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Abstract We consider the case of a multicenter trial in which the center
specific sampie sizes are potentially smalI. Under homogeneity, the conven-
tional procedure is to pool information using a weighted estimator where the
weights used are inverse estimated center-specific variances. Whereas this
procedure is efficient für conventional asymptotics (e. g. center-specific sam-
pIe sizes become large, number ofcenter fixed), it is commonly believed that
the efficiency of this estimator holds true also für metaranalytic asymptotics
(e. g. center-specific sampie size bounded, potentially small, and number of
centers large). In this contribution we demonstrate that this estimator fails
to be efficient. In fact, it shows a persistent bias with increasing number of
centers showing that it is not metarconsistent. In addition, we show that
the Cochran and Mantel-Haenszel weighted estimators are metarconsistent
and, in more generality, provide conditions on the weights such that the
associated weighted estimator is metarconsistent.
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1 Introduction

The interest in a clinical trial lies in estimating treatment effect. There are
different effect measures, see Hutton (2000). It is common to estimate the
odds ratio (OR) because of the statistical properties of the OR. Health care
professionals and managers might prefer the difference of success rates of
treatment group versus control group, sometimes called the risk difference or
treatment difference. The risk difference is the inverse ofthe NNT ("Number
Nedded to Theat"). The NNT-measure haB gained much attention in recent
years as a useful way of reporting the results of randomized controlled trials
with a binary outcome. Laupacis et al. (1988) argue that the NNT is a more
meaningful summary of results than the statistics like the odds ratio or the
relative risk. In this paper emphasis is on estimating the risk difference which
provides an estimate of the NNT as a by-product. First we take a look at
the following typical setting. Consider k centers in which a treatment group
and a control group are compared and the individual outcome measures are
binary. Let nr be the number at risk in the treatment arm in the i-tb center,
whereas nf denotes the number at risk in the control arm. Let xr be the
number of events in the treatment arm für the i-tb center, similarly für xf.
pr is the probability für a positive response in the i-tb center, analogical für
pf. In this paper, we assurne a common risk difference t9 and later, we will
compare it with the expectation of estimates t? The pf may be different in
each center, that is, we allow für baseline heterogeneity. Consequently pr is

, T Cgiven by pr = pf + t9. t9i = ~ - ~ is the estimate of risk difference in
n. n.. .

center i, i = 1,2, ..., k. Now, we can estimate t? by
k '

t? = ~~.!~, (1)
Ei=l Wi

with suitable, non-negative weights Wl, W2, ..., Wk. There are several sugges-
tions für the weights. We will consider the weighted least squares (WLS)
estimator ßw LS which uses

wWLS - 1
(2)i - pT(l-pT) + p'?(l-p'?)'

r. ';rr. , r. ';fr. ,

the Cochran's estimator t?co (Cochran, 1954), which uses

T c
Co - ni ni (3)w. -, nT + n9'

t ,

and the Mantel-Haenszel estimator t?MH (Mantel and Haenszel, 1959), which
uses

wrH = nr nf. (4)

To illustrate, let us look at the following example in Table 1 of a multicenter
study with high sparsity in the data. We return to the data considered pre-
viously by Lipsitz et al.(1998). The data are from the Cancer and Leukemia~
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Group B (CALGB) randomized clinical trial comparing two chemotherapy
treatments with respect to survival (livedjdied by the end of the study) in
patients with multiple myeloma (Cooper et al., 1993). A total of 156 eligible
patients was accrued in the 21 centers. This example shows a typical setting
of a multicenter study. The sampIe size is very small in the two treatment
arms.

Table 1 Available data for e~ center in the CALGB study
- - - - . -, -'-'C t T T C C AG z. z.en er Xi ni Xi ni vi ; ::::;. - ::b'

n, n,
1 1 3 3 4 -0.4167
2 8 11 3 4 -0.0227
3 2 3 2 2 -0.3333
4 2 2 2 2 0
5 0 3 2 2 -1
6 2 3 1 3 0.3333

~ 7 2 3 2 2 -0.3333
( 8 4 4 1 5 0.8
~ 9 2 3 2 2 -0.3333
~ 10 2 3 0 2 0.6667
[c 11 3 3 3 3 0
r
r" 12 0 2 2 2 -1
t' 13 1 5 1 4 -0.05
f " 14 2 4 2 3 -0.1667
~. 15 4 6 2 4 0.1667
fS ; ".. 16 3 9 4 12 0
..
~f 17 2 3 1 2 0.1667
,; 18 1 4 3 3 -0.75
r-
~ 19 2 3 1 4 0.4167
c 20 0 2 0 3 0

21 1 5 2 4 -0.3

An important factor is the efficiency of the estimated risk difference. In
the conventional asymptotics, where the center-specific sample size become
large and the number of centers fixed, the procedure (1) is always consis-
tent. Another type of asymptotics is the meta-analytic framework, where
the center-specific sampIe size is bounded, potentially small and number of
centers large. This will be considered in the next section.

2 Meta-Consistent Estimators

In the following theorem, we show that all estimators of,jJ with non-random
and bounded weights are meta-consistent. A meta-consistent estimator is
defined such that its mean squared error (MSE) becomes small für a large
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numbers of studies, e.g.

tim M SE( iJ) = tim (Bias( iJ)2 + v ar( iJ)) = O.
k-<x> k-<x>

Here, Bias(iJ) = E(iJ)- 1? and Var(iJ) = E(iJ - E(iJ))2. The Bias of iJ
is equal to zero in the case of non-random weights, because

E(iJ) = b::~~~~~ = }::::~=1 Wi (E ~pn - E (pf))

}::::i=l Wi }::::i=l Wi

- }::::~=1 Wi (pr - pr) - .Q
- k - v.

}::::i=l Wi

Thus, we show in the following proof only that tim V ar( iJ) = O.
k-<x>

Theorem 1 If a risk difference estimator iJ is defined as iJ = ~ with

pr,pf E (0,1) and

0 < W ::; Wi ::; W < 00

foT i = 1, ".., k and where wand Ware real numbers, then iJ is MSE-
consistent.

Proof We will use at various stages that p(1 - p}::; i foT any pE [0,1] and
that 'or integers n, m > 1 : (.1 + .1.) = ~ < 2J' - n m nm-

A ~ ~v (_0.) }::::w; (EI~ + .cl::~ )V (-Q

) - L." w, ar .v, - n, n,ar v --
(}:::: Wi)2 (}:::: Wi)2

1~ 2 ( 1 1 )"4 L." Wi -;;'1' + ~ 1 ~ w~< "<- L." ,- (}:::: Wi)2 - 2 (}:::: Wi)2

1 kW2 1 W2<--=-- -+ 0- 2 k2w2 2 kw2 k-<x>

In the next theorem, we show that für the Cochran's and WLS weights
the tipper bound is not required.

Theorem 2 If a risk difference estimator iJ is defined as iJ = ~ with

pr ,pr E (0,1) and
a) Cochran's weights Wi = (;T +"!r )-10r
b) WLS weights Wi = pT(l-pT) 1 pY(l-pY) ,

"' 'nT"' . +"' 'nf" , .

then iJ is MSE-consistent.
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Proof a)

~ 2 (pT(1-pT) pC(1-pC» )A L.J Wi r, '::Tr' , + r, '::cr, ,
Var(1IJ) = n; 2 n;

(E Wi)

E W~(~ ). n. n. 1 1::::; , ~ = = -1

4(Ewi) 4Ewi 4E(nr+;if)

1
<--+0- 2k k--oo

b)

E W2 (f[~ + f~~ )V (0°) - t n; n; - E Wi
ar v --

(E Wi)2 (E Wi)2
1 1= ~ = E (ill~+E.E~ )-1

n; n;

1 1«--+0- 4 ~ ( 1 + 1 )-1 - 2k k--oo

L.J-;:rr~, ,

3 Weighted Least Squares Estimator

However, the WLS-estimator (2) cannot be used in practice since pr and pf
are unknown. In several textbooks of epidemiology (see Kleinbaum, Kup-
per, and Morgenstern, 1982) and in textbooks of meta-analysis (see Petitti,
1994), it is suggested to replace pr and pf in (2) by their sampie estimators

TC,

~ and ~. This leads to 1IJw, which usesn n., ,

w 1w. = (5). xT(nT-xT) xt;:(nt;:-xt;:).~~r + '(~f)S:"

Olle could presume that iJw is a consistent estimator, hut this estimator
is generally no longer unbiased. Note that (5) is not defined, if xr = 0 or
xr = nr in combination with xf = 0 or xf = nf. In Dur example (Table
1) this case appears in the centers 4, 5, 11, 12, 20. There are different
possibilities in dealing with these cases. Lipsitz et al. (1998) remove that
center from the pool where such a case haB occurred. This would imply
that five centers are removed in Dur example. Consequently, 24 patients
(15.4%) are lost in the analysis through the statistical procedure. Greenland
and Robins (1985) added to each cell 1 and mentioned that they tried
several other constants, including adding l only in calculating of the weights
ww, hut none of these produced a better performance. O'Gorman (1994)
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used the same approach as Greenland and Robins (1985). Based upon a
comparative investigation of these three methods (see appendix), we prefer
in OUT considerations the approach to add ~ only in calculating the weights
ww. Consequently, the weights become

W 1
wi = (xT +~.5~(~!\;x~ +0.5) + (xf+~.5~(~f\;x~+0.5) (6)

(nT +1) nT (nf+l) nf

The estimated risk differences in OUT example are iJco = -0.0572, and
iJMH = -0.0198864, and iJw = -0.0710186. All three estimators show that
treatment 1 (in OUT case treatment group) is bettel than treatment 2.

4 Exact Computation of Bias, Variance and
Mean Squared Error of Risk Difference ß

Let f(19') denote the density of the risk difference iJ in the population of all
possible outcomes of the clinical trial. Then the moments of iJ can be found
with respect to f(19'), using that xr and xf are binomial variates. Let XT

( T T T )T C ( c C C)T
denote the k-vector Xl' X2 , ..., Xk and X the k-vector Xl' X2 , ..., Xk .
In this case, the density of (XT, xC) is given as

T C Ilk (nT) T xT T T T (nC) C xl? C C C f(x ,X ) = xT (Pi)' (I-Pi )ni -Xi X x9 (Pi)' (I-Pi )ni -Xi

$=1 ~ ~

(7)
Formula (7) can be used to compute the quantities of interest, exactly. The

expectation of iJ is obtained by

E(iJ) = L f(xT, xC)iJ(xT, xc) (8)
all possible xT ,xc

k (x'!' xC )A Ei=lWi ~ - ~
with 19(XT, XC) = k". (9)

Ei=l Wi

The variance is given by

Var(iJ) = E(iJ2) - E(iJ)2 (10)

with E(iJ2) = L f(XT, xC)iJ(xT, xC)2 (11)
all possible xT ,xc

and the MSE is

MSE(iJ) = Var(iJ) + (E(iJ) -19)2. (12)

Now, to compare the several estimators with respect to bias, variance
and MSE, we assume fixed values of pf, ...,pf. The risk difference is set
to a predetermined value, and consequently pr = pf + 19. Furthermore, we
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assurne common values of nT and nc für each center. Consequently, the
Cochran's and Mantel-Haenszel weights provide identical solutions, so only
ODe of them is considered. For the example, we set 19 to 0.2, nT to 4 and nf
to 3 für each center and k = 1, ...,6. The outcomes are shown in Table 2.

The pf-values are taken from a uniform distribution on 0 to 0.5. In Table
2, we can see that Cochran's estimator is unbiased. If k equal1, then bias
and variance and mean squared erraT are identical in all estimators, hut
otherwise the variance of the estimator using Cochran's weights is less than
the variance of the WLS-estimator, in all cases. The same is true für the
mean squared error.

Table 2 Bias and Variance and M.S.E. of J as a function of number of centers
k for given values of baseline values and of the common risk difference with pf =
0.22, pf = 0.124, pf = 0.32, pf = 0.376, pf = 0.263, pf = 0.241 and {) = 0.2

k Bias Variance M.S.E
WWI.", wvo WWI.", wvo WWI.", w(;O

1 .000000 .000000 .076517 .076517 .076517 .076517
2 .003801 .000000 .038467 .037056 .038481 .037056
3 .009067 .000000 .031268 .028439 .031350 .028439
4 .013242 .000000 .025876 .022533 .026051 .022533
5 .014618 .000000 .021014 .018047 .021228 .018047
6 .006197 .000000 .014892 .013633 .014930 .013633

4.1 Property 0/ the Bias 0/ WLS-Estimator

The bias depends on diverse factors. ODe factor is the true risk difference
itself and a second factor is the baseline rate pc. In the next step, we will
investigate these properties. For this purpose, we set nT and nf to 4 für
i = 1, ..., 5. The respective results für various values of 19 (=0,0.1,0.2,0.3,0.4)

in combination with various values of pc (=0.001,0.01,0.020.05,0.1,0.15,0.2,
0.25,0.3), constant over all centers, are shown in Table 3. An interesting
point in Table 3 is that, if 19 equal zero, then the WLS-estimator is unbiased.
Next, we can see that the larger pc becomes, the larger is the amount of
bias tor iJ.

Another important influential factor is the difference between nT and
nc. For that, we will set 19 to 0, k to 4 and pc to 0.3. The bias für different
nT, nc values is presented in Table 4. In this table, it can be seen again,
that when 19 equal zero and nT = nc, then the WLS-estimator is unbiased.
If nT is less than nc and greater than 1, then the bias of iJ is negative. On
the other hand, if nc is less than nT and greater than 1, then the bias of iJ
is positive. Note the quasi-symmetries in Table 4.

We can only compute the exact form of bias, variance and MSE für small
k, nT and nc values. For klarger than six there are tao many possibilities.
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Table 3 Bias as a function of pc and iJ, with n'[ = nf = 4 for i = 1, ..., k and
k = 5.

--(;\ _0 n n n , n " n ., n Ap \'19 0.0 0.1 0.2 0.3 0.4

.001 .00000000 -.02659156 -.03725382 -.03368700 -.01945577
.01 .00000000 -.02517564 -.03457782 -.03008781 -.01538668
.02 .00000000 -.02361120 -.03164446 -.02617322 -.01099683
.05 .00000000 -.01899706 -.02313324 -.01499920 .00131722
.10 .00000000 -.01170146 -.01010149 .00154691 .01887077
.15 .00000000 -.00509560 .00122232 .01526837 .03258072
.20 .00000000 .00065347 .01063313 .02601115 .04238060
.25 .00000000 .00543737 .01801346 .03370386 .04825662
.30 .00000000 .00919283 .02330501 .03832191 .05021397

Table 4 Bias of iJ for several sarnple sizes, with pC = 0.3 and '19 = O.

nJ'\nt-. 1 2 3 4 5 6

1 .000000 .012212 .010853 .008370 .006425 .005027
2 -.012212 .000000 -.003548 -.009063 -.013688 -.017230
3 -.010853 .003548 .000000 -.006743 -.012836 -.017734
4 -.008370 .009063 .006743 .000000 -.006541 -.011990
5 -.006425 .013688 .012836 .006541 .000000 -.005600
I) -.005027 .017230 .017734 .011990 .005600 .000000

Note that the total of all possibilities is ((nT + l)(nC + l))k. When k = 7
and nT = 4 and nc = 3, we have 1.28 x 109 poBsibilities. We used a Pentium
111 processor with 700 MHz and 64 MB Ram. This computer can calculate
4597 possibilities per second. With k = 7 centers, 77 hours are needed. To

calculate the quantities of interest für larger k values within a reasonable
time, simulation techniques are required.

5 A Simulation Study

In this section, we are interested in studying bias, variance and MSE of
the suggested estimators when considering larger k -values. We assume that
pf, ..., pf arise from a uniform distribution on 0 to 0.5 and the risk difference
is set to 0.3. xT and xC are generated from a binomial distribution, with

TC d T CE' 1 k 'T' .. . t ' . thparameters ni , ni an Pi' Pi tor Z = , ..., . .LO mlmlc varia Ion In e
sampIe size, nT and nf were generated from a Poisson distribution with
parameter>. = 5 für i = 1, ..., k. Then the three estimators iJw, iJco and
iJMH were computed für k = 1,10,20, ..., 2000. The procedure was replicated
rep = 1,000 times. From these replicates, bias, variance and MSE were
calculated. The values ofiJco and iJMH are nearly identical, so that we only
consider one of them. The result from this simulation is shown in the Figures
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1, 2 and 3, where the parameter of interest is compared with the iJw (fine

liDe) and iJco (thick liDe), respectively. In Figure 1, the bias ofiJco oscillated

around the zero liDe, hut the graph of iJw showed a mean bias of 0.02. Note
that, für the bias of iJw, we cannot observe a persistent trend towards zero,
if the number of centers becomes large. Consequently, we cannot expect a
persistent trend für the MSE (Figure 3) towards zero. For k as large as
2000 a persistent bias is evident. An interesting point is that the variance
of iJw (Figure 2) is larger than the variance of iJco and iJMH, in all cases.

Thus, the weights of the estimator of iJw are not variance minimizing as
erroneously assumed in the literature, see für example Shadish and Haddock
(1994) or Kleinbaum, Kupper, and Morgenstern (1982). Shadish described
the variance minimizing weights w;v LS, hut in the example the true weights
are replaced by the sampie estimates, without any comments.

BIAS

0.025

0.02

0.015

0.01

0.005

k
2000

Fig. 1 Bias of iJw (fine line) and iJco (thick line) as function of number of centers
k = 10,20, ...,2000, 19 = 0.3, pc '" U(0,0.5)

6 Discussion

The results show that the commonly believed efficient estimator iJw is only

really efficient under specific conditions. If these conditions include the situ-

ation that the true risk difference is zero (we do not have an effect) and the

sampie size of treatment and control are identical (balanced trial), then the

estimator iJw is unbiased. In practice it might be that the balanced design
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0.0001

k
500 1000 1500 2000

Fig. 2 Variance of'?w (fine line) and '?co (thick line) 8S function of number of
centers k = 10,20, ...,2000, t? = 0.3, pc '" U(O, 0.5)

~E

0.0014
U

0.0012 "'ci,

"""-.,'i1
0.001

0.0008

0.0006

0.0004

0.0002

k
500 1000 1500 2000

Fig. 3 m.s.e. of'?w (fine line) and '?co (thick line) 8S a function of number of
centers k = 10,20, ...,2000, t? = 0.3, pc '" U(O, 0.5)
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of a randomized trial is met in majority, hut it is less likely that the true
risk difference is exactly or close to zero für most cases. We have shown, by
means of an exact computation für small number of centers and by means
of a simulation study für larger number of centers, that the weighted least
squares estimator appears to behave unsatisfactory, in general. Furthermore,
we have shown that the bias of iJw is dependent on the true risk difference
itself, on the baseline rate, and on the difference of sampIe size between
treatment arm and control arm. Another important point is that a persis-
tent bias für iJw exists, also when the number of centers becomes large.
Consequently, the weighted least squares estimator is not meta-consistent.
The source of the bias für iJw is the replacement of the unknown pr and pf

T C

with ~ and ~. In conclusion, the WLS-estimator with estimated weightsn. n.
should'be avoided. Instead, the Cochran's or the Mantel-Haenszel estima-
tor provide meta-consistent alternatives, which were also in special cases
efficient.
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APPENDIX

Here, we compare the three different published possibilities in deal-
ing with the occurrence of zeros, when we use the WLS-estimator. The
first approach comes from Lipsitz et al. (WLip). They remove the center if

T( T T) c( C c)
=O-RT + =O-RT is equal to zero. The second approach used, due

to Greenland and Robins (WGRl), is to add ~ to each cello The third ap-
proach is mentioned also by Greenland and Robins (WGR2)' In this case
~ is added only in the weights and not für calculating of iJi. In Figures
4, 5 and 6 we compare these three approaches with the following settings:
-{) = 0,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4, and 0.45, pc '"""' U(0,0.5), and
nT, nc '"""' Poi(5), and k = 1000. In Figure 4, we can see that in Lipsitz's

approach a nearly constant bias of iJw = -0.032 is generated. The other

two approaches are unbiased when -{) is zero. If -{) is unequal to zero, then
the absolute value of bias iJw, when using the weights WGR2 is always tower
than the with using the weights WGRl. Particularly, when looking at the
MSE, we can see that in the third approach using WGR2 the value of the
MSE is tower than in the second approach using WGRl. This is the maiß
reason why we used the third approach für our comparative analysis. When
looking at the variance (Figure 5), the approach using WGRl has always the
lowest value.
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BIAS
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-0.02

-" -~--

-0.04 I

Fig. 4 Bias of iJw with WLip (dashed line), WGRl (thick line) and WGR2 (fine
line) as function of {}
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0.000075
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Fig.5 Variance ofiJw with WLip (dashed line), WGRl (thick line) and WGR2 (fi?e
line) as function of {}
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M31!

0.002
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rs.
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Fig. 6 m.s.e. of 19w with WLip (dashed line), WGRl (thick line) and WGR2 (fine
line) as function of '19
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