Dankmar Böhning

Southampton Statistical Sciences Research Institute University of Southampton, UK

 $S^{3}RI$, 11 - 12 December 2014

application to the BELCAP study

introduction to logistic regression

confounding and effect modification

comparing of different generalized regression models

meta-analysis of BCG vaccine against tuberculosis

<ロト<問ト<臣ト<臣ト 2/61

the Poisson distribution

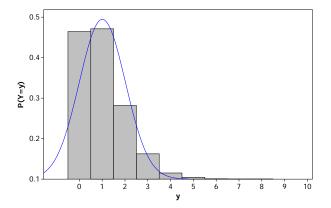
- count data may follow such a distribution, at least approximately
- Examples: number of deaths, of diseased cases, of hospital admissions and so on ...

<ロト < 団 ト < 臣 ト < 臣 ト 三 2000 3/61

•
$$Y \sim Po(\mu)$$
:
 $P(Y = y) = \mu^y \exp(-\mu)/y$

where $\mu > 0$

introduction to Poisson regression



・ロ ・ ・ 「日 ・ ・ 王 ・ ・ 王 ・ ・ 王 ・ ・ 2 ・ ・ 2 ・ ・ 4 / 61

but why not use a linear regression model?

- ▶ for a Poisson distribution we have E(Y) = Var(Y). This violates the constancy of variance assumption (for the conventional regression model)
- a conventional regression model assumes we are dealing with a normal distribution for the response Y, but the Poisson distribution may not look very normal
- the conventional regression model may give negative predicted means (negative counts are impossible!)

<ロ > < 回 > < 直 > < 直 > < 直 > 三 2000 5/61

the Poisson regression model

$$\log E(Y_i) = \log \mu_i = \alpha + \beta x_i$$

- the RHS of the above is called the linear predictor
- $Y_i \sim Po(\mu_i)$
- this model is the log-linear model

the Poisson regression model

$$\log E(Y_i) = \log \mu_i = \alpha + \beta x_i$$

can be written equivalently as

$$\mu_i = \exp[\alpha + \beta x_i]$$

Hence it is clear that any fitted log-linear model will always give non-negative fitted values!

<ロト<問ト<臣ト<臣ト 王 7/61

an interesting interpretation in the Poisson regression model

suppose x represents a binary variable (yes/no, treatment
present/not present)

$$x = \begin{cases} 1 & \text{if person is in intervention group} \\ 0 & \text{otherwise} \end{cases}$$

$$\log E(Y) = \log \mu = \alpha + \beta x$$

► x = 0: log $\mu_{\text{no intervention}} = \alpha + \beta x = \alpha$ ► x = 1: log $\mu_{\text{intervention}} = \alpha + \beta x = \alpha + \beta$ ► hence

$$\log \mu_{ ext{intervention}} - \log \mu_{ ext{no intervention}} = eta$$

<ロト < 回 > < 言 > < 言 > 言 2000 8/61

an interesting interpretation in the Poisson regression model

hence

$$\log\mu_{\rm intervention} - \log\mu_{\rm no\ intervention} = \beta$$

or

$$rac{\mu_{ ext{intervention}}}{\mu_{ ext{no intervention}}} = \exp(eta)$$

the coefficient exp(β) corresponds to the risk ratio comparing the mean risk in the treatment group to the mean risk in the control group

Poisson regression model for several covariates

$$\log E(Y_i) = \alpha + \beta_1 x_{1i} + \dots + \beta_p x_{pi}$$

- where x_{1i}, \dots, x_{pi} are the covariates of interest
- testing the effect of covariate x_j is done by the size of the estimate β̂_j of β_j

$$t_j = \frac{\hat{\beta}_j}{s.e.(\hat{\beta}_j)}$$

• if $|t_j| > 1.96$ covariate effect is significant

estimation of model parameters

consider the likelihood (the probability for the observed data)

$$L = \prod_{i=1}^{n} \mu_i^{y_i} \exp(-\mu_i) / y_i!$$

for model with *p* covariates:

$$\log \mu_i = \alpha + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}$$

- finding parameter estimates by maximizing the likelihood L (or equivalently the log-likelihood log L)
- guiding principle: choosing the parameters that make the observed data the most likely

The simple regression model for BELCAP with Y = DMFSe: $\log E(DMFSe_i) =$ $\alpha + \beta_1 OHE_i + \beta_2 ALL_{2i} + \beta_4 ESD_i + \beta_5 MW_i + \beta_6 OHY_i + \beta_7 DMFSb_i$

 $OHE_i = \begin{cases} 1 & \text{if child } i \text{ is in intervention OHE} \\ 0 & \text{otherwise} \end{cases}$ $ALL_i = \begin{cases} 1 & \text{if child } i \text{ is in intervention ALL} \\ 0 & \text{otherwise} \end{cases}$ \cdots

-application to the BELCAP study

analysis of BELCAP study using the Poisson regression model including the DMFS at baseline

covariate	\hat{eta}_{j}	$s.e.(\hat{eta}_j)$	tj	P-value
OHE	-0.7043014	0.0366375	-6.74	0.000
ALL	-0.5729402	0.0355591	-8.97	0.000
ESD	-0.8227017	0.0418510	-3.84	0.000
MW	-0.6617572	0.0334654	-8.16	0.000
OHY	-0.7351562	0.0402084	-5.63	0.000
DMFSb	1.082113	0.0027412	31.15	0.000

Introduction to logistic regression

Binary Outcome *Y*

$$Y = egin{cases} 1, \ { ext{Person diseased}} \ 0, \ { ext{Person healthy}} \end{cases}$$

Probability that Outcome Y = 1

$$Pr(Y = 1) = p$$
 is probability for $Y = 1$

<ロト<問ト<言ト<言ト 14/61

introduction to logistic regression

Odds

$$odds = rac{p}{1-p} \Leftrightarrow p = rac{odds}{odds+1}$$

◆□ → < 畳 → < 置 → < 置 → < 置 → < 2000 15/61

Examples

introduction to logistic regression

Odds Ratio

$$OR = rac{odds(ext{ in exposure })}{odds(ext{ in non-exposure })} = rac{p_1/(1-p_1)}{p_0/(1-p_0)}$$

Properties of odds ratio

▶
$$0 < OR < \infty$$

•
$$OR = 1(p_1 = p_0)$$
 is reference value

introduction to logistic regression

Examples

risk =
$$\begin{cases} p_1 = 1/4 \\ p_0 = 1/8 \end{cases}$$
 effect measure =
$$\begin{cases} OR = \frac{p_1/(1-p_1)}{p_0/(1-p_0)} = \frac{1/3}{1/7} = 2.33 \\ RR = \frac{p_1}{p_0} = 2 \end{cases}$$

risk =
$$\begin{cases} p_1 = 1/100 \\ p_0 = 1/1000 \end{cases}$$
 eff. meas. =
$$\begin{cases} OR = \frac{1/99}{1/999} = 10.09 \\ RR = \frac{p_1}{p_0} = 10 \end{cases}$$

Fundamental Theorem of Epidemiology

$$p_0 \text{ small } \Rightarrow OR \approx RR$$

<ロト < 部 > < 差 > < 差 > 差 部 2000 17/61

benefit: OR is interpretable as RR which is easier to deal with

A simple example: Radiation Exposure and Tumor Development

	cases	non-cases	
E	52	2820	2872
NE	6	5043	5049

odds and OR

odds for disease given exposure (in detail):

$$\frac{52/2872}{2820/2872} = 52/2820$$

odds for disease given non-exposure (in detail):

$$\frac{6/5049}{5043/5049} = 6/5043$$

<ロト < 回 > < 言 > < 言 > 言 2000 18/61

A simple example: Radiation Exposure and Tumor Development

	cases	non-cases	
E	52	2820	2872
NE	6	5043	5049

OR

odds ratio for disease (in detail):

$$OR = \frac{52/2820}{6/5043} = \frac{52 \times 5043}{6 \times 2820} = 15.49$$

or, $\log OR = \log 15.49 = 2.74$ for comparison

$$RR = \frac{52/2872}{6/5049} = 15.24$$

10/

-introduction to logistic regression

Logistic regression model for this simple situation

$$\log \frac{p_x}{1 - p_x} = \alpha + \beta x$$

where

- $p_x = Pr(Y = 1|x)$ • $x = \begin{cases} 1, & \text{if exposure present} \\ 0, & \text{if exposure not present} \end{cases}$
- ▶ log ^{p_x}/_{1-p_x} is called the logit link that connects p_x with the linear predictor

<ロト<問ト<言ト<言ト 20/61

introduction to logistic regression

benefits of the logistic regression model

$$\log \frac{p_x}{1 - p_x} = \alpha + \beta x$$

is feasible

since

$$p_x = rac{\exp(lpha + eta x)}{1 + \exp(lpha + eta x)} \in (0, 1)$$

whereas

$$p_x = \alpha + \beta x$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

is not feasible

introduction to logistic regression

Interpretation of parameters α and β

$$\log \frac{p_x}{1 - p_x} = \alpha + \beta x$$

$$x = 0 : \log \frac{p_0}{1 - p_0} = \alpha$$
(1)
$$x = 1 : \log \frac{p_1}{1 - p_1} = \alpha + \beta$$
(2)

now

$$(2) - (1) = \underbrace{\log \frac{p_1}{1 - p_1} - \log \frac{p_0}{1 - p_0}}_{\log \frac{\frac{p_1}{1 - p_1}}{\frac{p_0}{1 - p_0}} = \log OR} = \alpha + \beta - \alpha = \beta$$

 $\log OR = \beta \Leftrightarrow OR = e_{\text{constant}}^{\beta}$

- confounding and effect modification

A simple illustration example

	cases	non-cases	
E	60	1100	1160
NE	1501	3100	4601

OR odds ratio:

$$OR = \frac{60 \times 3100}{1501 \times 1100} = 0.1126$$

- confounding and effect modification

stratified: Stratum 1:

	cases	non-cases	
E	50	100	150
NE	1500	3000	4500

$$OR = rac{50 imes 3000}{100 imes 1500} = 1$$

Stratum 2:

	cases	non-cases	
E	10	1000	1010
NE	1	100	101

$$OR = \frac{10 \times 100}{1000 \times 1} = 1$$

confounding and effect modification

	+-				+
	I	Y	Е	S	freq
	1.				
1.	Ι	1	1	0	50
2.	Ι	0	1	0	100
3.	Ι	1	0	0	1500
4.	Ι	0	0	0	3000
5.	Ι	1	1	1	10
6.	Ι	0	1	1	1000
7.	Ι	1	0	1	1
8.	Ι	0	0	1	100
	+-				+

◆□ → < 畳 → < 置 → < 置 → < 置 → < 25/61</p>

- confounding and effect modification

The logistic regression model for simple confounding

$$\log \frac{p_{\mathbf{x}}}{1 - p_{\mathbf{x}}} = \alpha + \beta E + \gamma S$$

where

$$\mathbf{x} = (E, S)$$

is the covariate combination of exposure E and stratum S

- confounding and effect modification

in detail for stratum 1

$$\log \frac{p_{\mathbf{x}}}{1 - p_{\mathbf{x}}} = \alpha + \beta E + \gamma S$$

$$E = 0, S = 0: \log \frac{p_{0,0}}{1 - p_{0,0}} = \alpha$$
(3)

$$E = 1, S = 0: \log \frac{p_{1,0}}{1 - p_{1,0}} = \alpha + \beta$$
(4)

now

$$(4) - (3) = \log OR_1 = \alpha + \beta - \alpha = \beta$$
$$\log OR = \beta \Leftrightarrow OR = e^{\beta}$$

the log-odds ratio in the first stratum is β

- confounding and effect modification

in detail for stratum 2:

$$\log \frac{p_{\mathbf{x}}}{1 - p_{\mathbf{x}}} = \alpha + \beta E + \gamma S$$

$$E = 0, S = 1 : \log \frac{p_{0,1}}{1 - p_{0,1}} = \alpha + \gamma$$
 (5)

$$E = 1, S = 1 : \log \frac{p_{1,1}}{1 - p_{1,1}} = \alpha + \beta + \gamma$$
 (6)

now:

$$(6) - (5) = \log OR_2 = \alpha + \beta + \gamma - \alpha - \gamma = \beta$$

the log-odds ratio in the second stratum is β

- confounding and effect modification

important property of the confounding model: assumes the identical exposure effect in each stratum!

◆□ → ◆□ → ◆ = → ◆ = → ○ ○ ○
29/61

- confounding and effect modification

(crude analysis) Logistic regression Log likelihood = -3141.5658					
Y Odds Ratio		[95% Conf.]	[nterval]		
E .1126522 .0153479 .0862522 .1471326					

(adjusted for confounder) Logistic regression
Log likelihood = -3021.5026

•	Std. Err.	[95% Conf.	-
E S	.1736619	.7115062 .0102603	1.405469 .0389853

- confounding and effect modification

A simple illustration example: passive smoking and lung cancer

	cases	non-cases	
E	52	121	173
NE	54	150	204

OR odds ratio:

$$OR = rac{52 imes 150}{54 imes 121} = 1.19$$

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ 31/61

- confounding and effect modification

stratified: Stratum 1 (females):

	cases	non-cases	
E	41	102	143
NE	26	71	97

$$OR = \frac{41 \times 71}{26 \times 102} = 1.10$$

Stratum 2 (males):

	cases	non-cases	
E	11	19	30
NE	28	79	107

$$OR = \frac{11 \times 79}{19 \times 28} = 1.63$$

- confounding and effect modification

interpretation:

effect changes from one stratum to the next stratum!

- confounding and effect modification

The logistic regression model for effect modification

$$\log \frac{p_{\mathbf{x}}}{1 - p_{\mathbf{x}}} = \alpha + \beta E + \gamma S + \underbrace{(\beta \gamma)}_{\text{effect modif. par.}} E \times S$$

where

$$\mathbf{x}=(E,S)$$

is the covariate combination of exposure E and stratum S

- confounding and effect modification

in detail for stratum 1

$$\log \frac{p_{\mathbf{x}}}{1 - p_{\mathbf{x}}} = \alpha + \beta E + \gamma S + (\beta \gamma) E \times S$$

$$E = 0, S = 0: \log \frac{p_{0,0}}{1 - p_{0,0}} = \alpha$$
(7)

$$E = 1, S = 0: \log \frac{p_{1,0}}{1 - p_{1,0}} = \alpha + \beta$$
(8)

now

(8) - (7) = log
$$OR_1 = \alpha + \beta - \alpha = \beta$$

log $OR = \beta \Leftrightarrow OR = e^{\beta}$

the log-odds ratio in the first stratum is β

- confounding and effect modification

in detail for stratum 2:

$$\log \frac{p_{\mathbf{x}}}{1 - p_{\mathbf{x}}} = \alpha + \beta E + \gamma S + (\beta \gamma) E \times S$$

$$E = 0, S = 1 : \log \frac{p_{0,1}}{1 - p_{0,1}} = \alpha + \gamma$$
(9)

$$E = 1, S = 1 : \log \frac{p_{1,1}}{1 - p_{1,1}} = \alpha + \beta + \gamma + (\beta \gamma)$$
(10)

now:

$$(10) - (9) = \log OR_2 = \alpha + \beta + \gamma + (\beta\gamma) - \alpha - \gamma = \beta + (\beta\gamma)$$
$$\log OR = \beta \Leftrightarrow OR = e^{\beta + (\beta\gamma)}$$

the log-odds ratio in the second stratum is $\beta + (\beta \gamma)$

Lecture 2: Poisson and logistic regression

- confounding and effect modification

important property of the effect modification model: effect modification model allows for different effects in the strata!

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ 37/61

Data from passive smoking and LC example are as follows:

	+-					+
	Ι	Y	Е	S	ES	freq
	-					
1.	Ι	1	1	0	0	41
2.	Ι	0	1	0	0	102
З.	Ι	1	0	0	0	26
4.	Ι	0	0	0	0	71
5.	Ι	1	1	1	1	11
	-					
6.	Ι	0	1	1	1	19
7.	Ι	1	0	1	0	28
8.	Ι	0	0	1	0	79
	+-					+

Lecture 2: Poisson and logistic regression

- confounding and effect modification

CRUDE EFFECT MODEL

```
Logistic regression
```

Log likelihood = -223.66016

Y	Coef.			• •
E	.1771044 -1.021651	.2295221	0.77	0.440

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

CONFOUNDING MODEL

```
Logistic regression
```

Log likelihood = -223.56934

	•		Std. Err.		P> z
E S	 	.2158667 .1093603	.2472221 .2563249 .2101705	0.87 0.43	0.670

EFFECT MODIFICATION MODEL

```
Logistic regression
```

Log likelihood = -223.2886

Y		Coef.	Std. Err.	z	P> z
E		.0931826	.2945169	0.32	0.752
S	Ι	03266	.3176768	-0.10	0.918
ES	I	.397517	.5278763	0.75	0.451
_cons	Ι	-1.004583	.2292292	-4.38	0.000

interpretation of crude effects model:

$$\log OR = 0.1771 \Leftrightarrow OR = e^{0.1771} = 1.19$$

interpretation of confounding model:

$$\log OR = 0.2159 \Leftrightarrow OR = e^{0.2159} = 1.24$$

interpretation of effect modification model: stratum 1:

$$\log OR_1 = 0.0932 \Leftrightarrow OR_1 = e^{0.0932} = 1.10$$

stratum 2:

 $\log OR_2 = 0.0932 + 0.3975 \Leftrightarrow OR_2 = e^{0.0932 + 0.3975} = 1.63$

Model evaluation in logistic regression:

the likelihood approach:

$$L = \prod_{i=1}^{n} p_{x_i}^{y_i} (1 - p_{x_i})^{1-y_i}$$

is called the likelihood for models

$$\log \frac{p_{x_i}}{1 - p_{x_i}} = \begin{cases} \alpha + \beta E_i + \gamma S_i + (\beta \gamma) E_i \times S_i, \ (M_1) \\ \alpha + \beta E_i + \gamma S_i, \ (M_0) \end{cases}$$

<ロト<問ト<言ト<言ト 44/61

where M_1 is the effect modification model and M_0 is the confounding model

Model evaluation in logistic regression using the likelihood ratio:

let

 $L(M_1)$ and $L(M_0)$

be the **likelihood** for models M_1 and M_0 then

$$LRT = 2 \log L(M_1) - 2 \log L(M_0) = 2 \log \frac{L(M_1)}{L(M_0)}$$

<ロト<問ト<言ト<言ト 45/61

is called the **likelihood ratio** for models M_1 and M_0 and has a **chi-square distribution with 1** df under M_0

illustration for passive smoking and LC example:

model	log-likelihood	LRT
crude	-223.66016	-
homogeneity	-223.56934	0.1816
effect		
modification	-223.2886	0.5615

note:

for valid comparison on chi-square scale: models must be nested

Model evaluation in more general:

consider the likelihood

$$L = \prod_{i=1}^{n} p_{x_i}^{y_i} (1 - p_{x_i})^{1-y_i}$$

for a general model with *p* covariates:

$$\log \frac{p_{x_i}}{1 - p_{x_i}} = \alpha + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} \ (M_0)$$

example:

$$\log \frac{p_{x_i}}{1 - p_{x_i}} = \alpha + \beta_1 \mathsf{AGE}_i + \beta_2 \mathsf{SEX}_i + \beta_3 \mathsf{ETS}_i$$

<ロト<問ト<言ト<言ト 47/61

Model evaluation in more general: example:

$$\log \frac{p_{x_i}}{1 - p_{x_i}} = \alpha + \beta_1 \mathsf{AGE}_i + \beta_2 \mathsf{SEX}_i + \beta_3 \mathsf{ETS}_i$$

where these covariates can be mixed:

- quantitative, continuous such as AGE
- categorical binary (use 1/0 coding) such as SEX
- non-binary ordered or unordered categorical such as ETS (none, moderate, large)

<ロト<部ト<差ト<差ト<差ト 48/61

Model evaluation in more general:

consider the likelihood

$$L = \prod_{i=1}^{n} p_{x_i}^{y_i} (1 - p_{x_i})^{1-y_i}$$

for model with **additional** k covariates:

$$\log \frac{p_{x_i}}{1 - p_{x_i}} = \alpha + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} + \beta_{p+1} x_{i,p+1} + \dots + \beta_{k+p} x_{i,k+p} (M_1)$$

Model evaluation in more general for our example:

$$\log \frac{p_{x_i}}{1 - p_{x_i}} = \alpha + \beta_1 AGE_i + \beta_2 SEX_i + \beta_3 ETS_i + \beta_4 RADON_i + \beta_5 AGE-HOUSE_i$$

Model evaluation using the likelihood ratio: again let

 $L(M_1)$ and $L(M_0)$

be the **likelihood** for models M_1 and M_0 then the **likelihood ratio**

$$LRT = 2 \log L(M_1) - 2 \log L(M_0) = 2 \log \frac{L(M_1)}{L(M_0)}$$

<ロト < 団 ト < 臣 ト < 臣 ト 三 約000 51/61

has a chi-square distribution with k df under M_0

Model evaluation for our example:

$$\begin{cases} M_0: \alpha + \beta_1 AGE_i + \beta_2 SEX_i + \beta_3 ETS_i \\ M_1: \dots M_0 \dots + \beta_4 RADON_i + \beta_5 AGE-HOUSE_i \end{cases}$$

then

$$LRT = 2\log rac{L(M_1)}{L(M_0)}$$

□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

has under model M_0 a chi-square distribution with 2 df

model evaluation

- for model assessment we will use criteria that compromise between model fit and model complexity
- Akaike information criterion

$$AIC = -2\log L + 2k$$

Bayesian Information criterion

$$BIC = -2\log L + k\log n$$

- where k is the number of parameters in the model
- and n is the number of clustered observations
- we seek a model for which AIC and/or BIC are small

Meta-Analysis

Meta-Analysis is a methodology for investigating the study results from several, independent studies with the purpose of an integrative analysis

Meta-Analysis on BCG vaccine against tuberculosis

Colditz *et al. 1974, JAMA* provide a meta-analysis to examine the efficacy of BCG vaccine against tuberculosis

<ロト<問ト<言ト<言ト 54/61

Data on the meta-analysis of BCG and TB

the data contain the following details

- 13 studies
- each study contains:
 - TB cases for BCG intervention
 - number at risk for BCG intervention
 - TB cases for control
 - number at risk for control
- also two covariates are given: year of study and latitude expressed in degrees from equator
- latitude represents the variation in rainfall, humidity and environmental mycobacteria suspected of producing immunity against TB

			interver	tion	contr	ol
study	year	latitude	TB cases	total	TB cases	total
1	1933	55	6	306	29	303
2	1935	52	4	123	11	139
3	1935	52	180	1541	372	1451
4	1937	42	17	1716	65	1665
5	1941	42	3	231	11	220
6	1947	33	5	2498	3	2341
7	1949	18	186	50634	141	27338
8	1950	53	62	13598	248	12867
9	1950	13	33	5069	47	5808
10	1950	33	27	16913	29	17854
11	1965	18	8	2545	10	629
12	1965	27	29	7499	45	7277
13	1968	13	505	88391	499	88391

Data analysis on the meta-analysis of BCG and TB these kind of data can be analyzed by taking

<ロト<問ト<臣ト<臣ト 57/61

- ► *TB case* as disease occurrence response
- intervention as exposure
- study as confounder

T-- 14b-14b--4 - 15101 407

Log likelihood	a = -15191.4	97		Pseudo	R2 =	0.0050
TB_Case	Odds Ratio	Std. Err.	z	P> z	[95% Conf.	Interval]
Intervention	.6116562	.024562	-12.24	0.000	.5653613	.6617421
_cons	.0091641	.0002369	-181.51	0.000	.0087114	.0096404
		.0002369	-181.51	0.000	.0087114	.00964
. estat ic, n	(13)					
Model	Obs	ll(null) l	l(model)	df	AIC	BIC

D----1- D0

Model	Obs	ll (null)	ll(model)	df	AIC	BIC
	13	-15267.81	-15191.5	2	30386.99	30388.12

Note: N=13 used in calculating BIC

.

Logistic regression	Number of obs	=	357347
	LR chi2(2)	=	1239.45
	Prob > chi2	=	0.0000
Log likelihood = -14648.082	Pseudo R2	=	0.0406

TB_Case	Odds Ratio	Std. Err.	z	P> z	[95% Conf.	Interval]
Latitude	1.043716	.00126	35.44	0.000	1.04125	1.046189
Intervention	.6253014	.0251677	-11.67	0.000	.577869	.6766271
_cons	.0031643	.0001403	-129.85	0.000	.002901	.0034515

. estat ic, n(13)

Model	Obs	ll(null)	ll(model)	df	AIC	BIC
	13	-15267.81	-14648.08	3	29302.16	29303.86

Note: N=13 used in calculating BIC

Logistic regro Log likelihood	Number LR chi Prob 2 Pseudo	> chi2	= = =	357347 1402.30 0.0000 0.0459			
 TB_Case	Odds Ratio	Std. Err.	z	₽> z	[95% C	Conf.	Interval]
Latitude	1.029997	.0016409	18.55	0.000	1.0267	786	1.033219
Intervention	.6041037	.0243883	-12.48	0.000	.55814	156	.6538459
Year	.9666536	.0025419	-12.90	0.000	.96168	344	.9716485
_cons	.0300164	.0053119	-19.81	0.000	.0212	219	.0424611

. estat ic, n(13)

Model	Obs	ll(null)	ll(model)	df	AIC	BIC
	13	-15267.81	-14566.66	4	29141.32	29143.58

Note: N=13 used in calculating BIC

model evaluation

model	log L	AIC	BIC	
intervention	-15191.50	30386.99	30388.12	
+ latitude	-14648.08	29302.16	29303.86	
+ year	-14566.66	29141.32	29143.58	