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How many cases n in a 
population?

• Registry identifies nobs cases
• p0 probability of being not identified by the 

registry 
• Then:

n = n p0 + (1- p0 ) n 
= unobserved + observed cases = n p0 + nobs 

nHTE = nobs / (1- p0)
(Horwitz-Thompson)



An Example

• A registry could identify 250 cases from a 
study population

• Assume that the inclusion probability
(1-p0) = 0.25     known

• Then nHTE = nobs / (1- p0)
= 250 /0.25 =1000



How HAT-approach can be used 
for Screening

• „In a large population survey of 15000 persons 
were screened given chest radiographs, and the 
physicians noted possible pulmonary artery 
enlargement (PAE) in 230 of these patients. The 
enlargement was confirmed in a second reading in 
203 of these 230 persons. A sample of 175 of the 
14770 chest radiographs in which no enlargement
of the pulmonary artery was noted yielded 12 
radiographs that were actually postive for 
pulmonary enlargement.“ Levy & Lemeshow 91



What do we have ?

PPV   = P(D+|T+) = 203/230 = 0.8826

PAE No PAE

Test + 203 27 230
Test - ? (12) ?(163) 14 770 (175)

? ? 15000

using Bayes theorem

1216

NPV  = P(D-|T-) = 163/175 = 0.9314 Sensitivity = 0.1670

nHTE = nobs / (1- p0) = 203 / 0.1670 = 1216



Horwitz-Thompson-Approach
seems easy, but ...

inclusion probability often unknown
and, consequently, 
approaches differ in the way they 
estimate the inclusion probability, or
in other words, how they 
model p0



Information typically available in 
a disease (cancer) registry

• A case is identified by at least one source, 
typically several sources such as pathology, 
hospitals, physicians, death certificate, ....

• Potentially further covariates are available 
such as age at diagnosis, gender, ..



... in more detail
ID Source

A
Source

B
Source

C
Counting
Sources

001 1 0 0 1
002 0 1 1 2
003 0 0 0 0
004 1 0 1 2
005 1 1 1 3
... ... ... ... ...



Two major streams of
development ...
illustrated with 3 sources

• modelling a multiway 
contingeny table

• modelling the counting 
sources distribution

A B C Freq
1 1 1 n111
1 1 0 n110
0 1 1 n011
1 0 1 n101
1 0 0 n100
0 1 0 n010
0 0 1 n001
0 0 0 ?

Counting
Sources

Frequency

3 n3 = n111

2 n2 = n101+ n110 + n100

1 n1 = n010 + n011 + n001

0 n0 = n000=?



An Example for first approach 
with two sources

• Inclusion probabilities • Associated data

p11 p10
p01 p00

n11 n10
n01 n00

a) estimate p11 as n11/n

b) on the other hand, using independence p11 = p1. p.1 

one can estimate p11 as n1. /n x n.1 /n

equating a) and b), leads to nLP = n1.  n.1 / n11 

the Lincoln-Petersen estimate of number of cases 



Elaborate Developments

Lincoln-Petersen
Estimator

2 x 2 Table
Independence

log-linear
Modelling

Modelling Multiway
Contigency Table

Poisson Binomial

Simple
Distributions

Mixtures of
Simple

Distributions

Modelling the
Counting Distribution

Inclusion Probability
to be modelled



Reasons for not following the 
first approach

• (log-linear) modelling becomes quite 
complex; with 4 sources more than 100, 
with 5 sources more than 7000 possible 
models

• potential danger of one dominating source
• wortking with the counting sources 

distribution will only require the decision 
about one model



The Counting Distribution
ID Source

A
Source

B
Source

C ...
Counting
Sources

001 1 0 0 ... 1
002 0 1 1 ... 2
003 0 1 0 ... 1
004 1 0 1 ... 2
005 1 1 1 ... 3
... ... ... ... ...
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Binomial

f(y,θ) = 










 
m
y   θy (1-θ)m-y , y=0,1, ...,m

(m = Number of Sources, θ = Listing Probability)

Predicted Probability of  a Zero:

p0 = f(y=0,θ) = 










 
m
0   θ0 (1-θ)m-0 =(1-θ)m

Simple Distributional Count 
Models



Number of cases

Suppose, θ where known, then

the estimated number of cases

nHTE  = nobs /(1 - p0)

where p0 =(1-θ)m.



Estimation of  Listing Probability

in summary:

n =  nobs /(1 - p0),  where p0 =(1-θ)m,

also, if n is given

θ = (n0 0 + n1 1 + n2 2 + ... + nm m)/(n m)



Estimation of  Listing Probability
Consequently,

Step 0. Choose, some initial value
for θ =θ(1) (for ex. θ=1/2)

Step 1. Compute n(1)
 =  nobs /(1 - p0

(1)) ,
 where p0

(1) =(1-θ(1))m

Step 2. Compute
θ(2) = (n1 1 +... + nm m)/(m n(1))

Step 3. Continue iteration until
convergence.



Estimation of  Listing Probability

Step 1. Compute n(2)
 =  nobs /(1 - p0

(2)) ,
 where p0

(2) =(1-θ(2))m

Step 2. Compute
θ(3) = (n1 1 +... + nm m)/(n(2) m)

..... and so on ...



Version of EM algorithm
(DLR 1977)

• for finding maximum likelihood estimator
of θ

• imputing the number of missing data (as by-
product)

• (strong) convergence is assured (in this 
case)



A Demonstration

Iteration j n(j)θ(j) 

1 0.50 2790

0.32602 2955

29963 0.3078

... ......

20 0.3021 3011
0.3021 301121



Poisson

f(y,θ) = e-θ θy / y ! , y=0,1, ...

(suitable for m = Number of Sources large)

Predicted Probability of  a Zero:
p0 = f(y=0,θ) = e-θ θy / y !  = e-θ

Simple Distributional Count 
Models



Estimation of  Listing Parameter
and Prediction of Number of

Cases
Similar to the Binomial, 

only difference is the way the missing 
cases are predicted:

Poisson:   p0 = f(y=0,θ)  = e-θ 

Binomial: p0 = f(y=0,θ) =(1-θ)m



More flexible and robust 
approach through mixtures

• Simple counting sources distributions such 
as Binomial and Poisson require 
assumptions such as homogeneity of listing 
probabilities that are seldom met in reality

• allowing the listing probability to vary in 
unobserved sub-populations will be more 
realistic



The mixture approach in a 
nutshell

homogeneity

one-parametric density  f(y,θ)

(typically f(y,θ) will be a simple

density like Binomial or Poisson)

heterogeneity

density in subpop. j: f(y,θj)

λ1 λ2 λ3 λ4



The mixture approach in a 
nutshell

latent variable Z describing
population membership 

joint density f(x,z) with
f(x,z) = f(x|z)f(z) = f(x,θz)qz

marginal or mixture density:

f(x,Q)  =f(x,θ1)q1+... +f(x,θk)qk

Q = 




θ1 ...θk

q1 ...qk
    is mixing distribution



Estimation of parameters works 
in principle as before, though 
technically more elaborated 

in summary:

if Q =  




θ1 ...θk

q1 ...qk
    given, then estimate

n =  nobs /(1 - p0),  where p0 = f(y=0,Q),

also, if n is given, then estimate

Q by the NPMLE



Special Mixtures
Mixtures of Binomials

f(y, θj,qj) = Σ k
j=1  qj 











 
m
y   θj

y (1-θj)m-y , y=0,1, ...,m

(m = Number of Sources,
θj = Listing Probability in sub-population j,
qj = weight of sub-population)

Predicted Probability of  a Zero:
p0 = f(y=0,θj,qj) = Σ k

j=1  qj (1-θj)m



Special Mixtures
Mixtures of Poissons

f(y, θj,qj) = Σ k
j=1  qj exp(-θj ) θj

y /y ! , y=0,1, ...

(θj = Listing parameter in sub-population j,
qj = weight of sub-population)

Predicted Probability of  a Zero:
p0 = f(y=0,θj,qj) = Σ k

j=1  qj exp(-θj )



Results of Analysis for Cancer 
Registry of Saarland

• Joint project with Robert Koch Institute, Berlin, 
Dachorganisation Krebs (Dr. Dieter Schön)

• Six main sources, and subsidiar sources which 
occur from 40 hospital categories and 31 
departmental categories

• counting sources variable seldom > 10
• years considered: 1994 - 1998
• here 3 sites: lung cancer, female breast cancer and

prostata cancer



Lung Cancer
(using mixtures of binomials)
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Summary Table for Lung Cancer

321

143

67

64

47

no

91.30080.31253369Total

84.59050.2680785> 73

92.20020.3057792- 73 

93.53540.3234926- 67

94.85210.3684866- 59

Complete-
ness (%)

Listing 
Probability

nobsAge 
group



Breast Cancer
(using mixtures of Poissons)
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Summary Table for Breast Cancer

456

143

121

101

91

no

88.41760.26873481Total

85.10420.2215817> 73

87.47410.2594845- 73 

90.31640.2917942- 63

90.59920.2959877- 52

Complete-
ness (%)

Listing 
Probability

nobsAge 
group



Prostate Cancer
(using mixtures of Binomials)
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Summary Table for Prostate Cancer

0.2010

0.1895

0.1848

0.1910

0.2111

LP
1. 

-

-

-

0.4525

0.5534

LP
2.

803

206

213

203

181

no

72.91741.00002162Total

71.66441.0000521> 76

70.62071.0000512- 76 

72.93330.0368547- 70

76.27790.0184582- 64

Complete
-ness (%)

Weight 
2. Comp.

nobsAge 
group



Thank You!
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