
 http://smm.sagepub.com/
Statistical Methods in Medical Research

 http://smm.sagepub.com/content/early/2013/01/30/0962280212473386
The online version of this article can be found at:

 
DOI: 10.1177/0962280212473386

 published online 1 February 2013Stat Methods Med Res
Heinz Holling, Walailuck Böhning, Dankmar Böhning and Anton K Formann

The covariate-adjusted frequency plot
 
 

Published by:

 http://www.sagepublications.com

 can be found at:Statistical Methods in Medical ResearchAdditional services and information for 
 
 
 

 
 http://smm.sagepub.com/cgi/alertsEmail Alerts: 

 

 http://smm.sagepub.com/subscriptionsSubscriptions:  

 http://www.sagepub.com/journalsReprints.navReprints: 
 

 http://www.sagepub.com/journalsPermissions.navPermissions: 
 

 What is This?
 

- Feb 1, 2013OnlineFirst Version of Record >> 

 by DANKMAR BOHNING on February 3, 2013smm.sagepub.comDownloaded from 

http://smm.sagepub.com/
http://smm.sagepub.com/content/early/2013/01/30/0962280212473386
http://www.sagepublications.com
http://smm.sagepub.com/cgi/alerts
http://smm.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://smm.sagepub.com/content/early/2013/01/30/0962280212473386.full.pdf
http://online.sagepub.com/site/sphelp/vorhelp.xhtml
http://smm.sagepub.com/


Original Article

The covariate-adjusted
frequency plot*

Heinz Holling,1 Walailuck Böhning,1

Dankmar Böhning2 and Anton K Formann3,y

Abstract

Count data arise in numerous fields of interest. Analysis of these data frequently require distributional

assumptions. Although the graphical display of a fitted model is straightforward in the univariate scenario,

this becomes more complex if covariate information needs to be included into the model. Stratification is

one way to proceed, but has its limitations if the covariate has many levels or the number of covariates is

large. The article suggests a marginal method which works even in the case that all possible covariate

combinations are different (i.e. no covariate combination occurs more than once). For each covariate

combination the fitted model value is computed and then summed over the entire data set. The technique

is quite general and works with all count distributional models as well as with all forms of covariate

modelling. The article provides illustrations of the method for various situations and also shows that the

proposed estimator as well as the empirical count frequency are consistent with respect to the same

parameter.

Keywords

frequency plot, adjusting for covariates, residual analysis

1 Introduction

We are interested in the question on how well a given model fits a given set of counts. Consider a
random variable Y with possible count values y2 {0, 1, 2,. . .} and suppose further a random sample
y1, y2,. . ., yn is available. Also, let fy be the frequency of counts in the sample y1, y2,. . ., yn equal to y
where y ranges from 0 to the largest observed count m¼max{y1,. . ., yn}. Suppose there is a
candidate distributional model P(Y¼ y)¼ py¼ py(�) available which might depend on some
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unknown parameter � and which we would like to compare to fy. Conventional practice is to find a
consistent estimate �̂n of � and compare pyð�̂nÞ � n with fy. The rationale of such a procedure is that

pyð�̂nÞ ! pyð�Þ and fy=n! pyð�Þ,

if the model is correct, in other words, if Yi � py(�). Here ‘‘!’’ refers to convergence in probability.
Hence, in such a situation, we can expect that pyð�̂nÞ � n and fy are close in some sense, at least if n is
becoming large.

1.1 Example: Poisson and binomial

We consider the Poisson distribution:

PðY ¼ yÞ ¼ pyð�Þ ¼ Poð yj�Þ ¼ expð��Þ�y=y!,

where � is the Poisson parameter, usually unknown. Assume the Poisson model holds and assume
further that we have a consistent estimator �̂n of � – an example is �̂n ¼ ð y1 þ y2 þ � � � þ ynÞ=n – then
Poð yj�̂nÞ ! Poð yj�Þ for every y¼ 0, 1, 2,. . .. Hence we compare nPoð yj�̂nÞ and fy for y¼ 0, 1,. . ., for
example, by producing a graph in which nPoð yj�̂nÞ and fy are plotted against y. Pawitan1 (p. 84) – as
an example of a standard textbook illustration – exemplifies this idea for count data on accidents
among factory works for the Poisson (and negative binomial) distribution. Maritz and Lwin2

(p. 256) discuss count data on oilwell discoveries in Alberta (Canada). Here the quantity of
interest is the number Yi of oilwell discoveries of the 3rd month of the i-th half year for the
18-years period from 1953 to 1970, so i¼ 1, 2,. . ., 36. Figure 1 shows the frequency fy as 19, 10,
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Figure 1. Empirical fy and fitted Poisson distribution Poð yj�̂Þ � n for counts Yi of oilwell discoveries in Alberta.
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4, 2, 0, 1 for each of the different observed counts y¼ 0, 1, 2, 3, 4, 5, respectively. The fitted Poisson
distribution using �̂ ¼

P5
y¼0 yfy=n is included as well.

Similarly, we can consider the binomial distribution

PðY ¼ yÞ ¼ pyð�Þ ¼ Bið yj�,mÞ ¼
m

y

� �
�yð1� �Þm�y,

where � 2 (0, 1) is the event parameter and m the trial size parameter. A consistent estimate of � can

easily constructed as �̂n ¼

P
yi

nm , so that nBið yj�̂nÞ and fy can be compared. To illustrate, following
Goldberg3 and Der and Everitt4 (p. 187), consider count data arising from a study of the psychiatric
screening questionnaire GHQ (general health questionnaire) which delivers an integer score from 0
to 10, in this case. The distribution of this score for a group of 131 women without any evidence of
psychiatric disorder is given in Figure 2 (fy¼ 80, 29, 15, 3, 2, 1, 1 for y¼ 0, 1, 2, 3, 4, 5, 6,
respectively).

Figure 2 shows, besides fy, also the fitted binomial model. Clearly, the binomial does not fit well,
in particular for counts of 0. The �2-statistic

P4
y¼0½ fy � npyð�̂nÞ�

2=½npyð�̂nÞ� provides 26.04, highly
significant on a �2-scale with 3 df (note that frequencies larger or equal to 4 have been collapsed).
The lack-of-fit can easily be coped with by modelling a zero-inflated binomial model defined

ZBið yj�, �,mÞ ¼
� m

y

� �
�yð1� �Þm�y, if y4 0

ð1� �Þ þ �ð1� �Þm, if y ¼ 0

(
ð1Þ
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Figure 2. Empirical fy and fitted binomial and zero-inflated binomial distribution Bið yj�̂Þ � n for counts Yi of GHQ

scores for 131 healthy females.

GHQ: general health questionnaire.
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The ZBi-model has simply an extra parameter � for the amount of additional zero counts in the data
and leads to a considerable improvement in goodness-of-fit as can be seen in Figure 2. The
associated goodness-of-fit is �2¼ 4.59 by 2 df which is no longer significant. In addition, the
likelihood ratio test comparing (1) with the standard Poisson is highly significant.

These simple examples in connections with Figures 1 and 2 show that fitted frequency plots are
helpful in illustrating goodness-of-fit and potentially illuminating observations or regions of good or
poor fit. They are clearly of supplementary value not replacing a thorough diagnostic analysis based
on appropriate statistical measures. Hence it appears of interest to construct fitted frequency plots
for more complex situations that arise in modelling where it is less clear how a fitted frequency plot
should be constructed, but an overall graphical assessment of goodness-of-fit is even more desirable
than in situations with one simple parameter. We illustrate the difficulties in the following with two
examples. In section 2 we then outline a general way how a covariate-adjusted frequency plot should
be constructed, followed in section 3 with some more complex examples for illustration and close in
the final section with a brief discussion.

1.2 Some complications

In the Poisson case, the situation becomes more complex if, in addition to the sample of counts y1,
y2,. . ., yn, we have a sample of associated values e1, e2,. . ., en. These very often arise in situations
where each count yi is connected with some baseline expected value ei. In the the oilwell discovery
example these eis could represent different detection efforts which might vary over the years or
seasons. In epidemiology, these baseline values represent expected number of cases, calculated
from a background population and which are then compared to the observed number of cases as
yi/ei, the so-called standardised mortality ratio (SMR). The typical model of interest for count yi is

PðYi ¼ yÞ ¼ Poð yj�, eiÞ ¼ expð��eiÞð�eiÞ
y=y!,

for every y¼ 0, 1, 2,. . . Although a consistent estimator �̂n ¼

P
i
yiP

i
ei
of � can easily be constructed, it is

less clear to which object fy should be compared to since there is not a unique Poð yj�̂neÞ but there are
many fitted values Poð yj�̂neiÞ, for i¼ ,. . ., n and a fixed count y.

Similarly, if the yi arise out of a set of possible values {0,. . ., mi} with varying upper bound mi.
This situation occurs frequently when samples are taken from clusters such as households,
communities, small areas, herds or farms – just to mention a few. This situation would also occur
in the example of the GHQ score if an individual would only answer a part of the given items. Here
interest would be to investigate the validity of the binomial model for count yi out of mi:

PðYi ¼ yÞ ¼ pyð�Þ ¼ Bið yj�,miÞ ¼
mi

y

� �
�yð1� �Þmi�y:

Again, a consistent estimator of � is constructed easily as �̂n ¼

Pn

i¼1
yiPn

i¼1
mi

, but it remains again unclear to

which object fy should be compared to. To illustrate how misleading graphs of y! fy for the
binomial with varying binomial denominator mi can be, we consider Figure 3. Here 500 counts
have been sampled from binomials with size parameter mi equal to 100 whereas the other 500 were
sampled from a binomial with size parameter 200. In all cases, the binomial event parameter is
�¼ 0.25, hence it is representing a homogeneous binomial distribution. The graph, however, gives a
different impression, for example, one might be lead to the impression that a two-component
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mixture of binomials might be a likely mechanism behind the data generating process. Note that it is
the specific distribution of the mi which distorts the graph. Typically, it would not be known if a
homogeneous event parameter � is the valid model. Hence it is an important issue how the
distribution of the mi can be taken into account in constructing a fit of the model.
Simple approaches such as choosing the mean of the distribution of the mi as the trial size
parameter also give misleading answers. To achieve a valid graph we propose to construct for
every y¼ 0, 1, 2,. . ., m

f̂yð�̂nÞ ¼
Xn
i¼1

Bið yj�̂n,miÞ ð2Þ

the margin over all n binomial fits. Note that n corresponds to the size of the sample, so that every
sample point contributes to the estimator defined in equation (2). Also, in (2) we are using the
convention Bið yj�̂n,miÞ ¼ 0 for y>mi. Figure 4 indicates that this is leading to the right conclusion,
e.g. all counts come from a binomial distribution with homogeneous event parameter.

2 The proposal

We assume that count Yi follows a distributional model p(l(�, �i)) where � is an unknown parameter
or parameter vector, �i is a known number or vector, and l(., .) is a known function. To illustrate in
the Poisson, we have that py(l(�, �i))¼Po(yW�� ei) with �i¼ ei and l(�, e)¼ �e in the case of specific
Poisson means �ei or py(l(�, �i))¼Po(yWexp(�T xi)) with l(�, �i)¼ exp(�T xi), �i¼ xi, and �¼ � in the
case of Poisson regression.
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Figure 3. Sample of n¼ 1000 counts from a binomial with �¼ 0.25, 50% have size parameter mi¼ 100 whereas the

remaining 50% have size parameter mi¼ 200.
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Definition 1: Given the situation above, we define the covariate adjusted frequency plot as

f̂yð�̂nÞ ¼
Xn
i¼1

pyð�̂iÞ

and the covariate adjusted probability plot as

p̂yð�̂nÞ ¼
1

n

Xn
i¼1

pyð�̂iÞ

where �̂i ¼ �ð�̂n, �iÞ for i¼ 1,. . ., n and �̂n is a consistent estimator of �.

This definition constructs the object f̂yð�̂nÞ, a marginal operation over the distribution of the �i,
which allows comparison to fy. The rationale for this procedure is the following argument. Assume
there is an infinite sequence (�i)i�1 and each �i is sampled with a probability wi, wi� 0 andP1

i¼1 wi ¼ 1. Assume further that, conditional on �i and �, the count Yi follows the density py(li)
where li¼ l(�, �i). We will write also for the sake of brevity Yi � py(li). We can imagine this process
as a two-stage procedure where in the first stage the �is are sampled with probability wi

�1, �2, . . .
w1,w2, . . .

and, conditional on sampled �i, we sample Yi in the second stage

Yij�i � pyð�iÞ, �i ¼ �ð�, �iÞ:
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Figure 4. fy and
Pn

i¼1 Bið yj�̂,miÞ for sample of n¼ 1000 counts from a binomial with �¼ 0.25, 50% have size

parameter mi¼ 100 whereas the remaining 50% have size parameter mi¼ 200.
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Hence, it is clear that marginally

Y �
X1
i¼1

pyð�iÞwi:

We assume that syð�Þ ¼
P1

i¼1 pyð�iÞwi 51.

Theorem 1: Let l(., .) be continuous and �̂n be a consistent estimator of �. Then

f̂yð�̂nÞ=n ¼
1

n

Xn
i¼1

pyð�̂iÞ !
X1
i¼1

pyð�iÞwi ð3Þ

fy=n!
X1
i¼1

pyð�iÞwi ð4Þ

where �̂i ¼ �ð�̂n, �iÞ.

We defer the short proof to the appendix. The major point of this theorem is that both, fy and the
covariate adjusted frequency f̂yð�̂nÞ, converge to the same object if the model is correct. Hence they
are comparable.

3 More complex applications

3.1 A case study on perinatal mortality

In epidemiology and public health, the standardised mortality ratio is an important and basic concept
of relative risk estimation and frequently used.5 It also plays an important role in geographical
epidemiology and disease mapping as well in disease surveillance (see the recent special issue in this
journal edited by Lawson et al.6). The standardised mortality ratio is defined as SMRi¼ yi/ei, where
yi is the observed death count in unit i and ei is expected death count in unit i, where the latter is
calculated on the basis of a process called indirect standardisation. Here we assume that the expected
death counts are given and refer to the process of indirect standardisation to Woodward.5 In
geographical epidemiology, the question of equity of health arises: are all regions under the
identical risk of disease occurrence or are some regions exposed to higher and others to lower
risk? These question are often discussed in the framework of disease occurrence risk homogeneity
versus disease occurrence risk heterogeneity. Such a question is discussed by Martuzzi and Hills.7

They investigate the question of heterogeneity in perinatal mortality in the North West Thames
Health Region for the 5-year period of 1986 to 1990. The North West Thames Health Region
consists out of 515 wards (small geographical units also used in local elections) with
approximately 3 million people. There were 2051 perinatal deaths in total in the observational
period. Martuzzi and Hills7 also consider the standardised mortality ratio for relative risk
estiamtion. Here it is defined as SMRi¼ yi/ei, where yi is the observed perinatal death count in
ward i and ei is expected perinatal death count in ward i. The full data set has kindly been provided
by Marco Martuzzi and is available online (www.personal.soton.ac.uk/dab1f10/home.htm).

When investigating the question of heterogeneity in perinatal mortality, it is clear that considering
only the observed counts yi is confounded by the effect of the expected cases. Or, in other words,
considering only yi irrespectively of the ei is meaningless. Figure 5 shows the distribution of the
observed cases, but it is not clear what it tells the reader. An obvious alternative would be to

Holling et al. 7
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consider the SMR distribution as provided with Figure 6. However, the SMR distribution has
problems as well:

. it is truncated at zero with many values of the SMR being exactly zero which makes modelling of
a continuous distribution more difficult,

. it is potentially misleading as it might indicate zero inflation,

. and it ignores in general the count nature of the observed death counts.

The question of heterogeneity in spatial SMR distributions is usually formulated in the following
way. Conditional upon the i-th area (here the ward) the observed count is assumed to follow6,7 the
region-specific Poisson model

Yi � Poð yj�ieiÞ ¼ e��ieið�ieiÞ
y=y!,

where each ward i has specific mean �iei. The parameter �i is the region-specific theoretical
standardised mortality ratio which could be estimated as �̂i ¼ yi=ei. Rewrite yi ¼ ei�̂i and the
assumption that yi arises from a Poisson with parameter ei�i becomes clear. Various forms of
hypotheses on the heterogeneity distribution of �i can be formulated and one of the simplest is
the hypothesis of homogeneity �i¼ � for all i. An estimate of � is readily available as
�̂n ¼

P
i yi=

P
i ei. However, this leads to the difficulty of dealing with 515 Poisson models

graphically. This can be easily accomplished with the covariate-adjusted frequency plot. In this
situation, we have the fitted frequency

f̂yð�̂nÞ ¼
Xn
i¼1

Poð yj�̂eiÞ ¼
Xn
i¼1

e��̂ei ð�̂eiÞ
y=y!,

2118151211109876543210

90

80

70

60

50

40

30

20

10

0

Count y

F
re

q
u

en
cy

Figure 5. fy for the perinatal mortality counts in the North West Thames Health Region, 1986–1990.
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which we call for this situation the expected-cases adjusted frequency plot. Here �̂n ¼

Pn

i¼1
yiPn

i¼1
ei
is the

maximum likelihood estimate of �. Figure 7 shows the distribution of the counts of perinatal deaths

fy and the fitted Poisson model f̂yð�̂Þ. Also included in Figure 7 for comparison is a finite mixture
model allowing for heterogeneity in the parameter �. There is no evidence of any heterogeneity as
also indicated by the BIC values for the two models (Figure 7) with the adjusted frequency plot
giving a visual impression of this fact. It also shows that at certain points the goodness-of-fit is not
perfect, due to the non-smooth character of the observed data. We further note that the SMR model
can be also formulated as a Poisson regression model Yi � �i where log �i¼ log eiþ log �i and the
log ei enter as an offset. Unobserved heterogeneity could enter as random effects distribution for log
�i, but the same principle of the covariate adjusted frequency plot would apply. A benefit of the
regression model formulation is that easily observed covariates of the region could be entered into
the modelling. We continue the discussion on regression modelling in the next application. An
evident alternative to the covariate adjusted frequency plot is considering residual analysis. For
example, Cameron and Trivedi8 consider covariate modelling for count outcomes in detail though
model evaluation is focusing more on residual analysis. Pearson residuals have been discussed
by many authors including Lindsey,9 Zelterman10 or Winkelmann.11 However, index-plots or
Q-Q-plots on the basis of Pearson residuals can be misleading, since even if the model is correct
in terms of covariates and distributional assumption the graph might still indicate some deficiencies.
Figure 8 shows two kinds of residual plots for the perinatal mortality data of the North West
Thames Health Region. The upper panels show the Pearson residuals ri ¼ ð yi � eiÞ=

ffiffiffiffi
ei
p

against i
(index plot) and against the expected value ei. Most observations should lie in the [�2, 2]-segment10
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Figure 6. Histogram of the SMR distribution for the perinatal mortality data of the North West Thames Health

Region, 1986–1990.

SMR: standardised mortality ratio.
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though a certain percentage can be expected to lie outside this segment. It is also emphasised that it
is important to monitor these plots for extreme deviations or particular patterns.10 Alternatively, it is
recommended10,11 to consider the deviance residuals defined as

di ¼ signð yi � eiÞ
ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

yi logð yi=eiÞ � ð yi � eiÞ
p

:

The deviance residuals are expected to have an improved approximations if the model is true. In the
lower panels of Figure 8 the deviance residuals are plotted against the ward number and the expected
value. All observations now fall into the [�2, 2]-segment, but it appears that lower tail observations
are shrunk too much towards the center, reflecting the asymmetric nature of the distribution. Again,
there is no evidence for any extreme deviations or pattern. An additional way of investigating
goodness-of-fit is the Q-Q-plot as suggested in Lindsey.9 This procedure is questionable since it
screens the residuals for normality which we would not expect when we work with count data.
However, at least in the Poisson case with the Poisson parameter becoming large, we can expect the
residuals to be approximately normal. Hence we have looked in our perinatal mortality data
application at the fit to the normal distribution based on the Pearson and on the deviance
residuals. See Figure 9 for details. There is clear evidence that the Pearson residuals show a lack
of fit to the normal distribution whereas this is much improved for the deviance residuals. All in all,
we see no evidence for a violation of Poisson homogeneity for the risk ratio of perinatal mortality in
this health region. Finally, one could argue to work with the standardised mortality ratio directly as
it is a continuous quantity. Hence a normal distribution could be valid candidate distribution and
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Figure 9. Probability plots for the perinatal mortality data of the North West Thames Health Region, 1986–1990;

black dots refer to the Pearson residuals, red squares refer to deviance residuals.
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the Q-Q-plot appropriate to evaluate this. Figure 10 shows this plot for the SMR distribution of the
North West Thames Health Region indicating that a normal distribution is not appropriate due to
the high amount of zeros caused by the count nature of numerator of the SMR.

3.2 A case study on cerebrovascular mortality in Berlin 1989

In this application, we consider the cerebrovascular mortality in Berlin (West) 1989. The year 1989 is
the last year before the fall of the Berlin wall so that the region can be considered as a relative closed
population. The data stem from the Berlin Statistical Office and are publicly available. They consist
of daily counts of cause-specific mortality (366 days), separately for the male and female population.
There are three covariates: x1 ¼ gender (G) (male ¼ 1, female ¼0), x2 ¼ month of the year (MOY)
(Jan ¼ 1, Feb ¼2,. . ., Dec ¼12) and x3 ¼ day of the month (DOM). The entire data set is available
online (www.personal.soton.ac.uk/dab1f10/home.htm) and is partly reproduced here as Table 1.

A natural approach for analysis is to consider a generalised linear model, here a Poisson
distribution as the error distribution and a log-link as the link function so that the following
Poisson regression model arises

Yi � Poð yj�iÞ ¼ e��i�yi =y! ð5Þ

�i ¼ �ð�,xiÞ ¼ expðxi
T�Þ ð6Þ
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Figure 10. Probability plot for the SMR of the perinatal mortality data of the North West Thames Health Region,

1986–1990.

SMR: standardised mortality ratio.
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where i¼ 1, 2,. . ., 732. Here xi represents all or part of the above-mentioned covariates G, MOY,
and DOM.

Fitting models using maximum likelihood provides �̂i ¼ �ð�̂, xiÞ so that the covariate-adjusted
frequency plot

fyð�̂Þ ¼
Xn
i¼1

Poð yj�̂iÞ

can be constructed. We look at covariate-adjusted frequency plots for various covariates in
Figure 11. Clearly, the intercept-only model does not provide a good fit. The gender difference is
important and leads to a considerable improvement of goodness-of-fit. Including other covariates
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Figure 11. fy and the covariate adjusted frequency plot for the cerebrosvascular mortality in Berlin (West), 1989;

three models are considered: intercept only, including gender, and including gender and month of the year.

Table 1. Daily cerebrosvascular mortality in Berlin (West), 1989.

y 0 1 2 3 4 5 6 7

fy (,) 28 68 82 84 59 25 12 6

fy (<) 1 4 15 31 39 55 54 49

All 29 72 97 115 98 80 66 55

y 8 9 10 11 12 13 14 Total

fy (,) 1 1 0 0 0 0 0 366

fy (<) 47 31 16 9 8 4 3 366

All 48 32 16 9 8 4 3 732
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does not improve the fit to any visual degree. Hence a gender-specific Poisson model appears to be a
reasonable model for these mortality data.

4 Discussion

Frequency and fitted frequency plots are provided occasionally, but do not involve covariates (see,
for example, Lindsey,9 p. 133). Modelling count data using covariate information is of wide interest
and of great practical value and potential impact. Hence is model diagnostics and goodness-of-fit
analysis. The covariate-adjusted frequency plot offers a summarising diagnostic tool. The question
arises what the plot offers more than, say, a goodness-of-statistic would provide. We argue that both
instruments offer important but different dimensions of diagnostic evidence. The goodness-of-fit
statistics offers a numerical value which can be interpreted on a numerical scale whereas the
covariate-adjusted frequency plot offers a graphical analysis giving an overall impression of
model fit with potential regions in the count data range where the fit is particular good or bad.

In connection with the application 3.1 we have already discussed the alternative of residual
diagnostics and plotting, and the various problems associated with it. One of the sources for the
problems with Q-Q-plotting lie in the fact that the ordered residuals are plotted against the normal
distribution quantiles. It has been observed by Ben and Yohai12 that these plots can be far away
from a straight line even when the model is correct and the distribution is correctly specified. It is
then suggested by Ben and Yohai12 to plot the ordered deviance residual against their theoretical
quantile, assuming the model is correct. This makes them more useful for model checking. In a
recent paper, Augustin et al.13 point out that the Ben–Yohai plots are relatively complex and
computational expensive in their construction and suggest an alternative approach based on
simulation. Augustin et al.13 also show the validity of the approach and illustrate the method
with count data from a cancer registry covering a region in North-East France. As an interesting
point they conclude that an analysis based upon normal Q-Q-plots would have erroneously lead to
proposing a zero-inflated model, an error that has been avoided using the new (and right) form of Q-
Q-plot. This is very similar to our analysis of the perinatal mortality data where we observed a
potential for falsely identifying a zero-inflated distribution (Figure 6), in particular when working
directly with the SMR distribution, which is quite tempting but leading into serious distributional
problems as the probability plot in Figure 10 shows. We can avoid these artifacts using the
covariate-adjusted frequency plot which is, of course, also very simple in its construction.

Of course, the covariate adjusted frequency plot is a summarising construction. The adjusted
frequency f̂y averages over all covariate values available in the sample and collects how much they
contribute to the fit given the model under consideration. Since it is a summary measure it will only
provide a global assessment and will not be able to identify particular observations that experience a
poor fit. Here we believe that residual analysis is more appropriate. We view the covariate-adjusted
frequency plot as useful tool in a supplementary diagnostic role for count data modelling with
possibly complex covariate structures.
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Appendix

Proof of Theorem 1: Let again be li¼ l(�, �i). We have that

sn,yð�Þ ¼
1

n

Xn
i¼1

pyð�iÞ ¼
Xn
i¼1

pyð�iÞŵi,

where ŵi ¼
#f�j j�j¼�ig

n . Since the empirical proportion of sampled �i converges to the theoretical
proportion of sampling �i, in other words ŵi!wi, it follows that

sn,yð�Þ ¼
1

n

Xn
i¼1

pyð�iÞ !n!1

X1
j¼1

pyð�j Þwj ¼ syð�Þ51:

It remains to show that

sn,yð�̂nÞ !n!1 syð�Þ:

This follows from the continuity of l(., �i) for all i and the fact that �̂n!n!1 � (see, for example,
Shao,14 p. 59) and ends the proof.
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