory-) 10.00 M	IB allocated to data
Time series	• • •	ption or -set maxvar-) 5000 ma	aximum variables
Multivariate time series	+		
Longitudinal/panel data	•	Setup and utilities	۶.
Survival analysis	÷	Linear models	•
Epidemiology and related	•	Multilevel mixed-effects models	>
Survey data analysis	+	Random coefficients regression by GLS	
Multivariate analysis	×	Dynamic panel data (DPD)	>
Power and sample size	•	Endogenous covariates	•
Resampling	•	Contemporaneous correlation Frontier models	•
Postestimation	+	Binary outcomes	
Other	+	Count outcomes	Poisson regression (FE, RE, PA)
Command		Censored outcomes	 Negative binomial regression (FE, RE, PA)

-Random coefficient Poisson model

xtmepoisson

numvisit	ariable:	Independent age educ m		oginc reform summer					
Bipposure / O Exposure	Offset	[) Offset varia	able:					
Random-eff Level equation	ects equations Level variable		Factor	Factor variable/ Independent variables		Covariance structure	Suppress	Retain	
V EQ 1	id	•		reform	•	unstructured	-		
EQ 2		-			-	independent			
EQ 3		-			-	independent	-		
EQ 4		w			-	independent			
EQ 5		-			-	independent	-		
EQ 6		w				independent			
EQ 7		-			-	independent			
EQ 8		w			-	independent			

-Random coefficient Poisson model

xtmepoisson

ixed-effects Group variable		Number o Number o	2227 1518					
				Obs per	group:	min =	1	
						avg =	1.5	
						max =	2	
ntegration po				wald chi2(7) =			241.11	
og likelihood	= -4513.7299		Prob > c	hi2	=	0.0000		
numvisit	IRR S	td. Err.	z	P> z	[95%	Conf.	Interval]	
age	1.003456 .	0028317	1.22	0.222	. 99	7921	1.009021	
educ	1.008894 .	0128121	0.70	0.486	. 984	1093	1.034321	
married		.064118	1.41	0.158	. 968		1.220097	
badh		2322949	14.44	0.000	2.60	5606	3. 519619	
loginc		0866512	1.67	0.096	. 977		1.318827	
reform		0483866	-1.92	0.055	. 8122	2568	1.002278	
summer	.9140245 .	0741941	-1.11	0.268	.779	5846	1.071649	
		T						
Random-effec	ts Parameters	Estima	ate Std	. Err.	[95%	conf.	Interval]	
Random-effec		Estima	ate Std	. Err.	[95%	Conf.	Interval]	
		Estima .93031		61788	[95%			
	ed		LO5 .05		-	4685	Interval] 1.0472 1.026715	

-Random coefficient Poisson model

Results

	Poisson		R	l Poisson	RC Poisson		
	IRR	(95% CI)	IRR	(95% CI)	IRR	(95% CI)	
Fixed part							
reform	0.87	(0.82; 0.91)	0.95	(0.90; 1.02)	0.90	(0.81; 1.00)	
age	1.00	(1.00; 1.01)	1.10	(1.00; 1.01)	1.00	(1.00; 1.01)	
educ	0.99	(0.98; 1.00)	0.99	(0.97; 1.01)	1.01	(0.98; 1.03)	
married	1.04	(0.99; 1.10)	1.08	(0.97;1.20)	1.09	(0.97;1.22)	
badh	3.11	(2.93; 3.30)	2.48	(2.19;2.78)	3.03	(2.61;3.52)	
loginc	1.16	(1.08; 1.25)	1.10	(0.96;1.25)	1.14	(0.98;1.32)	
summer	1.01	(0.93; 1.09)	0.87	(0.76;0.98)	0.91	(0.78; 1.07)	
Random part							
σ_1			0.90		0.95		
σ_1					0.93		
ρ_{12}					-0.49		
Log-likelihood	-	-5942.69	-	4643.36	-	4513.73	

-Random coefficient Poisson model

Random intercept vs. random coefficient

- xtmepoisson numvisit age educ married badh loginc reform summer || id:, irr
- estimates store xtri
- xtmepoisson numvisit age educ married badh loginc reform summer || id:reform, covariance(unstructured) irr
- estimates store xtrc
- Irtest xtri xtrc

. Irtest xtri xtrc		
Likelihood-ratio test	LR chi2(2) =	259.10
(Assumption: xtri nested in xtrc)	Prob > chi2 =	0.0000

-Random coefficient Logistic model

Immunization data

- Data are available from the National Survey of Maternal and Child Health conducted in Guatemala in 1987
- A nationally representative sample of 5160 women aged between 15 and 44 were interviewed
- The questionnaire included questions determining the immunization status of children who were born in the previous 5 years and alive at the time of the interview
- Beginning 1986, the Guatemalan government undertook a series of campaign to immunize the population against major childhood diseases
- An important explanatory variable is whether the child was at least 2 years old at the time of the interview, in which case the child was old enough to be immunized during the 1986 campaign
- If this variable is associated with immunization, there is some indication that the government campaign work

-Random coefficient Logistic model

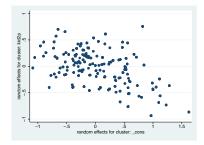
Data description

- immun: Indicator variable for child receiving full set of immunizations
- kid2p: dummy variable for child being at least 2 years old at time of the interview
- cluster: identifier for communities
- rural: dummy variable for community being rural
- pcInd81: percentage of population that was indigenous in 1981

<ロト<日、<日、<日、<日、<日、<日、<日、<日、<日、<日、<日、<19/22

Random coefficient Logistic model

Results


xtmelogit

	logistic regres	sion		Number o		=	
Group variabl	e: cluster			Number o	f grou	ps =	161
				Obs per	group:	min =	1
						avg =	13.4
						max =	55
Integration p	oints = 7			wald chi	2(3)	=	84.8
	d = -1378.2717			Prob > c		=	0.0000
immun	Odds Ratio S	td. Err.	z	P> z	[95%	conf.	Interval]
kid2p	2.983037 .	4716586	6.91	0.000	2.18	8125	4.066728
rural	. 5294337	.086763	-3.88	0.000	. 383	9879	.7299708
pcInd81	. 3842706 .	0782523	-4.70	0.000	. 257	8099	. 5727625
Random-effe	cts Parameters	Estima	te Std	. Err.	[95%	conf.	Interval]
cluster: Unst					10,000		2122222
	sd(kid2p)	.7750		29342		0314	1.361952
				61248	. 609	0425	1.401085
	sd(_cons) rr(kid2p,_cons)	. 92443		09391	893		2401777

-Random coefficient Logistic model

Predict random effects

- xtmelogit immun kid2p rural pcInd81 || cluster:kid2p, covariance(unstructured) or
- predict ri rs, reff
- scatter ri rs

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 書 わら

-Random coefficient Logistic model

Final remarks

- xtmelogit and xtmepoisson extend previous commands xtlogit and xtpoisson, respectively
- ► xtmelogit and xtmepoisson take longer than xtlogit and xtpoisson ⇒ computations are intensive
- xtmelogit and xtmepoisson allow one to get predicted (modal) random effects and to add random effects
- The Laplacian approximation can be used as an alternative to Adaptive Gaussian Quadrature

<ロ > < 回 > < 国 > < 国 > < 国 > 三 22/22

Multilevel models can be easily fitted