Lecture 1: From Linear Models to Generalized Linear Models

Dankmar Böhning

Southampton Statistical Sciences Research Institute University of Southampton, UK

 S^3RI , 11 - 12 December 2014

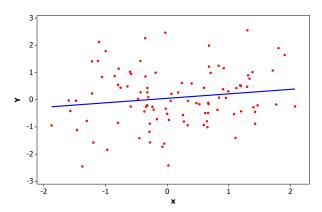
Case study: BELCAP

The various problems of using a simple regression model

the three elements of a GLM

$$Y_i = \alpha + \beta x_i + \epsilon_i$$

- ➤ *Y_i* is a **response** (dependent variable, clinical endpoint, outcome) for observation *i* the
- x_i is a covariate (treatment, intervention) for observation i (might be continuous or categorical)
- $ightharpoonup \alpha$ and eta are unknown parameters in the model
- $ightharpoonup \epsilon_i$ is a mean-zero normal random error: $\epsilon_i \sim N(0, \sigma^2)$



$$Y_i = \alpha + \beta x_i + \epsilon_i$$

▶ testing the effect of covariate x is done by the size of the estimate $\hat{\beta}$ of β

$$t = \frac{\hat{\beta}}{s.e.(\hat{\beta})}$$

• if |t| > 1.96 covariate effect is **significant**

The simple regression model for several covariates

$$Y_i = \alpha + \beta_1 x_{1i} + \dots + \beta_p x_{pi} + \epsilon_i$$

- where x_{1i}, \dots, x_{pi} are the **covariates of interest**
- ▶ testing the effect of covariate x_j is done by the size of the estimate $\hat{\beta}_i$ of β_i

$$t_j = \frac{\hat{\beta}_j}{s.e.(\hat{\beta}_j)}$$

• if $|t_i| > 1.96$ covariate effect is **significant**

-Case study: BELCAP

Case study: BELCAP

- Dental epidemiological study.
- A prospective study of school-children from an urban area of Belo Horizonte, Brazil.
- ▶ The Belo Horizonte caries prevention (BELCAP) study.
- ► The aim of the study was to compare different methods to prevent caries.

- Children selected were all 7 years-old and from a similar socio-economic background.
- Interventions:
 - ► Control (3),
 - ▶ Oral Health Education (1),
 - ► Enrichment of the School Diet with rice bran (4),
 - ► MouthWash (5),
 - Oral HYgiene (6),
 - ▶ **ALL** four methods together (2).
- ▶ Interventions were cluster randomised to 6 different schools.

- Response, or outcome variable = DMFS index (Number of decayed, missing or filled teeth surfaces) at the end of study
- lesion of the tooth surfaces were also included in the index; graded as
 - ▶ 0 = healthy
 - ▶ 1 = light chalky spot
 - ▶ 2 = thin brown-black line
 - ▶ 3 = damage, not larger than 2mm wide
 - ▶ 4 = damage, wider than 2mm

in the BELCAP study a lesion graded 1-4 contributed 1 to the DMFS index DMFS index was calculated at the start of the study and 2 years later (end of study). Only the 8 deciduous molars were considered.

- ▶ Potential confounders: sex (female 0 male 1), ethnicity.
- ▶ Data analysed by Böhning et al. (1999, *Journ. Royal Statist. Soc. A*).

The simple regression model for BELCAP

with Y = DMFSe:

$$Y_{i} = \alpha + \beta_{1}x_{1i} + \beta_{2}x_{2i} + \beta_{4}x_{4i} + \beta_{5}x_{5i} + \beta_{6}x_{6i} + \epsilon_{i}$$

or more illustrative

$$DMFSe_{i} = \alpha + \beta_{1}OHE_{i} + \beta_{2}ALL_{2i} + \beta_{4}ESD_{i} + \beta_{5}MW_{i} + \beta_{6}OHY_{i} + \epsilon_{i}$$

- $ALL_i = \begin{cases} 1 & \text{if child } i \text{ is in intervention ALL} \\ 0 & \text{otherwise} \end{cases}$
 - • •

Case study: BELCAP

analysis of BELCAP study using simple regression model

covariate	\hat{eta}_{j}	s.e. (\hat{eta}_j)	tj	P-value
OHE	-1.795541	.5529044	-3.25	0.001
ALL	-3.826656	.5494779	-6.96	0.000
ESD	-1.711230	.5440699	-3.15	0.002
MW	-2.398767	.5231845	-4.58	0.000
OHY	-2.470469	.5540789	-4.46	0.000
α	6.779412	.3818337	17.75	0.000

Case study: BELCAP

The simple regression model

Case study: BELCAP

The various problems of using a simple regression model

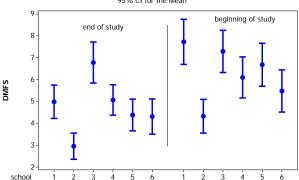
the three elements of a GLM

what is problematic with this analysis: problem 1

- not all intervention schools have the same DMFS as baseline
- ▶ hence, schools with a low DMFS value at baseline will appear to have the better intervention

The various problems of using a simple regression model

Interval Plot of DMFS at end and beginning of study 95% CI for the Mean



solution: use baseline value in the model

$$DMFSe_{i} = \alpha + \beta_{1}OHE_{i} + \beta_{2}ALL_{2i} + \beta_{4}ESD_{i} + \beta_{5}MW_{i} + \beta_{6}OHY_{i}$$
$$+\beta_{7}DMFSb_{i} + \epsilon_{i}$$

▶ where DMFSb_i is the value of the DMFS for child i at baseline

analysis of BELCAP study using simple regression model including the DMFS at baseline

covariate	\hat{eta}_{j}	s.e. \hat{eta}_j	t_j	P-value
OHE	-1.992079	.4593379	-4.34	0.000
ALL	-2.499844	.4617501	-5.41	0.000
ESD	1.179293	.4527593	-2.60	0.009
MW	-2.125991	.4347758	-4.89	0.000
OHY	-1.661519	.4621846	-3.59	0.000
DMFSb	.447653	.0237036	18.89	0.000
α	3.51747	.3611204	9.74	0.000

what is problematic with this analysis: problem 2

- ▶ DMFS is count variable, hence it cannot be negative
- ▶ there is no guarantee that the **fitted value**

$$\begin{split} \widehat{DMFSe}_i &= \hat{\alpha} + \hat{\beta}_1 OHE_i + \hat{\beta}_2 ALL_{2i} + \hat{\beta}_4 ESD_i + \hat{\beta}_5 MW_i + \hat{\beta}_6 OHY_i \\ &+ \hat{\beta}_7 DMFSb_i \end{split}$$

is nonnegative

solution: use appropriate link function

to achieve always nonnegative values for fitted values use

$$E(DMFSe_i) = \exp[\alpha + \beta_1 OHE_i + \beta_2 ALL_{2i} + \beta_4 ESD_i + \beta_5 MW_i + \beta_6 OHY_i + \beta_7 DMFSb_i]$$

or in general

$$E(Y_i) = \exp[\alpha + \beta_1 x_{1i} + \dots + \beta_p x_{pi}]$$

solution: use appropriate link function

$$E(Y_i) = \exp[\alpha + \beta_1 x_{1i} + \dots + \beta_p x_{pi}]$$

can also be written as

$$\log E(Y_i) = \alpha + \beta_1 x_{1i} + \dots + \beta_p x_{pi}$$

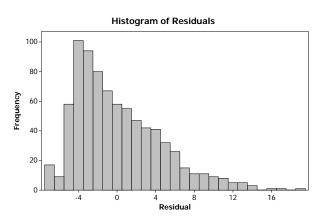
- ▶ log is called a **link function** here the log-link and the associated model is called **log-linear** model
- ▶ other valid link function would be $\sqrt{E(Y_i)}$ or similar
- the log-link is popular

what is problematic with this analysis: problem 3

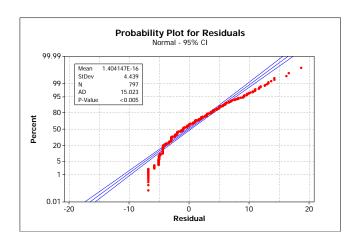
- ▶ DMFS is count variable, not likely to have a normal distribution
- ▶ actually, only $\hat{\epsilon}_i = DMFSe_i \widehat{DMFSe}_i$ is required to be **normal**, but also unlikely

Histogram of DMFS at end of study 200 150 Frequency 100 50 -3 9 12 18 21 DMFS at end of study

The various problems of using a simple regression model



The various problems of using a simple regression model



Case study: BELCAP

The various problems of using a simple regression model

the three elements of a GLM

elements of a generalized linear model

for study data like the BELCAP study we need to deviate from simple linear regression using a generalized linear model approach

- 1. an appropriate linear predictor $\alpha + \beta_1 x_{1i} + \cdots + \beta_p x_{pi}$
- 2. an appropriate **link function** which connects the linear predictor with the mean of the response

$$h(E(Y_i)) = \alpha + \beta_1 x_{1i} + \dots + \beta_p x_{pi}$$

3. and an appropriate **error distribution** for the response *Y* (other than normal)