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Lecture 2: Poisson and logistic regression

introduction to Poisson regression

the Poisson distribution

I count data may follow such a distribution, at least
approximately

I Examples: number of deaths, of diseased cases, of hospital
admissions and so on ...

I Y ∼ Po(µ):
P(Y = y) = µy exp(−µ)/y !

where µ > 0
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Lecture 2: Poisson and logistic regression

introduction to Poisson regression
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Lecture 2: Poisson and logistic regression

introduction to Poisson regression

but why not use a linear regression model?

I for a Poisson distribution we have E (Y ) = Var(Y ). This
violates the constancy of variance assumption (for the
conventional regression model)

I a conventional regression model assumes we are dealing with
a normal distribution for the response Y , but the Poisson
distribution may not look very normal

I the conventional regression model may give negative predicted
means (negative counts are impossible!)
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Lecture 2: Poisson and logistic regression

introduction to Poisson regression

the Poisson regression model

log E (Yi ) = log µi = α + βxi

I the RHS of the above is called the linear predictor

I Yi ∼ Po(µi )

I this model is the log-linear model
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Lecture 2: Poisson and logistic regression

introduction to Poisson regression

the Poisson regression model

log E (Yi ) = log µi = α + βxi

can be written equivalently as

µi = exp[α + βxi ]

Hence it is clear that any fitted log-linear model will always give
non-negative fitted values!
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Lecture 2: Poisson and logistic regression

introduction to Poisson regression

an interesting interpretation in the Poisson regression
model
suppose x represents a binary variable (yes/no, treatment
present/not present)

x =

{
1 if person is in intervention group

0 otherwise

log E (Y ) = log µ = α + βx

I x = 0: log µno intervention = α + βx = α

I x = 1: log µintervention = α + βx = α + β

I hence
log µintervention − log µno intervention = β
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Lecture 2: Poisson and logistic regression

introduction to Poisson regression

an interesting interpretation in the Poisson regression
model

I hence
log µintervention − log µno intervention = β

I or
µintervention

µno intervention

= exp(β)

I the coefficient exp(β) corresponds to the risk ratio comparing
the mean risk in the treatment group to the mean risk in the
control group
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Lecture 2: Poisson and logistic regression

introduction to Poisson regression

Poisson regression model for several covariates

log E (Yi ) = α + β1x1i + · · ·+ βpxpi

I where x1i , · · · , xpi are the covariates of interest

I testing the effect of covariate xj is done by the size of the

estimate β̂j of βj

tj =
β̂j

s.e.(β̂j)

I if |tj | > 1.96 covariate effect is significant
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Lecture 2: Poisson and logistic regression

introduction to Poisson regression

estimation of model parameters

consider the likelihood (the probability for the observed data)

L =
n∏

i=1

µyi
i exp(−µi )/yi !

for model with p covariates:

log µi = α + β1xi1 + β2xi2 + ... + βpxip

I finding parameter estimates by maximizing the likelihood L
(or equivalently the log-likelihood log L)

I guiding principle: choosing the parameters that make the
observed data the most likely
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Lecture 2: Poisson and logistic regression

application to the BELCAP study

The simple regression model for BELCAP

with Y = DMFSe:
log E (DMFSei ) =

α+β1OHEi +β2ALL2i +β4ESDi +β5MWi +β6OHYi +β7DMFSbi

I OHEi =

{
1 if child i is in intervention OHE

0 otherwise

I ALLi =

{
1 if child i is in intervention ALL

0 otherwise
I · · ·
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Lecture 2: Poisson and logistic regression

application to the BELCAP study

analysis of BELCAP study using the Poisson regression
model including the DMFS at baseline

covariate β̂j s.e.(β̂j) tj P-value

OHE -0.7043014 0.0366375 -6.74 0.000
ALL -0.5729402 0.0355591 -8.97 0.000
ESD -0.8227017 0.0418510 -3.84 0.000
MW -0.6617572 0.0334654 -8.16 0.000
OHY -0.7351562 0.0402084 -5.63 0.000
DMFSb 1.082113 0.0027412 31.15 0.000
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Lecture 2: Poisson and logistic regression

introduction to logistic regression

Introduction to logistic regression

Binary Outcome Y

Y =

{
1, Person diseased

0, Person healthy

Probability that Outcome Y = 1

Pr(Y = 1) = p is probability for Y = 1
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Lecture 2: Poisson and logistic regression

introduction to logistic regression

Odds

odds =
p

1− p
⇔ p =

odds

odds + 1

Examples

I p = 1/2 ⇒ odds = 1

I p = 1/4 ⇒ odds = 1/3

I p = 3/4 ⇒ odds = 3/1 = 3
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Lecture 2: Poisson and logistic regression

introduction to logistic regression

Odds Ratio

OR =
odds( in exposure )

odds( in non-exposure )

=
p1/(1− p1)

p0/(1− p0)

Properties of odds ratio

I 0 < OR < ∞
I OR = 1(p1 = p0) is reference value
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Lecture 2: Poisson and logistic regression

introduction to logistic regression

Examples

risk =

{
p1 = 1/4

p0 = 1/8
effect measure =

{
OR = p1/(1−p1)

p0/(1−p0)
= 1/3

1/7 = 2.33

RR = p1
p0

= 2

risk =

{
p1 = 1/100

p0 = 1/1000
eff. meas. =

{
OR = 1/99

1/999 = 10.09

RR = p1
p0

= 10

Fundamental Theorem of Epidemiology

p0 small ⇒ OR ≈ RR

benefit: OR is interpretable as RR which is easier to deal with
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Lecture 2: Poisson and logistic regression

introduction to logistic regression

A simple example: Radiation Exposure and Tumor
Development

cases non-cases

E 52 2820 2872

NE 6 5043 5049

odds and OR
odds for disease given exposure (in detail):

52/2872

2820/2872
= 52/2820

odds for disease given non-exposure (in detail):

6/5049

5043/5049
= 6/5043
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Lecture 2: Poisson and logistic regression

introduction to logistic regression

A simple example: Radiation Exposure and Tumor
Development

cases non-cases

E 52 2820 2872

NE 6 5043 5049

OR
odds ratio for disease (in detail):

OR =
52/2820

6/5043
=

52× 5043

6× 2820
= 15.49

or, log OR = log 15.49 = 2.74
for comparison

RR =
52/2872

6/5049
= 15.24
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Lecture 2: Poisson and logistic regression

introduction to logistic regression

Logistic regression model for this simple situation

log
px

1− px
= α + βx

where

I px = Pr(Y = 1|x)

I x =

{
1, if exposure present

0, if exposure not present

I log px

1−px
is called the logit link that connects px with the

linear predictor
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Lecture 2: Poisson and logistic regression

introduction to logistic regression

benefits of the logistic regression model

log
px

1− px
= α + βx

is feasible

I since

px =
exp(α + βx)

1 + exp(α + βx)
∈ (0, 1)

whereas
px = α + βx

is not feasible
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Lecture 2: Poisson and logistic regression

introduction to logistic regression

Interpretation of parameters α and β

log
px

1− px
= α + βx

x = 0 : log
p0

1− p0
= α (1)

x = 1 : log
p1

1− p1
= α + β (2)

now

(2)− (1) = log
p1

1− p1
− log

p0

1− p0︸ ︷︷ ︸
log

p1
1−p1

p0
1−p0

=log OR

= α + β − α = β

log OR = β ⇔ OR = eβ
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Lecture 2: Poisson and logistic regression

confounding and effect modification

A simple illustration example

cases non-cases

E 60 1100 1160

NE 1501 3100 4601

OR
odds ratio:

OR =
60× 3100

1501× 1100
= 0.1126

23 / 61



Lecture 2: Poisson and logistic regression

confounding and effect modification

stratified:
Stratum 1:

cases non-cases

E 50 100 150

NE 1500 3000 4500

OR =
50× 3000

100× 1500
= 1

Stratum 2:

cases non-cases

E 10 1000 1010

NE 1 100 101

OR =
10× 100

1000× 1
= 1

OR
odds ratio:

OR =
60× 3100

1501× 1100
= 0.1126
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Lecture 2: Poisson and logistic regression

confounding and effect modification

+------------------+
| Y E S freq |
|------------------|

1. | 1 1 0 50 |
2. | 0 1 0 100 |
3. | 1 0 0 1500 |
4. | 0 0 0 3000 |
5. | 1 1 1 10 |
6. | 0 1 1 1000 |
7. | 1 0 1 1 |
8. | 0 0 1 100 |

+------------------+
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Lecture 2: Poisson and logistic regression

confounding and effect modification

The logistic regression model for simple confounding

log
px

1− px
= α + βE + γS

where
x = (E ,S)

is the covariate combination of exposure E and stratum S
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Lecture 2: Poisson and logistic regression

confounding and effect modification

in detail for stratum 1

log
px

1− px
= α + βE + γS

E = 0,S = 0 : log
p0,0

1− p0,0
= α (3)

E = 1,S = 0 : log
p1,0

1− p1,0
= α + β (4)

now
(4)− (3) = log OR1 = α + β − α = β

log OR = β ⇔ OR = eβ

the log-odds ratio in the first stratum is β
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Lecture 2: Poisson and logistic regression

confounding and effect modification

in detail for stratum 2:

log
px

1− px
= α + βE + γS

E = 0,S = 1 : log
p0,1

1− p0,1
= α + γ (5)

E = 1,S = 1 : log
p1,1

1− p1,1
= α + β + γ (6)

now:
(6)− (5) = log OR2 = α + β + γ − α− γ = β

the log-odds ratio in the second stratum is β
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Lecture 2: Poisson and logistic regression

confounding and effect modification

important property of the confounding model:

assumes the identical exposure effect in each stratum!
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Lecture 2: Poisson and logistic regression

confounding and effect modification

(crude analysis) Logistic regression
Log likelihood = -3141.5658
---------------------------------------------------------------------
Y | Odds Ratio Std. Err. [95% Conf. Interval]

-------------+-------------------------------------------------------
E | .1126522 .0153479 .0862522 .1471326

---------------------------------------------------------------------

(adjusted for confounder) Logistic regression
Log likelihood = -3021.5026
--------------------------------------------------------------------
Y | Odds Ratio Std. Err. [95% Conf. Interval]
-------------+------------------------------------------------------
E | 1 .1736619 .7115062 1.405469
S | .02 .0068109 .0102603 .0389853
--------------------------------------------------------------------
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Lecture 2: Poisson and logistic regression

confounding and effect modification

A simple illustration example: passive smoking and lung
cancer

cases non-cases

E 52 121 173

NE 54 150 204

OR
odds ratio:

OR =
52× 150

54× 121
= 1.19
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Lecture 2: Poisson and logistic regression

confounding and effect modification

stratified:
Stratum 1 (females):

cases non-cases

E 41 102 143

NE 26 71 97

OR =
41× 71

26× 102
= 1.10

Stratum 2 (males):

cases non-cases

E 11 19 30

NE 28 79 107

OR =
11× 79

19× 28
= 1.63

OR
odds ratio:

OR =
60× 3100

1501× 1100
= 0.1126
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Lecture 2: Poisson and logistic regression

confounding and effect modification

interpretation:

effect changes from one stratum to the next stratum!
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Lecture 2: Poisson and logistic regression

confounding and effect modification

The logistic regression model for effect modification

log
px

1− px
= α + βE + γS + (βγ)︸︷︷︸

effect modif. par.

E × S

where
x = (E ,S)

is the covariate combination of exposure E and stratum S
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Lecture 2: Poisson and logistic regression

confounding and effect modification

in detail for stratum 1

log
px

1− px
= α + βE + γS + (βγ)E × S

E = 0,S = 0 : log
p0,0

1− p0,0
= α (7)

E = 1,S = 0 : log
p1,0

1− p1,0
= α + β (8)

now
(8)− (7) = log OR1 = α + β − α = β

log OR = β ⇔ OR = eβ

the log-odds ratio in the first stratum is β
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Lecture 2: Poisson and logistic regression

confounding and effect modification

in detail for stratum 2:

log
px

1− px
= α + βE + γS + (βγ)E × S

E = 0,S = 1 : log
p0,1

1− p0,1
= α + γ (9)

E = 1,S = 1 : log
p1,1

1− p1,1
= α + β + γ + (βγ) (10)

now:

(10)− (9) = log OR2 = α + β + γ + (βγ)− α− γ = β + (βγ)

log OR = β ⇔ OR = eβ+(βγ)

the log-odds ratio in the second stratum is β + (βγ)
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Lecture 2: Poisson and logistic regression

confounding and effect modification

important property of the effect modification model:

effect modification model allows for different effects in the strata!
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Lecture 2: Poisson and logistic regression

confounding and effect modification

Data from passive smoking and LC example are as follows:

+-----------------------+
| Y E S ES freq |
|-----------------------|

1. | 1 1 0 0 41 |
2. | 0 1 0 0 102 |
3. | 1 0 0 0 26 |
4. | 0 0 0 0 71 |
5. | 1 1 1 1 11 |

|-----------------------|
6. | 0 1 1 1 19 |
7. | 1 0 1 0 28 |
8. | 0 0 1 0 79 |

+-----------------------+

38 / 61



Lecture 2: Poisson and logistic regression

confounding and effect modification

CRUDE EFFECT MODEL

Logistic regression

Log likelihood = -223.66016

--------------------------------------------------------
Y | Coef. Std. Err. z P>|z|

-------------+------------------------------------------
E | .1771044 .2295221 0.77 0.440

_cons | -1.021651 .1586984 -6.44 0.000
--------------------------------------------------------
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Lecture 2: Poisson and logistic regression

confounding and effect modification

CONFOUNDING MODEL

Logistic regression

Log likelihood = -223.56934

-------------------------------------------------------
Y | Coef. Std. Err. z P>|z|

-------------+-----------------------------------------
E | .2158667 .2472221 0.87 0.383
S | .1093603 .2563249 0.43 0.670

_cons | -1.079714 .2101705 -5.14 0.000
-------------------------------------------------------
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Lecture 2: Poisson and logistic regression

confounding and effect modification

EFFECT MODIFICATION MODEL

Logistic regression

Log likelihood = -223.2886

------------------------------------------------------
Y | Coef. Std. Err. z P>|z|

-------------+----------------------------------------
E | .0931826 .2945169 0.32 0.752
S | -.03266 .3176768 -0.10 0.918
ES | .397517 .5278763 0.75 0.451

_cons | -1.004583 .2292292 -4.38 0.000
-------------------------------------------------------
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Lecture 2: Poisson and logistic regression

confounding and effect modification

interpretation of crude effects model:

log OR = 0.1771 ⇔ OR = e0.1771 = 1.19

interpretation of confounding model:

log OR = 0.2159 ⇔ OR = e0.2159 = 1.24
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Lecture 2: Poisson and logistic regression

confounding and effect modification

interpretation of effect modification model:

stratum 1:

log OR1 = 0.0932 ⇔ OR1 = e0.0932 = 1.10

stratum 2:

log OR2 = 0.0932 + 0.3975 ⇔ OR2 = e0.0932+0.3975 = 1.63
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Lecture 2: Poisson and logistic regression

comparing of different generalized regression models

Model evaluation in logistic regression:

the likelihood approach:

L =
n∏

i=1

pyi
xi

(1− pxi )
1−yi

is called the likelihood for models

log
pxi

1− pxi

=

{
α + βEi + γSi + (βγ)Ei × Si , (M1)

α + βEi + γSi , (M0)

where M1 is the effect modification model and M0 is the
confounding model
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Lecture 2: Poisson and logistic regression

comparing of different generalized regression models

Model evaluation in logistic regression using the
likelihood ratio:
let

L(M1) and L(M0)

be the likelihood for models M1 and M0

then

LRT = 2 log L(M1)− 2 log L(M0) = 2 log
L(M1)

L(M0)

is called the likelihood ratio for models M1 and M0 and has a
chi-square distribution with 1 df under M0
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Lecture 2: Poisson and logistic regression

comparing of different generalized regression models

illustration for passive smoking and LC example:

model log-likelihood LRT
crude -223.66016 -

homogeneity -223.56934 0.1816

effect
modification -223.2886 0.5615

note:
for valid comparison on chi-square scale: models must be nested
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Lecture 2: Poisson and logistic regression

comparing of different generalized regression models

Model evaluation in more general:

consider the likelihood

L =
n∏

i=1

pyi
xi

(1− pxi )
1−yi

for a general model with p covariates:

log
pxi

1− pxi

= α + β1xi1 + β2xi2 + ... + βpxip (M0)

example:

log
pxi

1− pxi

= α + β1AGEi + β2SEXi + β3ETSi
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Lecture 2: Poisson and logistic regression

comparing of different generalized regression models

Model evaluation in more general:

example:

log
pxi

1− pxi

= α + β1AGEi + β2SEXi + β3ETSi

where these covariates can be mixed:

I quantitative, continuous such as AGE

I categorical binary (use 1/0 coding) such as SEX

I non-binary ordered or unordered categorical such as ETS
(none, moderate, large)
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Lecture 2: Poisson and logistic regression

comparing of different generalized regression models

Model evaluation in more general:

consider the likelihood

L =
n∏

i=1

pyi
xi

(1− pxi )
1−yi

for model with additional k covariates:

log
pxi

1− pxi

= α + β1xi1 + β2xi2 + ... + βpxip

+βp+1xi ,p+1 + ... + βk+pxi ,k+p (M1)
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Lecture 2: Poisson and logistic regression

comparing of different generalized regression models

Model evaluation in more general for our example:

log
pxi

1− pxi

= α + β1AGEi + β2SEXi + β3ETSi

+β4RADONi + β5AGE-HOUSEi
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Lecture 2: Poisson and logistic regression

comparing of different generalized regression models

Model evaluation using the likelihood ratio:

again let
L(M1) and L(M0)

be the likelihood for models M1 and M0

then the likelihood ratio

LRT = 2 log L(M1)− 2 log L(M0) = 2 log
L(M1)

L(M0)

has a chi-square distribution with k df under M0
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Lecture 2: Poisson and logistic regression

comparing of different generalized regression models

Model evaluation for our example:{
M0 : α + β1AGEi + β2SEXi + β3ETSi

M1 : ...M0... + β4RADONi + β5AGE-HOUSEi

then

LRT = 2 log
L(M1)

L(M0)

has under model M0 a chi-square distribution with 2 df
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Lecture 2: Poisson and logistic regression

comparing of different generalized regression models

model evaluation

I for model assessment we will use criteria that compromise
between model fit and model complexity

I Akaike information criterion

AIC = −2 log L + 2k

I Bayesian Information criterion

BIC = −2 log L + k log n

I where k is the number of parameters in the model

I and n is the number of clustered observations

I we seek a model for which AIC and/or BIC are small
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Lecture 2: Poisson and logistic regression

meta-analysis of BCG vaccine against tuberculosis

Meta-Analysis

Meta-Analysis is a methodology for investigating the study results
from several, independent studies with the purpose of an
integrative analysis

Meta-Analysis on BCG vaccine against tuberculosis

Colditz et al. 1974, JAMA provide a meta-analysis to examine the
efficacy of BCG vaccine against tuberculosis
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Lecture 2: Poisson and logistic regression

meta-analysis of BCG vaccine against tuberculosis

Data on the meta-analysis of BCG and TB

the data contain the following details

I 13 studies
I each study contains:

I TB cases for BCG intervention
I number at risk for BCG intervention
I TB cases for control
I number at risk for control

I also two covariates are given: year of study and latitude
expressed in degrees from equator

I latitude represents the variation in rainfall, humidity and
environmental mycobacteria suspected of producing immunity
against TB
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Lecture 2: Poisson and logistic regression

meta-analysis of BCG vaccine against tuberculosis

intervention control
study year latitude TB cases total TB cases total

1 1933 55 6 306 29 303
2 1935 52 4 123 11 139
3 1935 52 180 1541 372 1451
4 1937 42 17 1716 65 1665
5 1941 42 3 231 11 220
6 1947 33 5 2498 3 2341
7 1949 18 186 50634 141 27338
8 1950 53 62 13598 248 12867
9 1950 13 33 5069 47 5808
10 1950 33 27 16913 29 17854
11 1965 18 8 2545 10 629
12 1965 27 29 7499 45 7277
13 1968 13 505 88391 499 88391
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Lecture 2: Poisson and logistic regression

meta-analysis of BCG vaccine against tuberculosis

Data analysis on the meta-analysis of BCG and TB

these kind of data can be analyzed by taking

I TB case as disease occurrence response

I intervention as exposure

I study as confounder
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Lecture 2: Poisson and logistic regression

meta-analysis of BCG vaccine against tuberculosis

               Note:  N=13 used in calculating BIC

                                                                             

           .       13   -15267.81    -15191.5      2     30386.99    30388.12

                                                                             

       Model      Obs    ll(null)   ll(model)     df          AIC         BIC

                                                                             

. estat ic, n(13)

                                                                              

       _cons     .0091641   .0002369  -181.51   0.000     .0087114    .0096404

Intervention     .6116562    .024562   -12.24   0.000     .5653613    .6617421

                                                                              

     TB_Case   Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

Log likelihood = -15191.497                       Pseudo R2       =     0.0050
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Lecture 2: Poisson and logistic regression

meta-analysis of BCG vaccine against tuberculosis

               Note:  N=13 used in calculating BIC

                                                                             

           .       13   -15267.81   -14648.08      3     29302.16    29303.86

                                                                             

       Model      Obs    ll(null)   ll(model)     df          AIC         BIC

                                                                             

. estat ic, n(13)

                                                                              

       _cons     .0031643   .0001403  -129.85   0.000      .002901    .0034515

Intervention     .6253014   .0251677   -11.67   0.000      .577869    .6766271

    Latitude     1.043716     .00126    35.44   0.000      1.04125    1.046189

                                                                              

     TB_Case   Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

Log likelihood = -14648.082                       Pseudo R2       =     0.0406

                                                  Prob > chi2     =     0.0000

                                                  LR chi2(2)      =    1239.45

Logistic regression                               Number of obs   =     357347
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Lecture 2: Poisson and logistic regression

meta-analysis of BCG vaccine against tuberculosis

. 

               Note:  N=13 used in calculating BIC

                                                                             

           .       13   -15267.81   -14566.66      4     29141.32    29143.58

                                                                             

       Model      Obs    ll(null)   ll(model)     df          AIC         BIC

                                                                             

. estat ic, n(13)

                                                                              

       _cons     .0300164   .0053119   -19.81   0.000      .021219    .0424611

        Year     .9666536   .0025419   -12.90   0.000     .9616844    .9716485

Intervention     .6041037   .0243883   -12.48   0.000     .5581456    .6538459

    Latitude     1.029997   .0016409    18.55   0.000     1.026786    1.033219

                                                                              

     TB_Case   Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

Log likelihood = -14566.659                       Pseudo R2       =     0.0459

                                                  Prob > chi2     =     0.0000

                                                  LR chi2(3)      =    1402.30

Logistic regression                               Number of obs   =     357347
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Lecture 2: Poisson and logistic regression

meta-analysis of BCG vaccine against tuberculosis

model evaluation

model log L AIC BIC

intervention -15191.50 30386.99 30388.12
+ latitude -14648.08 29302.16 29303.86

+ year -14566.66 29141.32 29143.58
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