International EpiLab Project P12: Development and Evaluation of an Adaptive BSE Surveillance Scheme for Birth Cohorts -Closing Seminar-

> Dankmar Böhning Matthias Greiner

# Overview

Background

- Idea and Scope of the project
- Preliminary Results
- Situation in Denmark
- Non-Perfect Diagnostic Testing
- Incorporating Heterogeneity from Different Surveillance Streams

# Overview

Background

- Idea and Scope of the project
- Preliminary Results
- Situation in Denmark
- Non-Perfect Diagnostic Testing
- Incorporating Heterogeneity from Different Surveillance Streams

BSE risk mitigation

- prevent specific risk materials from entering the food chain
- restrict import of food with BSE risk
- safe processing of food
- detect BSE before beef enters food chain
- remove specific risk materials from animal feed
- restrict import of cattle with BSE risk
- ban meat-and-bone-meal for ruminants
- destroy BSE infected bovines
- BSE surveillance in cattle





#### BSE is a slow disease

- BSE cases reflect exposure in the past
- animals in early incubation phase cannot be diagnosed



#### BSE surveillance in the EU

- all fallen stock (FS) >24 months
- all emergency slaughtered (ES) cattle >24 months
- all healthy slaughters (HS) > (24) 30 months
- all clinical suspects (CS) > 24 months



#### Testing for BSE is expensive



# Number of Danish BSE cases by birth cohort (month)



Data source: http://www.clfvf.clk/Default.asp?ID=9827



To develop a statistical approach suitable for documenting freedom from BSE, stratified for birth cohorts, which

- will account for the longitudinal data flow from distinct surveillance streams
- allow adaptive up-scaling and down-scaling of the sampling coverage and optimal allocation of testing resources to birth cohorts based on prior risk estimates
- contribute to a critical review of the current zero prevalence policy for BSE surveillance

# Overview

Background

- Idea and Scope of the project
- Preliminary Results
- Situation in Denmark
- Non-Perfect Diagnostic Testing
- Incorporating Heterogeneity from Different Surveillance Streams

# Idea of Project

- birth cohorts of animals (in different surveillance streams) are monitored for occurrence of BSE
- in particular, prevalence is small, potentially cohort is disease-free
- in contrast to estimating prevalence, this project wants to answer the question:

When can a particular cohort considered to be disease free?

## Idea of Project Basic Principle of the Sequential Trial

interest is in a prevalence parameter  $\pi$ and associated null hypothesis  $H_0: \pi = 0$ 

(implying, birth cohort is disease-free)

sequential trial (ST): animals are tested in discrete calendar or sequential time

*Y<sub>t</sub>* result of testing animal *t* ( $y_t = 1$  test positive,  $y_t = 0$  test negative):

 $H_0: Y_t = 0$  for all times t = 1, 2, 3, ...clearly,  $Pr(Y_t > 0 | H_0) = 0$ , for all times tin other words, there is no type-I error  $Y_1, Y_2, Y_3...$  series of BSE-tests: waiting time *T* for first animal testing positive:  $Pr(T = t | \pi) = \pi (1 - \pi)^{t-1}$ has geometric distribution

| T | sequence of tests | probability    |
|---|-------------------|----------------|
| 1 | 1                 | $\pi$          |
| 2 | 01                | $(1 - \pi)\pi$ |
| 3 | 001               | $(1-\pi)^2\pi$ |
| 4 | 0001              | $(1-\pi)^3\pi$ |

Rationale of the ST:

since

$$\Pr(T > 0 \mid \pi) = \sum_{t=1}^{\infty} \pi (1 - \pi)^{t-1} = 1$$

unless  $\pi = 0$ , there exists some positive time waiting time s > 0 such that  $Pr(0 < T \le s | \pi) = 1 - \beta$ for given arbitrary small  $\beta > 0$ 

Rationale of the ST: instead of waiting for all times  $(T = \infty)$ to conclude with  $\pi = 0$ , we wait until time  $s < \infty$  such that  $\Pr(0 < T \le s \mid \pi) = \sum \pi (1 - \pi)^{t-1} = 1 - \beta$ t=1to conclude with  $\pi = 0$ , necessarily.

now,

$$\Pr(0 < T \le s \mid \pi) = \sum_{t=1}^{s} \pi (1 - \pi)^{t-1} = 1 - (1 - \pi)^{s}$$

and equating

$$1 - (1 - \pi)^s = 1 - \beta$$

leads to

 $(1-\pi)^s = \beta$ 

17

# Idea of Project: Solution $(1 - \pi)^s = \beta$

# from where the stopping time s

 $s = \frac{\log(\beta)}{\log(1 - \pi)}$ is deduced

# Overview

Background Idea and Scope of the project Preliminary Results Situation in Denmark Non-Perfect Diagnostic Testing Incorporating Heterogeneity from **Different Surveillance Streams** 

## Preliminary Results

project will focus on power function:

 $\varphi(\pi) = 1 - (1 - \pi)^s$ 

# Result: power function is monotone increasing

 $\pi_1 \leq \pi_2$  $\Rightarrow \varphi(\pi_1) \leq \varphi(\pi_2)$ 

# Monotonicity of power function



Important consequence since true prevalence  $\pi$  is unknown, only minimum detectable prevalence (design prevalence)  $\pi_0$  needs to be specified: it follows  $\varphi(\pi_0) \leq \varphi(\pi)$ 

# Power is also monotone in the waiting time s

power function  $\varphi(s) = 1 - (1 - \pi)^{s}$ (now as function of *s*)

# Power as function of waiting time





What is the waiting time s to reach power of ...  $1 - \beta = 1 - (1 - \pi)^{s}$  ? from where the stopping time solution  $s = \frac{\log(\beta)}{\log(\beta)}$  $\log(1-\pi)$ is found

# What is the waiting time s to reach power of ...

| Design<br>prevalence: 1 in | Power=0.99 | Power=0.999 |
|----------------------------|------------|-------------|
| 1000                       | 4603       | 6904        |
| 10000*                     | 46049      | 69074       |
| 100000*                    | 460515     | 690772      |

\* EC: Opinion in requirements for BSE/TSE Surveys, 2001

Which power have we reached given waiting time *s*?

power =

 $\varphi(\pi) = 1 - (1 - \pi)^s$ 

# What power is reached given waiting time *s* ?

| Design<br>prevalence: 1 in | <i>s</i> =10000 | <i>s</i> =100000 |
|----------------------------|-----------------|------------------|
| 1000                       | 0.999955        | 1.00000          |
| 10000*                     | 0.632139        | 0.99995          |
| 100000*                    | 0.095163        | 0.63212          |

\* EC: Opinion in requirements for BSE/TSE Surveys, 2001

# Overview

Background

- Idea and Scope of the project
- Preliminary Results
- Situation in Denmark
- Non-Perfect Diagnostic Testing
- Incorporating Heterogeneity from Different Surveillance Streams

## Situation in Denmark

#### TSE Database: public register for BSEtesting

- Controlled by the Danish Veterinary and Food Administration
- Development, service and maintenance done by private company
- Information on all animals tested for BSE since 01-Jan-2001

## Situation in Denmark

- From TSE Database the following variables were made available for project:
  - Animal Identification Number
  - Age (at death)
  - Birth- and death-date
  - Cause of submission like clinical suspect, emergency slaughter, healthy slaughter,...
  - Result of BSE-testing (+/-)

## Situation in Denmark: Identification of Positive Cases



# Situation in Denmark

#### Rows: BIRTHMONTH Columns: BIRTHYEAR

|    | 1999  | 2000  | 2001 | 2002 | All   |
|----|-------|-------|------|------|-------|
| 1  | 0     | 11154 | 5936 | 988  | 18078 |
| 2  | 0     | 11235 | 5636 | 692  | 17563 |
| 3  | 0     | 13852 | 6808 | 356  | 21016 |
| 4  | 17012 | 11285 | 6016 | 152  | 34465 |
| 5  | 14821 | 9766  | 4744 | 76   | 29407 |
| 6  | 12748 | 8292  | 3745 | 21   | 24806 |
| 7  | 14380 | 9131  | 3732 | 11   | 27254 |
| 8  | 14285 | 9078  | 3167 | 3    | 26533 |
| 9  | 13397 | 8342  | 2646 | 0    | 24385 |
| 10 | 12441 | 8112  | 2212 | 0    | 22765 |
| 11 | 11660 | 7236  | 1791 | 0    | 20687 |
| 12 | 11654 | 6781  | 1348 | 0    | 19783 |
|    |       |       |      |      |       |

All 122398 114264 47781 2299 286742

# Situation in Denmark: achieved power given waiting time s=286742

| Prevalence<br>1 in | Power  | Prevalence<br>1 in | Power  |
|--------------------|--------|--------------------|--------|
| 10000*             | 1.0000 | 60000              | 0.9916 |
| 20000              | 1.0000 | 70000              | 0.9834 |
| 30000              | 0.9999 | 00008              | 0.9722 |
| 40000              | 0.9992 | 90000              | 0.9587 |
| 50000              | 0.9968 | 100000             | 0.9432 |

\* EC: Opinion in requirements for BSE/TSE Surveys, 2001

# Overview

Background

- Idea and Scope of the project
- Preliminary Results
- Situation in Denmark
- Non-Perfect Diagnostic Testing
- Incorporating Heterogeneity from Different Surveillance Streams

Non-perfect diagnostic testing Test positive/negative is not equivalent to presence/absence of disease:  $\pi_{\perp}$ =Pr (Test positive) <  $\pi$ since  $\pi_{+} = \Pr(T+)$  $= \Pr(T + |D) \Pr(D) + \Pr(T + |ND) \Pr(ND)$  $= \alpha \pi + (1 - \delta)(1 - \pi)$ and, if every healthy cattle is correctly diagnosed  $= \alpha \pi < \pi$ where  $\alpha$  is the test sensitivity

Non-perfect diagnostic testing T waiting time for first animal testing positive: - as before - $\Pr(0 < T \le s \mid \pi, \alpha > 0) = \sum_{k=1}^{\infty} (1 - \pi_{k})^{t-1} \pi_{k}$ t=1 $=1-(1-\pi_{+})^{s}=1-(1-\alpha\pi)^{s}$ also,  $Pr(T > s \mid \pi, \alpha > 0)$  $=1-\Pr(0 < T \le s \mid \pi, \alpha > 0) = (1-\alpha\pi)^{s}$ 

Non-perfect diagnostic testing to be realistic: sensitivity will have to depend on age group:

 $\alpha_a$  sensitivity for age group *a*   $T_a$  waiting time for first animal testing positive in age group *a* 

Non-perfect diagnostic testing suppose the trial has at some given time frequencies  $s_1, ..., s_A$  in age group 1, ..., APower at this time? Pr(there is a waiting time  $T_a$  s.t.  $T_a \leq s_a$ ) =1-Pr( $T_a > s_a$  for all age groups  $a \mid \alpha_s, \pi$ )  $=1-\prod(1-\alpha_a\pi)^{s_a}$ 

## Non-perfect diagnostic testing: Situation in Denmark

| Age Group | Frequency sa | Sensitivity a <sub>a</sub> |
|-----------|--------------|----------------------------|
| 3         | 113197       | 0.0469                     |
| 4         | 119439       | 0.2818                     |
| 5         | 50888        | 0.5918                     |
| 6         | 3218         | 0.8048                     |

# Situation in Denmark: achieved power incorporating sensitivity

| Prevalence<br>1 in | Power  | Prevalence<br>1 in | Power  |
|--------------------|--------|--------------------|--------|
| 10000*             | 0.9992 | 60000              | 0.6972 |
| 20000              | 0.9722 | 70000              | 0.6408 |
| 30000              | 0.9083 | 80000              | 0.5918 |
| 40000              | 0.8333 | 90000              | 0.5490 |
| 50000              | 0.7615 | 100000             | 0.5117 |

\* EC: Opinion in requirements for BSE/TSE Surveys, 2001

# Specific values for sensitivity? Use paper by Ferguson *et al.* 1997 Phil Trans R Soc Lond In-depth investigation of incubation time models

Ferguson *et al.* 1997  
$$f(a) = \frac{1}{c} \left[ \frac{\gamma_2 \exp(-a/\gamma_1)}{\gamma_3} \right]^{\gamma_2^2/\gamma_3}$$
$$\times \exp\left[ -\frac{\gamma_2 \exp(-a/\gamma_1)}{\gamma_3} \right]$$

where  $\gamma_1, \gamma_2, \gamma_3$  are unknown parameters and *c* is a normalizing constant

Ferguson et al. 1997:  $\gamma_1, \gamma_2, \gamma_3$  are replaced by their MLEs:  $\hat{\gamma}_1 = 1.146, \ \hat{\gamma}_2 = 0.024, \hat{\gamma}_3 = 5.71 \times 10^{-4},$ and  $\hat{c} = 1.1350$ 

46

Non-perfect diagnostic testing with these values the likelihood for disease detectability within interval a to a+1:  $\int_{a}^{a+1} f(a') da'$ the likelihood for disease detectability up to age *a*:

$$\sum_{a=2}^{a} \int_{a}^{a+1} f(a') da'$$

#### giving

# Non-perfect diagnostic testing

| Age<br>Group | $\int_{a-1}^{a} f(a') da'$ | $\sum_{a=2}^{a*} \frac{\text{Sensitivity } \alpha_a}{\int_{a=1}^{a} f(a') da'}$ |
|--------------|----------------------------|---------------------------------------------------------------------------------|
| 3            | 0.0469                     | 0.0469                                                                          |
| 4            | 0.2349                     | 0.2818                                                                          |
| 5            | 0.3100                     | 0.5918                                                                          |
| 6            | 0.2130                     | 0.8048                                                                          |

# ... rising questions of appropriateness of these values of sensitivity ...

# Overview

Background

- Idea and Scope of the project
- Preliminary Results
- Situation in Denmark
- Non-Perfect Diagnostic Testing
- Incorporating Heterogeneity from Different Surveillance Streams

#### Incorporating heterogeneity: important covariate: surveillance stream

Rows: Surveillance Stream Columns: Age-Years

|      | 3      | 4      | 5     | 6    | All    |
|------|--------|--------|-------|------|--------|
| HS   | 90511  | 107692 | 46161 | 3029 | 247393 |
| Risk | 22686  | 11747  | 4727  | 189  | 39349  |
| All  | 113197 | 119439 | 50888 | 3218 | 286742 |

## Incorporating heterogeneity

let  $s_{ar}$  the frequency of animals in age group *a* and covariate combination *r*,

also, let  $\pi_r$  denote the design prevalence in covariate combination *r* 

# ... after an algebraic journey ...

# $Power = 1 - \prod_{r=1}^{R} \prod_{a=1}^{A} (1 - \alpha_{a} \pi_{r})^{s_{ar}}$

# Situation in Denmark: achieved power incorporating surveillance stream

| Prevalence 1 | Power            | Power not        |
|--------------|------------------|------------------|
| in HS        | adjusting for SS | adjusting for SS |
| 10000        | 1.0000           | 0.9992           |
| 30000        | 0.9991           | 0.9083           |
| 50000        | 0.9853           | 0.7615           |
| 00008        | 0.9283           | 0.5918           |
| 100000       | 0.8786           | 0.5117           |

Ratio for prevalence in risk group to healthy slaughter was estimated conservatively as 20

# **Project Group**

S AL

#### DFVF

 Matthias Greiner (project leader), Anders Stockmarr, Mette M. Andersen, Larry Paisley, Julie Hostrup-Pedersen, Peter Lind

#### Danish Cattle Federation

Mariann Chriél, Jørgen Nielsen Fødevaredirektoratet Preben Willeberg, Helene Rugbjerg

Guest scientist Dankmar Böhning

# a will a ge Thank you!