





How to use Dismap for Windows





This is a worked example that illustrates how to construct maps based on mixture models with the program Dismap for Windows. We use the Data for Sudden Infant Death Syndrome (SIDS) in North Carolina from 1974-1978 first analysed by Symons et al. (1983)





1. File management


1. First thing to do: Select a boundary file from the Menu Map and the item Select Map.


Dismap will show a list of files with the suffix  *.bnd. (Epimap boundary file format). For details please see the item boundary files in the online help system.





In this example we choose the file usnc.bnd from the list of boundary files (The US-State North Carolina on county level, with 100 counties)





2. Second  thing to do: Select from the menu Files the item Open. Dismap accepts two kinds of data files: ASCII-files and DbaseIII files. For details on ASCII files please consult the online help system again. In this example we choose the Dbase file SIDS.dbf. Now Dismap offers a dialog-box that allows you to select the variables and the type of data to be mapped. 





Important: The variable AREA must contain the names of the regions to map and must match exactly the names of the regions of the boundary file.





�


 


 Here we have chosen to analyse rates. DismapWin can analyze SMRs (observed cases/expected cases) or continuous data. The field observed contains the observed SIDS cases and the field Expected/PY contains the population at risk, i. e. the live births.


2. Map construction based on mixture models


2. Third  thing to do: Select a method for map construction from the menu Method. DismapWin produces maps based on traditional methods such as percentiles or significance levels. A more sophisticated approach is the empirical Bayes mixture model approach. In order to use this approach select from the menu Mixtures the item Flexible support size.  


This option computes the nonparametric maximum-likelihood estimator for a mixing distribution without any assumption about the number of mixture components.  The algorithm used is the VEM-Algorithm (Böhning, Schlattmann and Lindsay, 1992). A grid of potential support points is defined and the algorithm identifies with positive support. Before this the mixing distribution, i. e. the Binomial, Poisson or Normal distribution, has to be denoted. In this example we have chosen the binomial distribution and the VEM-algorithm with a default of 1500 iterations. 





Now DismapWin presents the grid-points with positive support and if desired computes the maximum likelihood estimator for fixed support size using the solution of the flexible support size as starting values for the EM algorithm. Sometimes parameter values coincide, in which case DismapWin combines these equal estimates and uses the final solution to construct the map. This is done calculating the posterior probability of component membership for each region (Schlattmann and Böhning, 1993). 








The output of Dismap is written to the Results window. Here comes the output for the SIDS data:





0.000001 accuracy after 144 iterations


weight  0.00000 parameter   0.00000


weight  0.26578 parameter   0.00107


weight  0.61025 parameter   0.00213


weight  0.01366 parameter   0.00320


weight  0.10044 parameter   0.00427


weight  0.00000 parameter   0.00533


weight  0.00000 parameter   0.00640


weight  0.00000 parameter   0.00747


weight  0.00987 parameter   0.00853


weight  0.00000 parameter   0.00960





log-likelihood at iterate=-233.79684





DismapWin identified  5 grid points with positive support:





  0.26578   0.00107


  0.61025   0.00213


  0.01366   0.00320


  0.10044   0.00427


  0.00987   0.00853





Refined solution with fixed support size:





weight=  0.32518  parameter=  0.00125


weight=  0.51340  parameter=  0.00208


weight=  0.01691  parameter=  0.00375


weight=  0.13374  parameter=  0.00375


weight=  0.01077  parameter=  0.00901





log-likelihood at iterate=-232.65413


Result after combining equal estimates:





weight=  0.32518  parameter=  0.00125


weight=  0.51340  parameter=  0.00208


weight=  0.15065  parameter=  0.00375


weight=  0.01077  parameter=  0.00901





log-likelihood at iterate=-232.65413





So here DismapWin ends up with a four component mixture distribution for the map of North Carolina and the SIDS data:
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3. Map construction based on covariate adjusted mixture models


The next step would be to include known covariates into the analysis. Cressie and Chan (1989) analysed the SIDS data using several covariates. The first step would be to compute a simple homogenous Poisson regression model. This may also be done using DismapWin.
































The things to do: Select from the menu methods the item Mixed Regression. The following dialog box will appear:
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In this case we choose the homogenous solution (only 1 component). The predictor of interest was the percentage of non-white births in each county. The checkbox Intercept only is not marked, since we want to compute the complete generalized linear model. DismapWin produces the following results:





regression  coefficients





intercept  -6.85370      s. e.:  0.09038    t: -75.83172


NBLP7478   1.87387  s. e.:  0.21722    t:     8.62665


weight=  1.00000  parameter=  0.00190





log-likelihood at iterate= -219.41739





There is a considerable improvement of the likelihood compared with the four component mixture model. The question arises as to whether there is still  residual heterogeneity after adjusting for the percentage of non-white births. The easiest way to answer this question would be to compute a generalized linear mixed model, with a two component mixture over the intercepts and a fixed effect of the percentage of non-white births. Details about the model and its estimation are given in  the paper by Schlattmann et al. (1996). At the moment there is only the EM-algorithm available to compute this solution, hence starting values have to be entered. In this example we use following options: 2 components, Intercept only, starting values for the mixing weights. 0.9 and 0.1. Please note that this time we have marked the checkbox Intercept only. Starting values for the intercepts in this example were -6.8 and -6.2. 























DismapWin produces the following results:





regression  coefficients





 intercept  -7.02794  s. e.:    0.06480    t: -108.46203


 intercept  -6.35163  s. e.:    0.05817    t: -109.19478


  NBLP7478   2.06786  s. e.:    0.13188    t:  15.67952


weight=  0.85922  parameter=  0.00170


weight=  0.14078  parameter=  0.00334





 log-likelihood at iterate=-212.73996





Again there is a considerable improvement of the log-likelihood. DismapWin comes up with the following map:
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The next problem we have to address, is whether a three component solution gives a better fit to the data:





 regression  coefficients





 intercept  -7.02808  s. e.:    0.05966    t: -117.79563


 intercept  -7.02778  s. e.:    0.05966    t: -117.79881


 intercept  -6.35251  s. e.:    0.05239    t: -121.24738


  NBLP7478   2.06740  s. e.:    0.11409    t:  18.12090


weight=  0.43127  parameter=  0.00170


weight=  0.42740  parameter=  0.00170


weight=  0.14133  parameter=  0.00333





 log-likelihood at iterate=-212.73924





Apparently there is no increase of the log-likelihood and we do not reject the null hypothesis of a two component solution.





The next question to answer is whether a full random effects model improves the fit of the model. So in the Dialogbox we do not mark Intercept only.








DismapWin provides the following results:





regression  coefficients





 intercept  -7.04208  s. e.:    0.09632    t: -73.11217


 intercept  -6.31698  s. e.:    0.06944    t: -90.96949


  NBLP7478   2.08555  s. e.:    0.22788    t:   9.15210


  NBLP7478   1.84022  s. e.:    0.16731    t:  10.99874


weight=  0.83730  parameter=  0.00168


weight=  0.16270  parameter=  0.00322





 log-likelihood at iterate=-212.70674





There is no improvement of the log-likelihood! Hence we assume, that the effect of race does not differ within the two risk groups. 
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