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The paper is focussing on some recent developments in nonparametric mixture distributions. It dis-
cusses nonparametric maximum likelihood estimation of the mixing distribution and will emphasize
gradient type results, especially in terms of global results and global convergence of algorithms such
as vertex direction or vertex exchange method. However, the NPMLE (or the algorithms constructing
it) provides also an estimate of the number of components of the mixing distribution which might be
not desirable for theoretical reasons or might be not allowed from the physical interpretation of the
mixture model. When the number of components is fixed in advance, the before mentioned algorithms
can not be used and globally convergent algorithms do not exist up to now. Instead, the EM algorithm
is often used to find maximum likelihood estimates. However, in this case multiple maxima are often
occuring. An example from a meta-analyis of vitamin A and childhood mortality is used to illustrate
the considerable, inferential importance of identifying the correct global likelihood. To improve the
behavior of the EM algorithm we suggest a combination of gradient function steps and EM steps to
achieve global convergence leading to the EM algorithm with gradient function update (EMGFU).
This algorithms retains the number of components to be exactly k and typically converges to the global
maximum. The behavior of the algorithm is highlighted at hand of several examples.

Keywords: mixture models, globally convergent algorithms, multiple maxima

1. The occurrence of mixtures

Mixture distributions occur in a very natural way. Suppose that
for some random variate X of interest a probability density
f (x, λ) is valid, where λ is some real parameter. Suppose fur-
ther that the population is heterogeneous in the sense that there
exist, say, k subpopulations with parameter values λ1, . . . , λk .
If sampling ignores the subpopulation membership then any of
the k parameters could be valid and consequently the likelihood
of observation x becomes

f (x) = p1 f (x, λ1) + · · · + pk f (x, λk) (1)

where p j represents the proportion of subpopulation j in the
general population, j = 1, . . . , k. The ignorance of population
heterogeneity in terms of sampling is frequently unavoidable,
since the covariate (representing the heterogeneity) is unknown

or difficult to measure. We will denote the mixing distribution
giving weight p j to λ j for j = 1, . . . , k by

P =
(

λ1 λ2 · · · λk

p1 p2 · · · pk

)
(2)

and, consequently, indicate the dependency of f (x) in (1) by
f (x) = f (x, P). f (x, P) is the mixture density and f (x, λ) the
mixture kernel. Given a sample of size n, the log-likelihood is
provided as

l(P) =
n∑

i=1

log[ f (xi , P)] =
n∑

i=1

log

[
k∑

j=1

f (xi , λ j )p j

]
(3)

It is one of the important aspects of inference in mix-
ture distributions to maximize the log-likelihood (3). Two
cases have to be clearly distinguished. For one, the num-
ber of mixture components k might be fixed in advance,
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Table 1. Number of Death Notices xi in the TIMES 1910–1912

Count xi Frequency

0 162
1 267
2 271
3 185
4 111
5 61
6 27
7 8
8 3
9 1

and thus by, considered as known. For two, the number of
components k might be itself unknown and part of the es-
timation process. In this case the so-called non-parametric
maximum-likelihood estimator (NPMLE) may be considered.
The name goes back to Laird (1978). Before we review some
of the major algorithms we include a popular example for il-
lustration (Hasselblad 1969, Titterington, Smith and Makov
1985).

1.1. Example 1

The following data are the number of death notices which ap-
peared in the newspaper times between 1910 and 1912 for
women aged 80 years and above (Table 1).

Frequently, for count data a Poisson distribution is used as
mixture kernel:

f (x, λ) = Po(x, λ) = e−λλx/x! (4)

Since a simple Poisson distribution provides a non-adequate fit,
Hasselblad (1969) suggested a two-component mixture (k = 2),
leading to the log-likelihood

l(P) =
n∑

i=1

log

[
k∑

j=1

Po(xi , λ j )p j

]
(5)

and the results of the maximum likelihood estimation (with k =
2 fixed) provides P̂ = (1.2561 2.6634

0.3599 0.6401
). The two components are

usually interpreted as different mortality patterns in winter and
summer.

2. Global maximization

We consider the log-likelihood l in the convex set of all discrete
probability distributions P . Note that this implies that the num-
ber of components k is not fixed in advance. This makes l to be
concave.

2.1. Gradient function

As a major tool the directional derivative at P in the direction
Q is used which is defined as:

�(P, Q) = lim
α→0

= [l((1 − α)P + αQ) − l(P)]/α (6)

Note that (6) can be simply written as �(P, Q) = ∑
i f (xi , Q)/

f (xi , P) − n. The directional derivative becomes particularly
simple for one-point probability mass directions Qλ : �(P, Qλ)
= ∑

i f (xi , λ)/ f (xi , P) − n. This leads in a natural way to the
gradient function as a normalized version of the directional
derivative into the direction of the vertices of the probability
simplex:

d(λ, P) = 1

n

n∑
i=1

f (xi , λ)

f (xi , P)
(7)

In the example of the Poisson f (x, λ) = Po(x, λ) the gradient
function is simply d(λ, P) = 1

n

∑n
i=1

e−λλxi∑
j p j e

−λ j λ
xi
j

.

The general mixture maximum likelihood theorem (Lindsay
1983, Böhning 1982) can now easily be stated as: P̂ is NPMLE
if and only if 1 ≥ d(λ, P̂) for all λ in the parameter space. In
addition, d(λ, P̂) = 1 for all mass points of P̂ with non-zero
mass.

This theorem is very useful in checking candidates for opti-
mality. Consider the data set given in Table 2 which have been
simulated from a single Poisson distribution with parameter 5.

It turns out that x̄ = 4.78 is the NPMLE, as it is easily verified
that 1 ≥ d(λ, x̄) for all λ. This implies that there is no need for
further algorithmic iteration.

A second popular example is provided by the accident insur-
ance data given in Thyrion (1960) and used by Simar (1976) in
a pioneering paper on NPMLE for mixtures of Poisson distribu-
tions. The data are given in Table 3.

Simar (1976) provided P̂Simar = ( 0.089 0.580 3.176 3.669
0.7600 0.2362 0.0037 0.0002

) as
the NPMLE candidate which has been mentioned in the lit-
erature ever since, for example see Carlin and Louis (1996,
p. 74, Table 3.2). However, it is easily verified that P̂Simar is
not NPMLE, since d(x, P̂Simar) > 1 for x = 0; see also Fig. 1.
In fact, the NPMLE is provided in Leroux (1992) to be
P̂ = ( 0. 0.3356 2.5454

0.4184 0.5730 0.0087
) (see also Böhning, 2000).

Table 2. Simulated data set of size n =100 from homogeneous Poisson
distribution with λ = 5

xi 1 2 3 4 5 6 7 8 9 10
Frequency 2 10 17 20 19 12 10 4 4 2

Table 3. Accident data of Thyrion (1960) used by Simar (1976)

xi 0 1 2 3 4 5 6 7
Frequency 7840 1317 239 42 14 4 4 1
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Fig. 1. Gradient function d(λ, P) for P = PSimar and mixture of
Poissons for accident data of Table 3

2.2. Globally convergent algorithms

Unfortunately, the general mixture maximum likelihood
theorem is not helpful in constructing the NPMLE. Algorithms
are required to accomplish this objective. One of the earliest is
the vertex direction method (VDM). For any current discrete
mass distribution P convex combinations (1 − α)P + αQλ are
formed.

Vertex direction method (VDM)

• Step 0. Choose a discrete mass distribution P = (λ1 λ2 ··· λk

p1 p2 ··· pk
)

with arbitrary number of components k.
• Step 1. Determine λmax to maximize d(λ, P) in λ.
• Step 2. αmax is found to maximize the log-likelihood

l((1−α)P +αQλmax ) in α, e.g. on the line connecting current
P (α = 0) with Qλmax• Step 3. Set P = (1 − α)P + αQλmax and go to Step 1.

In Step 1, λmax is found to maximize the gradient function
d(λ, P) in λ. The intuition is to look for the vertex direction
of steepest ascent. In Step 2, αmax is found to maximize the
log-likelihood l((1 − α)P + αQλmax ) in α, e.g. on the line
connecting current P (α = 0) with Qλmax (α = 1). Then, current
P is set to be (1 − αmax)P + αmax Qλmax and Steps 1 and 2 are
repeated until convergence. To illustrate, consider (λ1 λ2 λ3

p1 p2 p3
) and

let λmax = λ4. Then, (1 − αmax)P + αmax Qλmax = (λ1 λ2 λ3 λ4
p′

1 p′
2 p′

3 αmax
),

with p′
j = (1 − αmax)p j for j = 1, 2, 3. The disadvantages of

the VDM are that it is very slow in convergence and has
the tendency to generate clusters of components. A largely
improved alternative is the vertex exchange method (VEM).
In Step 1 of the VEM, not only λmax is found to maximize
the gradient function d(λ, P) in λ, but also λmin is found to
minimize the gradient function d(λ, P) under those λ j of the
current P which receive positive weight.

Vertex exchange method (VEM)

• Step 0. Choose a discrete mass distribution P = (λ1 λ2 ··· λk
p1 p2 ··· pk

)
with arbitrary number of components k.

• Step 1. Determine λmax to maximize d(λ, P) in λ, where λ

is varying in the whole parameter space, and λmin such that
d(λmin, P) is smallest in the set with k elements

{d(λ1, P), d(λ2, P), . . . , d(λk, P)},
where λ1, . . . , λk receive positive weight in P .

• Step 2. αmax is found to maximize the log-likelihood l(P +
αP(λmin)[Qλmax − Qλmin ]) in α.

• Step 3. Set P = P + αmax P(λmin)[Qλmax − Qλmin ] and go to
Step 1.

The intuition is to look not only for vertex directions of steep-
est ascent, but also for those mass points which are “bad” sup-
port points with respect to the gradient function. The VEM
then forms P + αP(λmin)[Qλmax − Qλmin ] where α is again a
line maximizer of the likelihood on the line connecting P with
P + P(λmin)[Qλmax − Qλmin ]. Note that if α = 1 the “bad” sup-
port point λmin is exchanged with λmax; this motivated the name
vertex exchange method. For details see Böhning (2000). As
an illustration, consider again (λ1 λ2 λ3

p1 p2 p3
) and let λmax = λ4 and

λmin = λ2, the latter in the current support of P . Then, we have
P +αmax P(λmin)[Qλmax −Qλmin ] = (λ1 λ2 λ3 λ4

p1 (1−αmax)p2 p3 αmax p2
). Note

that if αmax = 1, then P + P(λmin)[Qλmax − Qλmin ] = (λ1 λ3 λ4
p1 p3 p2

),
and the component λ2 is exchanged with the new component
λ4. The VEM is converging much better than the VDM and it is
able to discard “bad” components rather easily. Both, VDM and
VEM provide globally convergent algorithms in the sense that
they converge from any initial disrete probability distribution to
the NPMLE.

3. Number of components fixed:
Globally convergent algorithms

The algorithms discussed in the previous section will deliver
some estimate k̂ of the number of components k. Frequently
however, it is desired to keep the number of components k con-
stant. The reasons for doing so might be manifold, a few of them
are mentioned as follows.

3.1. Selection procedures for the number of components

The statistical procedure might require to fix the number of com-
ponents. Even so an estimate k̂ of k has been found, this estimate
might be unnecessarily large, that is a smaller value of k might
lead to a similar likelihood. Thus, besides k̂ values like k̂ − 1,
k̂ − 2, . . . are of interest and compared with respect to their
log-likelihood or BIC - value (see also Leroux 1992).

We would like to illustrate the inferential consequences us-
ing the wrong maximum likelihood by means of an example
from meta-analyis. Fawzi et al. (1993) study the effect of Vi-
tamin A supplementation and childhood mortality in preschool
children. We reproduce their Table 4 as our Table 4. All studies
are community-randomized trials from South-Asia or Sout-East
Asia, besides the second study which is from Northern Sudan.
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Table 4. Mortality in community-based trials of Vitamin A supplementation in children aged 6 to 72 months

Location Obs.-Time Vitamin Aa Controla log-RR Variance

Sarlahi (Nepal) 12 152; 14487 210; 14143 −0.34726 0.011341
Northern Sudan 18 123; 14446 117; 14294 0.03943 0.016677
Tamil Nadu (India) 12 37; 7764 80; 7655 −0.78525 0.039527
Aceh (Indonesia) 12 101; 12991 130; 12209 −0.31450 0.017593
Hyderabad (India) 12 39; 7691 41; 8084 −0.00017 0.050031
Jumla (Nepal) 5 138; 3786 167; 3411 −0.29504 0.013234
Java (Indonesia) 12 186; 5775 250; 5445 −0.35455 0.009376
Bombay (India) 42 7; 1784 32; 1644 −1.60155 0.174107

aEntries are number of child deaths and number of children under risk.

The incidence density was estimated according to ÎD = E/T ,
where E are the number of child deaths and T is the person
time, caluclated as the product of children under risk and years
of observation. Consequently, the rate ratio was estimated as
R̂R = ÎDA

ÎDC
, where the index refers to intervention with Vitamin

A supplementation (A) and control (C). For the variance of the
log-rate-ratio the large sample formula Var(l̂ogR̂R) = 1/E A +
1/EC is used, where the indices are as previously defined. To
put the results in a nutshell, Vitamin A supplementation turns
out to be beneficial, though the effect is more beneficial in some
studies than in others. We observe effect heterogeneity which
can be modelled using a mixture approach. Following Laird
(1978) we model the effect measure xi = log R̂Ri for the i-th
study as a mixture of normal densities f (xi ) = p1 f (xi , λ1) +
· · · + pk f (xi , λk), where f (xi , λ) = N (xi , λ, σ 2

i ) is the normal
density with mean λ and variance σ 2

i equal to the observed
variance as provided in the last column of Table 4.

In Table 5 the log-likelihoods for mixture models with var-
ious number of components k are provided. For k = 2, de-
pending on the initial value of the EM algorithm considerable
different log-likelihoods are delivered. In addition, not only the
log-likelihoods are affected, but also other criteria involving the
likelihood such as the Bayesian Information Criterion defined
as BIC = 2l(P∞) − (2k − 1) log(n) which is frequently rec-
ommended as a guideline for selecting the number of compo-
nents (McLachlan and Peel 2000). According to this guideline
we would choose the model with the largest BIC-value. Set 1

Table 5. Log-likelihoods and BIC-values for different values of k in
the meta-analysis of Fawzi et al. (1993)

Set of initial No. of
k values l(P∞)a BIC parameters

1 – −5.00399 −12.0874 1
2 1 −2.73066 −11.6996 3
2 2 −3.23697 −12.7123 3
2 3 −3.10309 −12.4445 3
3 – −1.56781 −13.5328 5
4 (NPMLE) −1.19598 −16.9481 7

a∞ Indicates the parameter values at termination of EM algorithm.

given in column 2 of Table 5 (starting with equal weights on
−1.6 and 0) delivers the correct maximum likelihood leading
to a choice of k = 2 in the model, whereas the other two sets
(set 2 gives equal weight to −0.5 and 0, set 3 equal weight to
−1.6 and −0.5) would provide only local solutions leading to
a choice of k = 1 for the number of components implying ho-
mogeneity. These inferential and, as a further result, substantial
consequences in terms of the interpretation of the meta-analysis
highlight the importance of identifying the correct maximum
likelihood.

3.2. Model requirement for a fixed value
of the number of components

Sometimes the physiological or biological model requires cer-
tain values for k such as k = 2. Specifically, in population re-
lated (non-clinican) medical disciplines like public health mix-
ture models are of high interest since they account for potential
heterogeneity in large population studies. For example, it it well-
known that the diabetis mellitus indicator BLOOD GLUCOSE
experiences a typical two-component normal mixture when stud-
ied in large residential populations (in contrast to clinical popu-
lations). For details, see the work of Lim et al. (2001).

In the case of fixed number of components no globally con-
vergent algorithm exists up-to-date.

Usually, it is recommended to use the EM algorithm
(Dempster, Laird and Rubin 1977) with a number of different
trial values. Firstly, we look at the EM algorithm for the mixture
setting.

3.3. EM algorithm for mixtures

In the mixture setting, the complete-data likelihood is

n∏
i=1

k∏
j=1

f (xi , λ j )
zi j p

zi j

j (8)

where zi j are n unobserved realizations of k component-
indicators Zi1, . . . , Zik . This leads to the complete-data
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log-likelihood

lcom(P) =
n∑

i=1

k∑
j=1

zi j log( f (xi , λ j )) +
n∑

i=1

k∑
j=1

zi j log(p j ) (9)

and the well-known E-Step: E(Zi j | P, x) = ei j = f (xi ,λ j )p j∑
j ′ f (xi ,λ j ′ )p j ′

and M-Step in which the zi j in (9) are replaced by the their
expected values ei j . Maximizing this expected log-likelihood
leads to new estimates as such: pnew

j = ∑
i ei j/n for the weights

and λnew
j where the new values for the λ j -parameters will depend

on the form of the density f (x, λ). If for the single component
model the MLE is the mean, then the form of new estimates for
λ j can be provided as: λnew

j = ∑
i ei j xi/

∑
i ei j .

3.4. Multiple maxima

The problem of occurrence of several local maxima is well-
known for the setting described in the previous section, though it
is seldom investigated in detail. Seidel, Mosler and Alker (2000)
point out that the simulated null-distribution of the likelihood-
ratio test depends on the choice of the initial value for the EM
algorithm. As an illustration consider a sample of size 100 from a
single component exponential distribution. For the data set itself
see the appendix. The number of components is fixed to be k = 2.
As Table 6 illustrates, depending on the initial value for the EM
algorithm considerable different log-likelihoods are delivered.
In addition, not only the log-likelihoods are affected, but also
other criteria involving the likelihood such as the Bayesian In-
formation Criterion (defined previously in Section 3.1) or Akaike
Information Criterion defined as AIC = 2l(P∞) − 2(2k − 1)
which are frequently chosen as a guideline for selecting the num-
ber of components (Leroux 1992, Celeux 2001, McLachlan and
Peel 2000).

Table 7 incorporates the BIC-values as well and a variety of
different BIC-values are obtained depending on the initial value
of the EM algorithm.

Table 6. Different likelihoods at convergence for different initial values
(k = 2)

Set λ
(0)
j p(0)

j λ∞
j p∞

j l(P∞)a

1 1.0000 0.5000 0.7296 0.5749 −73.3814
2.0000 0.5000 0.8154 0.4251

2 0.5000 0.5000 0.7590 0.4781 −73.3555
1.0000 0.5000 0.7726 0.5219

Extreme values
3 0.0010 0.5000 0.0019 0.0235 −71.0982

3.7000 0.5000 0.7845 0.9765
Quartiles
4 0.1800 0.5000 0.0239 0.0939 −69.0262

1.2800 0.5000 0.8430 0.9061
5 0.5000 0.5000 0.7552 0.5091 −73.3566

1.5000 0.5000 0.7774 0.4909

a∞ Indicates the parameter values at termination of EM algorithm.

Table 7. Log-likelihoods and BIC-values for different values of k

Set of initial No. of
k valuesa l(P∞) BIC parameters

1 (x̄) −73.3549 −151.315 1
2 1 −73.3814 −160.578 3
2 2 −73.3555 −160.527 3
2 3 −71.0982 −156.012 3
2 4 −69.0262 −151.868 3
2 5 −73.3566 −160.529 3
3 (NPMLE) −68.8691 −160.764 5

aAccording to Table 6.

3.5. A globally convergent algorithm

Typically, the EM algorithm is employed not using knowledge
from the existing global maximization theory. The global
optimization theory was reviewed in Section 2 in detail to lay
the ground for some simple, theory-guided adjustments of the
EM algorithm to circumvent local maxima. The idea is simply
to combine the algorithmic approaches in Section 2 using the
gradient function with the EM algorithm.

EM Algorithm with gradient function update (EMGFU)

• Step 0. Choose and fix the number of components k;
choose arbitrary starting value P = (λ1 λ2 ··· λk

p1 p2 ··· pk
) for EM

algorithm.
• Step 1. Use EM algorithm to provide at convergence PEM =

P∞.
• Step 2. Determine λmax to maximize d(λ, PEM) in λ.
• Step 3. Determine λmin such that l(PEM + PEM(λmin) [Qλmax −

Qλmin ]) is largest in the set with k elements

{l(PEM + PEM(λ j )[Qλmax − Qλ j ]) | j = 1, . . . , k},

where λ1, · · · , λk receive positive weight in PEM.
• Comment. Note that in Step 3 exactly k values of the log-

likelihood are computed. The point λmax found in Step 2 is
exchanged with each of the k component parametersλ j , where
j runs from 1 to k, and the associated log-likelihood is formed.
Furthermore, note that in Step 3 the gradient function is not
a suitable selection criterion, since for all k values of λ the
gradient function coincides (see Theorem 2).

• Step 4. Let P = PEM + PEM(λmin)[Qλmax − Qλmin ] (Exchange
λmax with λmin). If l(P) > l(PEM), go to Step 1; otherwise
stop.

Note that by forcing α = 1 in Step 3, the number of com-
ponents is always exactly k. Of course, by construction, there is
guarantee of monotonicity and, thus by, convergence.

Theorem 1. Any sequence of log-likelihoods created by the
EMGFU converges monotonically to a stationarity point.
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In Step 3 of the EMGFU, the gradient function was not used as
selection criterion, as it was suggested in the Vertex-Exchange-
Method in Section 2. The reason for using the log-likelihood
instead lies in the fact that the gradient function coincides for
all λ-values obtained at termination of the EM-algorithm.

Theorem 2. Let PEM be the discrete probability distribution
at convergence of the EM algorithm, λ j and p j the associated
paramters for j = 1, . . . , k. Then,

d(λ1, PEM) = d(λ2, PEM) = · · · = d(λk, PEM).

Proof: The E-Step is given as E(Zi j | P, x) = ei j =
f (xi ,λ j )p j∑

j ′ f (xi ,λ j ′ )p j ′
, and from here, the M-Step pnew

j = ∑
i ei j/n. In

particular, for P = PEM,

pnew
j = 1

n

∑
i

f (xi , λ j )p j∑
j ′ f (xi , λ j ′ )p j ′

= p j

for all j from 1 to k. Dividing both sides by p j gives

d(λ j , PEM) = 1

for all j from 1 to k, which is statement of the theorem. �

Theorem 1 provides convergence, though there is no guar-
antee of convergence to a global maximum. However, we will
demonstrate on empirical grounds that this simple adjustment
of the EM algorithm by means of the gradient function provides
a considerable improvement. In fact, no case has been observed
where it failed to provide the global maximum for the fixed
component case.

3.6. Empirical evidence

In this section we demonstrate how the EM algorithm with gra-
dient function update works in practice. We consider the mix-
tures of exponentials with k = 2 components for the data set in
Section 3.2. The results are provided in Table 8.

We start the EM algorithm with some initial values that
had lead to some local solution with rather inferior likelihood
(see Table 6). The gradient function is maximized near 0, at

Table 8. Illustration of EMGFU for mixtures of k = 2 exponentials

Iteration λ
(0)
j p(0)

j λ∞
j p∞

j l(P∞)a

1 0.5000 0.5000 0.7590 0.4781 −73.3555
1.0000 0.5000 0.7726 0.5219

λmax = 0.0020
λmin = 0.7590
2 0.0020 0.4781 0.0239 0.0939 −69.0263

0.7726 0.5219 0.8430 0.9061
λmax = 0.0020
λmin = 0.0239
3 No improvement in step 4 → stop! −69.0263

a∞ Indicates the parameter values at termination of EM algorithm.

Table 9. Different likelihoods at convergence for different initial values
(k = 3)

Set λ
(0)
j p(0)

j λ∞
j p∞

j l(P∞)a

1 1.0000 0.3333 0.7620 0.4046 −73.3550
2.0000 0.3333 0.7685 0.2944
3.0000 0.3333 0.7693 0.3044

Extreme values
2 0.0010 0.3333 0.0019 0.0235 −71.0983

0.5700 0.3333 0.7831 0.5724
3.7000 0.3333 0.7863 0.4042

Quartiles
3 0.1800 0.3333 0.0239 0.0939 −69.0262

0.5700 0.3333 0.8430 0.3740
1.2800 0.3333 0.8430 0.5321

a∞ Indicates the parameter values at termination of EM algorithm.

λmax = 0.0020. There are only k = 2 mass points and the
one with the smaller gradient function is λmin = 0.7590. The
latter is exchanged with 0.0020, and the EM algorithm started
again. We get a highly improved likelihood. Repeating the pro-
cess does not improve the likelihood anymore, therefore the
algorithm terminates. The algorithm has been started from any
of the sets used in Table 6, leading to log-likelihoods, identical
to −69.0263. Though the EMGFU algorithm is a clear improve-
ment of the EM algorithm for mixtures, there is no guaranteed
proof of convergence to a global maximum. However, further
empirical studies support the global convergence character of
the EMGFU algorithm.

Let us continue the discussion by considering k = 3 compo-
nents for the mixture of exponentials.

Table 9 illustrates again that local maxima can easily occur.
However, we will use this example to point out a further prob-
lem which we call the dimension reduction problem. Suppose
we use set 1 to start the EMGFU. The results are provided in
Table 10. Evidently, in Step 2 the two points 0.7685 and 0.7693
are collapsed by the EM-algorithm to one point, leading now to
a mixture of two components only whereas we are interested in
finding the maximum likelihood estimate in k = 3 components.

The solution of this reduction problem is provided by a di-
mension adjustment step in the EMGFU algorithm.

3.7. Dimension adjustment

We include a dimension adjustment in the EMGFU algorithm.

EM algorithm with gradient function update (EMGFU) and
dimension adjustment

• Step 0, Step 2, Step 3, and Step 4 are as in the EMGFU of
Section 3.5.

• Step 1. Use EM algorithm to provide at convergence PEM =
P∞.

Step 1.1. If the number of components = k, go to Step 2.
Dimension adjustment :
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Table 10. Illustration of EMGFU for mixtures of k = 3 exponentials

Iteration λ
(0)
j p(0)

j λ∞
j p∞

j l(P∞)a

1 1.0000 0.3333 0.7620 0.4046 −73.3550
2.0000 0.3333 0.7685 0.2944
3.0000 0.3333 0.7693 0.3044

λmax = 0.0020
λmin = 0.7620
2 0.0020 0.4046 0.0239 0.0939 −69.0263

0.7685 0.2944 0.8430 0.9061
0.7693 0.3044 – –
k = 3 is reduced to k = 2

a∞ Indicates the parameter values at termination of EM algorithm.

Step 1.2. If the number of components = k − 1, deter-
mine λmax to maxmimize d(λ, PEM) in λ and set P =
(1 − αmax)PEM + αmax Qλmax and go to Step 1. Here αmax is
chosen as in the vertex direction method (see Section 2.2).
If αmax > 0 with l(P) > l(PEM) does not exist, then PEM

must be the NPMLE, and iteration stops.

The EMGFU is again monotonic and, consequently, the se-
quence of associated log-likelihoods has to converge. There is,
however, no guarantee of global convergence.

We now apply this technique to the situation of Table 10 where
the dimension reduction problem had occurred. The results are
provided in Table 11.

In Step 3 of Table 11 the nonparametric maximum likelihood
estimator

PNPMLE =
(

0.0017 0.0271 0.8419

0.0102 0.0825 0.9073

)
(10)

has been reached since 1 ≥ d(λ, P) for all λ as also can be seen
in Fig. 2.

Table 11. Illustration of EMGFU with dimension adjustment for mixtures of k = 3 exponentials

Iteration λ
(0)
j p(0)

j λ∞
j p∞

j l(P∞)a

1 1.0000 0.3333 0.7620 0.4046 −73.3550
2.0000 0.3333 0.7685 0.2944
3.0000 0.3333 0.7693 0.3044

λmax = 0.0020 λmin = 0.7620
(Vertex exchange step)
2 0.0020 0.4046 0.0239 0.0939 −69.0263

0.7685 0.2944 0.8430 0.9061
0.7693 0.3044 – –

k = 3 is reduced to k = 2
λmax = 0.0020 αmax = 0.0051
(Vertex direction step)
3 0.0239 0.0934 0.0271 0.0825 −68.8691

0.8430 0.9061 0.8419 0.9073
0.0020 0.0051 0.0017 0.0102
d(λmax, P) = 1 → stop

a∞ Indicates the parameter values at termination of EM algorithm.

Fig. 2. Gradient function d(λ, P) for P = PNPMLE given in (10)

In this case it is evident that the global maximum has been
achieved and the algorithm is terminated. In other cases, the
algorithm will be terminated if there is no further improvement
in the likelihood.
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In the dimension adjustment step (Step 1.2) it was assumed
that the dimension reduction of the EM algorithm is from k to k−
1. In full generality, it might be that several points are collapsed
in which case the reduction is from k to k − m, where m is an
integer with 0 < m < k. Note that in this case, instead of one
vertex direction step m vertex direction steps will be required.

3.8. A suggestion for the choice of αmax in the dimension
adjustment step

Finally, we want to point out a special property of the log-
likelihood which suggests a choice for αmax which can be used
in Step 1.2 (Diemension Adjustment of the EMGFU). Con-
sider ϕ(α) = l((1 − α)P + αQλ) = ∑

x log[(1 − α) f (x, P) +
α f (x, λ)]. The derivatives of ϕ do have a simple structure:

ϕ′(α) =
∑

x

f (x, λ) − f (x, P)

(1 − α) f (x, P) + α f (x, λ)

∣∣∣∣∣
α=0

=
∑

x

g(x, λ, P)

(11)

and

ϕ′′(α) = −
∑

x

[ f (x, λ) − f (x, P)]2

[(1 − α) f (x, P) + α f (x, λ)]2

∣∣∣∣∣
α=0

= −
∑

x

g(x, λ, P)2 (12)

where g(x, λ, P) = f (x,λ)− f (x,P)
f (x,P) . Note that 0 ≥ (12) for all λ

and x . The (one-step) Newton-Raphson correction is provided
by

αmax ≈
∑

x g(x, λ, P)∑
x g(x, λ, P)2

(13)

which is neccessarily positive if λ is a vertex of ascent, e.g. if
d(λ, P) > 1.

Appendix: Data set used for testing the EMGFU algorithm

0.03302 0.67841 0.83678 1.70085 3.73222 0.39648 0.16839 0.57422 1.29458
0.12759 0.44600 0.68039 1.31812 0.47316 1.67348 0.22541 0.81522 0.54392
1.64572 0.81737 0.23003 1.47947 0.18865 0.56448 0.33223 1.14901 0.16381
1.80573 0.66226 1.30628 0.15858 0.05621 1.66521 1.01774 1.75035 0.62135
1.60808 0.76876 0.02127 0.92949 0.14542 0.26653 0.01962 0.04570 0.19571
0.18483 1.15779 1.27279 0.00297 0.96688 0.78516 0.51107 0.11811 1.83021
3.07632 0.28069 1.01281 0.34646 0.03557 0.65484 1.57239 0.02906 0.51749
0.06384 1.44599 1.01078 0.76734 0.05908 0.57213 2.34580 0.01476 1.38737
0.82217 0.01586 0.05073 0.27409 0.01410 1.33783 0.53023 0.38914 0.02472
0.32186 0.00151 1.84842 0.77284 2.26805 1.38125 0.56990 0.77199 0.42500
1.84390 0.25340 0.25842 1.54009 0.00125 1.70587 0.05284 1.10530 0.25739
0.41535

These 100 data have been sampled from an exponential with parameter 1 and were used in Section 3 as test data for the algorithm
EMGFU.
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