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ABSTRACT

This paper focuses on the test for homogeneity of relative risk in meta-analysis

of count outcomes. Meta-analysis of studies with rare events faces particular chal-

lenges, since the number of studies are low and the frequency of events may be

small in some or all treatment arms. In such a case, the conventional chi-square test

for homogeneity becomes undefined and we suggest a new chi-square test which is

always defined. However, the chi-square approximation is poor. We therefore intro-

duce methodology to obtain its exact distribution which is based on the product

binomial likelihood. The exact p-value is then derived and the performance of the

method is investigated using simulations. The results show that the type I error of

the proposed method satisfies the nominal significance level in rare events situations.

Also, the exact distribution behaves very similar to the simulated distribution. A

real data example of a meta-analysis with an extreme form of rare event studies is

used to illustrate the new test.
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1. Introduction

Meta-analysis is a statistical tool used to analyze and combine the results obtained

from many individual, independent studies on the same research topic. The outcome

in trials is often an event or a condition, and the studies are designed for comparing

the occurrence of that event in two groups, an intervention and a control group. We



use here the term event in a generic sense and it could mean a death, the occurrence

of a complication following a surgery or alike, depending on the setting. In many tri-

als, the count data on the event of interest is often rare. A rare event means that

event occurrence is very low, so that frequently a small number or no observations

of the event of interest are observed in a trial [1]. For example, improved anaesthesia

safety has lead to quite rare events of anaesthesia-related incidents, complications, and

deaths [2]. When there are no events in treatment or control group (called single-zero

study) or both (called double-zero study), simple approaches often used are exclusion

of studies or adding a continuity correction, typically 0.5, to all cells of the contingency

table for studies with no events. The traditional meta-analysis, commonly referred to

the inverse-variance-weighted average method, is then used to estimate the overall

effect size parameter, for example the odds ratio (OR) or risk ratio (RR) [3,4]. How-

ever, meanwhile a diversity of research works suggest that exclusion of studies and

adding continuity corrections can introduce bias in calculation of effect measures in

meta-analysis, leading to low performance of the traditional approach. So, both meth-

ods should be avoided especially when sample sizes are severely unbalanced or small

events are available in studies. This topic is widely discussed in recent literature, for

example, Sweeting et al., Bradburn et al., Keus et al., Kuss, Efthimiou, and Jackson

et al. [5–10]. The method which is robust to the occurrence of rare events and does

not require any continuity correction, called Mantel-Haenszel (MH) [11], has become

popular for estimating summary effect measures such as the relative risk or odds ratio.

However, as heterogeneity of effect is frequently of interest, it is not clear how testing

of homogeneity can be accomplished in the rare events situation. This is discussed in

the next section.

1.1. Testing for homogeneity

Let us first outline the conventional approach for testing homogeneity of the risk ratio

in meta-analysis. Suppose that Xij is a Poisson random variable denoted as the number

of events (deaths or complications, etc.) of study i and group j, for i = 1, 2, ..., k and

j = 0, 1. Here, k is the number of studies in the meta-analysis, j = 1 stands for an

intervention and j = 0 for a comparison group. The mean and variance of Xij are
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E(Xij) = V ar(Xij) = µijTij , where µij is the incidence rate parameter (event risk)

for study i and group j, and Tij is the duration or person-time at risk for study i and

group j. The latter is non-random. For each study, the true risk ratio is defined as

RRi = µi1/µi0 and estimated by R̂Ri = Xi1/Ti1

Xi0/Ti0
. To determine the dispersion of the

estimator, we consider the variance of the risk ratio on the log-scale measure, log R̂Ri.

Using the delta method and based on a normal approximation [12], the variance of

log R̂Ri is given by V̂ ar(log R̂Ri) = 1/Xi1 + 1/Xi0, assuming that Xi1 and Xi0 are

both positive.

For a meta-analysis of k independent studies, the overall true risk ratio is denoted

as RR, the ratio of the event occurrence probability( risks) in the exposed or interven-

tion group to the event probability in the non-exposed or comparison group. If the risk

ratios are identical across all studies, homogeneity of effect is present. If there is vari-

ability of the risk ratio across studies which frequently occurs, we are in the situation

of heterogeneity. To capture this more general situation we allow µi1 and µi0 to have

specific distributions across studies, respectively. The true risk ratio is therefore given

as RR = ∆1/∆0, where ∆1 and ∆0 are the expected values of the distributions of µi1

and µi0, respectively. It is important to know about the presence of heterogeneity in

the risk ratio and its size as this will likely influence the choice of analysis such as

using the fixed effect or random effects model.

A test for homogeneity examines the null hypothesis that all studies are evaluating

the same effect [13,14]. For a test of homogeneity of the risk ratios in meta-analysis,

the hypotheses are given by

H0 : RR1 = RR2 = ... = RRk = RR = ∆1/∆0

H1 : At least one of the studies has different risk ratio.

Here, H0 means that homogeneity of the risk ratio is present, while H1 states that

heterogeneity of effect has occurred. Note that H0 neither implies that µ11 = · · · = µk1

nor that µ10 = · · · = µk0 is valid .
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The most commonly used statistic related to these hypotheses is Cochran’s Q, which

consists of a weighted sum of the square deviations of the observed effect sizes from

the overall meta-analytic estimate [15,16]. The test statistic is given by

QHom =
k∑

i=1

(log R̂Ri − log R̂RMH)2

V̂ ar(log R̂Ri)
, (1)

where R̂RMH =
Pk

i=1 Xi1Ti0/(Ti1+Ti0)Pk
i=1 Xi0Ti1/(Ti1+Ti0)

is the Mantel-Haenszel (MH) estimator for the

summary risk ratio. Under H0, given some regularity conditions (number of events

become large), QHom has an asymptotic chi-square distribution with k − 1 degrees of

freedom (χ2
df.=k−1). The p-value, the probability that QHom is taking a value equal or

larger than the one observed given the null hypothesis is true, is obtained on the basis

of a χ2
df.=k−1-distribution.

1.2. Motivating data

This work is motivated by a meta-analysis on the perinatal death in post-term preg-

nancy of routine and selective inductions, conducted by Crowley [17]. Table 1 shows

this dataset. It includes 19 studies, where 11 studies have no events (perinatal deaths)

in both treatment arms of induction of labor, and seven studies have zero events in

one arm. As noted in many works, small and medium sample sizes as well as rare

events are frequently encountered in applications. In these situations, statistics based

on normal approximation theory lack of robustness and/or efficiency. The use of the

inverse-variance-weighted average method with rare events in many studies can lead to

low performance estimator [18–21]. Furthermore and most importantly here, if either

number of deaths in routine induction Xi1 or selective induction Xi0 is zero, in other

words, if at least no event is observed in one arm, the study-specific measure R̂Ri is

undefined. Consequently, QHom cannot be computed using the type of data as shown

in Table 1. This is a crucial problem of meta-analysis of rare count data.
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Table 1. Meta-analytic data on the perinatal death in post-term pregnancy for routine and selective
inductions.

Routine induction Selective induction
Author, year Number of patients Number of deaths Number of patients Number of deaths

Henry, 1969 57 2 55 0
Cole, 1975 119 0 118 0
Martin, 1978 134 1 131 0
Tylleskar, 1979 55 0 57 0
Breart, 1982 235 0 481 0
Katz, 1983 78 0 78 1
Suikkari, 1983 53 0 66 0
Sande, 1983 90 0 76 0
Cardozo, 1986 207 1 195 0
Augensen, 1987 195 0 214 0
Dyson, 1987 150 1 152 0
Witter, 1987 97 0 103 0
Bergsjo, 1989 94 1 94 0
Egarter, 1989 168 1 188 0
Martin, 1989 10 0 12 0
Heden, 1991 129 0 109 0
Hannah, 1992 1706 2 1701 0
Herabuyta, 1992 51 0 57 0
NICH, 1994 175 0 235 0

1.3. Conditional binomial model

In this section, we introduce an alternative statistic for testing homogeneity for the

risk ratio. It is constructed using information on the conditional probability of the

number of events in the treatment arm, Xi1, given the total number of events Xi =

Xi1 +Xi0. In this case, Xi1 conditional on Xi is known to have a binomial distribution

with size parameter Xi and probability event parameter πi = µi1Ti1

µi0Ti0+µi1Ti1
, denoted

as Xi1|Xi ∼ Bi(Xi, πi). The mean and variance of Xi1|Xi are E(Xi1|Xi) = Xiπi and

V ar(Xi1|Xi) = Xiπi(1 − πi), respectively. The likelihood function of Xi1|Xi is given

by
∏k

i=1

(
xi

xi1

)
πxi1

i (1 − πi)xi−xi1 , where x denotes the observed value of X. Under H0,

homogeneity of risk ratios across trials, the test statistic constructed based on the

conditional binomial model is therefore given as

Q =
k∑

i=1

(xi1 − xiπ̂i)2

xiπ̂i(1− π̂i)
, (2)

where π̂i =
dRRMH(Ti1/Ti0)

1+dRRMH(Ti1/Ti0)
is the estimator for πi and k is the number of studies

excluding double-zero studies. This simple non-parametric statistic is always defined

and has an approximate chi-square distribution with k − 1 degrees of freedom, and

the p-value is given by pχ2 = Pr(Q ≥ q|H0), where q is the observed value of Q.
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(b) Gamma distribution 
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Figure 1. Probability plots of simulated Q for k = 5 and 30, xi = 1 or 2, and πi = xyz.

In practice, if the observed value of Q is greater than a critical value, or pχ2 is less

than the significance level, H0 will be rejected. We note that this method is based on

a one-step model which avoids the standard practice of estimating effects from the

single studies and calculating meta estimators in a second step.

A small simulation to evaluate the performance of Q for rare events situations is

shown in Figure 1. It shows the probability plot with respect to a chi-square distribu-

tion for the very rare events situation for k = 5 and k = 30 in the upper two panels.

It is clear that the approximation is not satisfactory. Kulinskaya and Dollinger [? ]

suggest the use of a gamma distribution as approximating distribution. The lower two

panels in Figure 1 show the probability plots of the best fitting gamma distribution.

Clearly, approximations are substantially improved, but remain lacking fit.

When studies include few or zero events, methods based on a normal approximation

can lead to unreliable statistical inference [10,23,24]. Indeed, to reach a satisfying ap-

proximation to the χ2
df.=k−1-distribution, Xi has to be large which is not the case in the
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rare events situation. Other parametric distributions, such as the mentioned gamma

distribution suggested by Kulinskaya and Dollinger [? ] might improve approximations,

but, ultimately, the source of the problem of reaching a good approximation remains

in the discrete nature of the underlying count data. In this paper, we will derive, for

the rare events situation, the exact null-distribution of the homogeneity test statistic

based on the one-step model.

The main contribution of this paper is to present an alternative approach to derive

the exact distribution of the test statistic constructed using the likelihood of a condi-

tional binomial model. The proposed method to find the exact distribution is based

on considering all possible outcomes of cases on the total. Then, the exact p-value

is derived. The details of these methods are given in Section 2. In Section 3, we use

a real dataset in a meta-analysis of rare events to illustrate our approach. The per-

formance of the test based on the proposed method is assessed by simulations, and

compared with that of the bootstrap method and the asymptotic method based on

a chi-square distribution. The investigation of the exact distribution and simulation

results are given in Section 4. Comprising findings in all sections enable us to reach

some important conclusions that we discuss in Section 5.

2. Exact distribution of Q

The exact conditional distribution is derived for the statistic given in equation (2) in

the rare events situation. In this section, we define the required notations for clarity

and convenience. The non-parametric statistic for test of homogeneity of the risk ratio

in meta-analysis is then given by

Q =
k∑

i=1

(xi1 − xiπi)2

xiπi(1− πi)
(3)

for given probability parameter πi and total number of events from both treatment

arms xi = xi1 + xi0. Since Xi1 ∼ Bi(xi, πi), the probability mass function is given by

Pr(Xi1 = xi1) =
(

xi

xi1

)
πxi1

i (1 − πi)xi−xi1 . For all k studies, we need to find the joint

likelihood. This can be accomplished by noting that the probability for observing
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X = x = (x11, x21, ..., xk1) is given as the product binomial probability:

Pr(X = x) =
k∏

i=1

(
xi

xi1

)
πxi1

i (1− πi)xi−xi1 ,

where xi1 = 0, 1, 2, ..., xi and 0 ≤ πi ≤ 1. It follows that

Pr(Q = q) = f(q) =
∑
x∈Ωq

k∏
i=1

(
xi

xi1

)
πxi1

i (1− πi)xi−xi1 , (4)

where the set Ωq = {x|Q =
∑k

i=1
(xi1−xiπi)2

xiπi(1−πi)
= q}, q is the observed value of Q, and

0 ≤ f(q) ≤ 1. Therefore, f(q) is denoted as the exact distribution of Q presented in

equation (3).

To obtain the exact distribution and the p-value of Q, the proposed method uses

all feasible vectors x. Algorithms are provided to accomplish these objectives. The

procedures for deriving the exact distribution f(q) and computing the exact p-value

are given as follows.

Deriving the exact distribution of Q

• Step 1. Consider all possible vectors x = (x11, x21, ..., xk1), which could arise in

these k studies with sizes x1, x2, ..., xk. The number of these vectors is given by

M =
∏k

i=1(xi +1). Note that x1, x2, ..., xk are considered fixed in this approach.

• Step 2. Compute the observed value of Q for each of these vectors x from

qx =
k∑

i=1

(xi1 − xiπi)2

xiπi(1− πi)
.

• Step 3. Consider each vector of x and its associated probability

f(x) = f(qx) =
k∏

i=1

(
xi

xi1

)
πxi1

i (1− πi)xi−xi1 ,

where 0 ≤ f(x) ≤ 1.
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• Step 4. Consider the discrete mass function of Q

f(q) =
∑
x∈Ωq

f(x), (5)

where Ωq = {x|Q =
∑k

i=1
(xi1−xiπi)2

xiπi(1−πi)
= q}. This gives the desired distribution

f(q), the exact distribution of Q.

Note that in Step 1, a binomial random sample xi1 can take any value from zero

to the total number of events xi, hence there are xi + 1 different values. When all

binomial random samples in k independent studies are considered, the size of sam-

ple space is then given by M , the combinations of xi + 1, for i = 1, 2, ..., k. In R

(https://www.r-project.org/), a simple function suggested for enumerating all possi-

bilities is expand.grid(). An example will be given in the next section. In Step 2, the

parameter πi is denoted as the event probability in the intervention group of study i

and is given by πi = µi1Ti1

µi0Ti0+µi1Ti1
. Dividing fractions by µi0Ti0, the probability event

can be re-written as πi = RR(Ti1/Ti0)
1+RR(Ti1/Ti0)

. We can see that this probability is dependent

only on the parameter of interest, the risk ratio. In Step 3, M values of f(x) are

obtained and provide the exact distribution of Q in Step 4.

Computing the exact p-value of Q

• Step 1. Compute the observed values of πi and Q from the real data.

• Step 2. Consider M possible vectors x = (x11, x21, ..., xk1), which could arise in

k studies with sizes x1, x2, ..., xk.

• Step 3. Compute the observed value of Q for each of these vectors x from qx.

• Step 4. Calculate the likelihood function f(x).

• Step 5. Compute the p-value of Q from

p =
∑
x∈Ω

f(x), (6)

where Ω = {x|qx ≥ Q}.
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Note that in Step 1 the estimator of πi is given by π̂i =
dRRMH(Ti1/Ti0)

1+dRRMH(Ti1/Ti0)
. This can

be computed even if the studies include zero events. For each of the vectors in Step

2, qx is computed, and compared to the observed Q obtained from Step 1. If qx ≥ Q,

this implies that the null hypothesis is rejected. In Step 5, the p-value is then derived.

Since it uses the exact distribution in its algorithmic construction, this is noted as the

exact p-value of Q.

We emphasize that the exact p-value will be used to make a decision in hypothesis

testing. If the exact p-value or p given in equation (6) is smaller than the significance

level (α), the null hypothesis is rejected. Hence, we have estimated the type I error on

the basis of the exact p-value:

α̂ = Pr(p ≤ α|H0) = 1− Pr(p > α|H0),

where Pr(p ≤ α|H0) refers to the probability that H0 is rejected given it is true.

3. Empirical illustrations

In this section, we demonstrate how the exact p-value of Q works using real data.

The example on the number of deaths in routine early pregnancy ultrasound and

selective induction of labour [17] mentioned in Section 1 are applied. Many studies in

this dataset include rare events in both treatment (routine induction) and comparison

arms. Q is only defined for xi > 0 in the denominator. The studies with xi = 0

(double-zero studies) are excluded before the analysis, and eight remaining studies of

the perinatal death data are used. The Mantel-Haenszel estimate for the risk ratio is

computed and given by R̂RMH = 0.11 with the 95% confidence interval of (0.01, 0.88).

This shows a decrease of the number of perinatal deaths in the selective induction arm

and a high preventive effect of this intervention.

We calculate the Q statistic given in equation (3). To find the exact p-value, the

steps discussed in Section 2 are used with R package. R-code for the use in applications

is given in the Appendix. Next, the p-values obtained from two methods (approximate

and bootstrap methods) are investigated, and compared to the proposed exact p-value.
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Table 2. P-values and observed values of Q statistic for homogeneity test of the risk ratios using the dataset on
the perinatal death in post-term pregnancy (α = 0.05).

Approach Exact method Approximate method Bootstrap method 1 Bootstrap method 2

Observed Q statistic 9.9822 9.9822 7.9858 7.9915
p-value 0.3604 0.1896 0.3412 0.3427

From the data example, the approximate method uses the Q test statistic based on a

chi-square distribution with seven degrees of freedom. The p-value is simply obtained

by pχ2 = Pr(Q ≥ q = 9.9822) = 0.1896. Then, we compute the p-value using the

bootstrap method as a resampling based approach. We design two different methods

to obtain the distribution under the null hypothesis and derive the bootstrap p-value.

The processes of these methods are given in the following of this section: Algorithm 1

based on recalculation of π̂i for every bootstrap sample and Algorithm 2 based on fixed

π̂i. Table 2 incorporates the results obtained from four methods. For the bootstrap

methods, the observed values of Q and the probability values are estimated on average

values of 1,000 samples. All p-values are greater than the significance level at 0.05.

It can be concluded that no statistically significant difference in risk ratios is found

across studies for this dataset.

From the results in Table 2, we point out that the probability values computed

from the methods which do not depend on the chi-square distribution are similar,

having values around 0.34 to 0.36. Meanwhile, the p-value based on the approximate

method shows the lowest value and differs from the other methods. Therefore, it is of

interest to investigate the performance of these methods, in particular, if the latter

three give the correct null-distribution. Therefore, these investigation are conducted

using simulations in the next section.

Computing the bootstrap p-value (Algorithm 1)

• Step 0. Fix the bootstrap samples B = 1, 000 (or a similar large number) in

order to obtain an accurate estimate of the p-value, and compute the estimates

of πi and Q from the real data.

• Step 1. Draw a sample of size k with replacement from the data, leading to x∗i

and π∗i .

• Step 2. Sample x∗i1 from Bi(x∗i , π
∗
i ).
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• Step 3. Compute π∗∗i using information obtained from Steps 1 and 2.

• Step 4. Compute a bootstrap sample Q∗∗ =
∑k

i=1
(x∗i1−x∗i π∗∗i )2

x∗i π∗∗i (1−π∗∗i ) .

• Step 5. Repeat the procedure in Steps 1 to 4 for B times.

• Step 6. Calculate the bootstrap p-value from bp1 = n(Q∗∗≥Q)
B , where n(Q∗∗ ≥ Q)

is the number of times that Q∗∗ is greater than Q.

Computing the bootstrap p-value (Algorithm 2)

• Step 0. Fix the bootstrap samples B = 1, 000 in order to obtain an accurate

estimate of the p-value, and compute the estimates of πi and Q from the real

data.

• Step 1. Draw a sample of size k with replacement from the data, leading to x∗i .

• Step 2. Sample x∗i1 from Bi(x∗i , πi).

• Step 3. Compute a bootstrap sample Q∗ =
∑k

i=1
(x∗i1−x∗i πi)2

x∗i πi(1−πi)
.

• Step 4. Repeat the procedure in Steps 1 to 4 for B times.

• Step 5. Calculate the bootstrap p-value from bp2 = n(Q∗≥Q)
B , where n(Q∗ ≥ Q)

is the number of times that Q∗ is greater than Q.

4. Simulation study

To evaluate the performance of the proposed method, simulation studies were con-

ducted to compare the type I error rate of the proposed p-value to that of the ap-

proximate p-value (referred to pχ2 hereafter) and the bootstrap p-values (referred to

bp1 and bp2). The simulations were carried out using R [25], and designed to cover

scenarios with varying number of studies k = 3, 5, 10, and 15. The total number of

events xi were generated from the discrete uniform distribution on U [1, 2]. Hence the

binomial size parameter can only take vlues 1 or 2. This seems like an extreme situa-

tion but mimics the motivating data example closely. The number of events xi1 were

sampled from a binomial distribution Bi(xi, πi), where πi was 0.3, 0.4, 0.5, and 0.6

reflecting the risk ratios as 0.4, 0.7, 1, and 1.5, respectively. These were set to mimic

meta-analysis with small events. The nominal significance level was given by α = 0.05.

Each case in simulations was repeated R = 5,000 times, and B = 1,000 bootstrap
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Table 3. Simulation results for the average p-values and type I errors of the Q statistic for test of homogeneity
using four methods (α = 0.05).

Approximate method Exact method Bootstrap method 1 Bootstrap method 2
k q p-value Type I error p-value Type I error p-value Type I error p-value Type I error

3 0.3 0.3383 0.0004 0.3457 0.0328 0.4259 0.0031 0.4258 0.0035
0.4 0.3199 0.0006 0.3358 0.0384 0.4103 0.0042 0.4101 0.0036
0.5 0.3159 0.0006 0.3325 0.0466 0.4054 0.0048 0.4052 0.0046
0.6 0.3194 0.0005 0.3353 0.0424 0.4088 0.0046 0.4083 0.0042

5 0.3 0.3599 0 0.3922 0.0342 0.4134 0.0042 0.4133 0.0038
0.4 0.3426 0 0.3846 0.0487 0.4090 0.0064 0.4097 0.0050
0.5 0.3358 0 0.3849 0.0503 0.4179 0.0052 0.4177 0.0058
0.6 0.3433 0 0.3820 0.0453 0.4083 0.0053 0.4086 0.0054

10 0.3 0.4115 0.0024 0.4744 0.0212 0.4913 0.0124 0.4922 0.0122
0.4 0.3805 0 0.4498 0.0473 0.4519 0.0425 0.4511 0.0440
0.5 0.4061 0.0020 0.4997 0.0567 0.5146 0.0328 0.5147 0.0316
0.6 0.3736 0 0.4348 0.0507 0.4522 0.0463 0.4521 0.0462

15 0.3 0.3907 0 0.4624 0.0095 0.4708 0.0039 0.4706 0.0042
0.4 0.3866 0 0.4805 0.0225 0.4840 0.0117 0.4840 0.0108
0.5 0.3936 0 0.4794 0.0275 0.4832 0.0175 0.4833 0.0164
0.6 0.3871 0 0.4783 0.0237 0.4849 0.0103 0.4849 0.0103

samples were used for each case. The criteria used to evaluate the performance of the

approach was the type I error. The latter was estimated by

α̂ = 1− n(p-value > α|H0)
R

,

where n(p-value > α|H0) is the number that the observed p-value is greater than the

given significance level under data generated under the null hypothesis. The method

that has an average type I error closest to the nominal significance level is preferred.

In the other words, the method that can control the type I error rate best outperforms

the comparison.

The simulation results are presented in Table 3. The p-values obtained from the

approximate method were the smallest in all situations. This matched the result con-

ducted using the real dataset in Section 3. Moreover, this method provided the sim-

ulated type I error close to zero, and much lower than the target significance level

at α = 0.05. It is clear that the approximate method is inappropriate for the rare

evens situations. Next, the methods that do not depend on a chi-square distribution

were considered. The results showed that two bootstrap methods had similar p-value.

Their p-values did not differ much from that of the exact method. These also matched

the result in the case study. However, when we considered the evaluation criteria,

only type I errors of the exact method were close to the nominal significance level at
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α = 0.05, especially in small number of studies (k ≤ 10). Overall, ranking by closeness

of the type I error to the nominal significance level gave preference to the exact and

then the bootstrap methods. We therefore conclude that our proposed method can

satisfactorily control the type I error rates and perform much better than the approx-

imate method in meta-analysis of rare events. It is important to recall that the use

of statistics based on an approximate method to test of homogeneity in meta-analysis

when studies involve small events must be done with great care.

Then, we investigated the null distribution of the exact test to support the ac-

curacy of the exact approach. The exact distribution of Q was determined using the

proposed procedure presented in Section 2. In comparison, we generated the exact null-

distribution of Q using simulation based on product-binomial sampling from 10, 000

replications. The distributions of Q considered from many scenarios are shown graph-

ically as in Figures 2 and 3. From the results, our proposed method provided the

distribution of Q very similar to the simulated distribution for any setting. We take

this as evidence that the null distribution of Q has been correctly determined with the

algorithm given in equation (5).

5. Discussion

Testing whether the study results are homogeneous is an important topic in meta-

analysis. Evidence of heterogeneity indicates aptness of a random effects approach.

We have seen that for rare events analysis the conventional chi-square statistic QHom

is not defined when studies with no events occur. The alternative test statistic Q which

is suggested here and based on the conditional binomial approach is always defined

but the approximation of the chi-square distribution poor. This is particular true for

the rare events setting considered here and also persists when the number of studies

k increase. Kulinskaya and Dollinger [? ] suggested to use the gamma distribution to

approximate the true distribution of Q. We have found that their suggestion lead to

considerable improvement in the approximation if compared to the chi-square distri-

bution. However, for our extreme scenario, also the approximation with the gamma

distribution remains unsatisfactory.
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k = 3,  xi = 2,  pi = 0.3       

   
k = 3,  xi = 2,  pi = 0.4 

  
k = 3,  xi = 2,  pi = 0.5       

   
k = 3,  xi = 2,  pi = 0.6 

  

Figure 2. The distributions of Q: simulated distribution (left) and exact distribution (right) for k = 3, xi =
2, and vary settings of πi.
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k = 10,  xi = 2,  pi = 0.3   

  
k = 10,  xi = 2,  pi = 0.4 

  
k = 10,  xi = 2,  pi = 0.5    

  
k = 10,  xi = 2,  pi = 0.6 

  
 

Figure 3. The distributions of Q: simulated distribution (left) and exact distribution (right) for k = 10, xi

= 2, and vary settings of πi.
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It appears that there seems no simple and valid approximation of the null-

distribution of Q for the very rare event case. Hence a computational approach seems

the best way to find the true null distribution of Q which is suggested in this paper.

In practice, the exact distribution is derived using the process given in Section 2 using

R-code given in the Appendix.

The simulations were used to investigate the performance of the proposed method.

It was found that in the cases of rare events the exact p-value of Q can adequately

control the type I error rates. The exact p-value had a type I error rate closer to

the nominal significance level. Also, it outperformed the p-values obtained from the

approximate method based on a chi-square distribution with k− 1 degrees of freedom

and the bootstrap method. Let us discuss this point. We first focus on the Q statistic

based on χ2
df.=k−1-distribution. When small number of events occur in a meta-analysis,

the observed value computed from Q is also small (smaller than the one obtained

from a common events setting and smaller than expected under a valid chi-square

distribution), while the degree of freedom used to find the critical value is still from

a chi-square with k − 1 df. In statistical hypothesis testing, this makes it is hard to

reject the null hypothesis, especially in meta-analysis of studies with extremely small

events. We assume that this is a reason to find a low performance of the conventional

test in terms of type I error. For the method proposed in this paper, the exact test

uses information from the available data. The p-value is computed based on the exact

distribution and does entirely not depend on the degrees of freedom or critical value,

which is often muddled up in the analysis of studies with rare events. According to

Figures 2 and 3, the exact distribution of Q introduced in this paper was identical to

the simulated distribution. This demonstrates that the proposed method provides the

correct distribution of Q in the case of rare events. The exact p-value has a simple

structure and is easy to compute, given the developed code in R.

Appendix

Example of R-code used to compute the exact p-value of Q is given in the following.

Here, the perinatal death data noted in Section 3 are applied.
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######### Computing the exact p-value of Q #########

studyi =c(1,3,6,9,11,13,14,14)

pi1 = c(55,131,78,195,152,94,188,1701)

xi1 = c(0,0,1,0,0,0,0,0)

pi0 = c(57,134,78,207,150,94,168,1706)

xi0 = c(2,1,0,1,1,1,1,2)

xi = xi0+xi1; pi = pi0+pi1; ri = pi1/pi0

data = data.frame(studyi,pi1,xi1,pi0,xi0,pi,xi,ri)

data = data[!(data$xi==0), ]

rrmh = sum(data$xi1*data$pi0/data$pi)/sum(data$xi0*data$pi1/data$pi)

qi = data$ri*rrmh/(1+data$ri*rrmh)

data = data.frame(data,qi)

Q = sum((data$xi1-data$qi*data$xi)^2/(data$xi*data$qi*(1-data$qi)))

approximate.p.value = pchisq(Q,length(data$xi)-1, lower.tail=FALSE )

pi1 = data$pi1; xi1 = data$xi1; pi0 = data$pi0; xi0 = data$xi0

pi = data$pi; xi = data$xi; ri = data$ri; qi = data$qi; k = length(xi)

sam = expand.grid(x1.1=0:xi[1], x1.2=0:xi[2], x1.3=0:xi[3], x1.4=0:xi[4], x1.5=0:xi[5],

x1.6=0:xi[6], x1.7=0:xi[7], x1.8=0:xi[8] )

pi1 = matrix(pi1, 1, k, dimnames = list(c(), c("p1.1", "p1.2", "p1.3", "p1.4", "p1.5",

"p1.6", "p1.7", "p1.8")) )

pi0 = matrix(pi0, 1, k, dimnames = list(c(), c("p0.1", "p0.2", "p0.3", "p0.4", "p0.5",

"p0.6", "p0.7", "p0.8")) )

pi = matrix(pi, 1, k, dimnames = list(c(), c("pi.1", "pi.2", "pi.3", "pi.4", "pi.5",

"pi.6", "pi.7", "pi.8")) )

ri = matrix(ri, 1, k, dimnames = list(c(), c("ri.1", "ri.2", "ri.3", "ri.4", "ri.5",

"ri.6", "ri.7", "ri.8")) )

xi = matrix(xi, 1, k, dimnames = list(c(), c("xi.1", "xi.2", "xi.3", "xi.4", "xi.5",

"xi.6", "xi.7", "xi.8")) )

data.b = data.frame(sam, ri, pi1,pi0,pi,xi )

data.b = transform(data.b, x0.1 = xi.1-x1.1, x0.2 = xi.2-x1.2, x0.3 = xi.3-x1.3, x0.4 = xi.4-x1.4,

x0.5 = xi.5-x1.5, x0.6 = xi.6-x1.6, x0.7 = xi.7-x1.7, x0.8 = xi.8-x1.8 )

data.b = transform(data.b, b1 = x1.1*p0.1/pi.1, c1 = x0.1*p1.1/pi.1, b2 = x1.2*p0.2/pi.2,

c2 = x0.2*p1.2/pi.2, b3 = x1.3*p0.3/pi.3, c3 = x0.3*p1.3/pi.3, b4 = x1.4*p0.4/pi.4,

c4 = x0.4*p1.4/pi.4, b5 = x1.5*p0.5/pi.5, c5 = x0.5*p1.5/pi.5, b6 = x1.6*p0.6/pi.6,

c6 = x0.6*p1.6/pi.6, b7 = x1.7*p0.7/pi.7, c7 = x0.7*p1.7/pi.7, b8 = x1.8*p0.8/pi.8,

c8 = x0.8*p1.8/pi.8 )

data.b = transform(data.b, b = b1+b2+b3+b4+b5+b6+b7+b8, c = c1+c2+c3+c4+c5+c6+c7+c8 )

data.b = transform(data.b, rrmh=b/c )

data.b = transform(data.b, qi.1 = data$qi[1], qi.2 = data$qi[2], qi.3 = data$qi[3],

qi.4= data$qi[4], qi.5= data$qi[5], qi.6= data$qi[6], qi.7= data$qi[7], qi.8 = data$qi[8] )
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data.b = transform(data.b, a1 = (x1.1-qi.1*xi.1)^2/(qi.1*xi.1*(1-qi.1)),

a2=(x1.2-qi.2*xi.2)^2/(qi.2*xi.2*(1-qi.2)), a3=(x1.3-qi.3*xi.3)^2/(qi.3*xi.3*(1-qi.3)),

a4=(x1.4-qi.4*xi.4)^2/(qi.4*xi.4*(1-qi.4)), a5=(x1.5-qi.5*xi.5)^2/(qi.5*xi.5*(1-qi.5)),

a6=(x1.6-qi.6*xi.6)^2/(qi.6*xi.6*(1-qi.6)), a7=(x1.7-qi.7*xi.7)^2/(qi.7*xi.7*(1-qi.7)),

a8=(x1.8-qi.8*xi.8)^2/(qi.8*xi.8*(1-qi.8)) )

data.b = transform(data.b, q = a1+a2+a3+a4+a5+a6+a7+a8 )

pval = ifelse(data.b$q > Q, 1, 0)

data.b = data.frame(data.b, pval)

data.b = data.b[complete.cases(data.b), ]

data.b = data.b[!(data.b$pval==0), ]

data.b = transform(data.b, pdf = dbinom(x1.1, xi.1, qi.1)*dbinom(x1.2, xi.2, qi.2)*

dbinom(x1.3, xi.3, qi.3)*dbinom(x1.4, xi.4, qi.4)*dbinom(x1.5, xi.5, qi.5)*

dbinom(x1.6, xi.6, qi.6)*dbinom(x1.7, xi.7, qi.7)*dbinom(x1.8, xi.8, qi.8) )

exaxt.p.value = sum(data.b$pdf)

References
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[24] Friede T, Röver C, Wandel S, et al. Meta-analysis of two studies in the presence of

heterogeneity with applications in rare diseases. Biom J. 2017;59(4):658–671.

20



[25] R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Aus-

tria: R Foundation for Statistical Computing; 2019.

21


	Introduction
	Testing for homogeneity
	Motivating data
	Conditional binomial model

	Exact distribution of Q
	Empirical illustrations
	Simulation study
	Discussion

