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Abstract This paper investigates the applications of capture–recapture methods to
human populations. Capture–recapture methods are commonly used in estimating
the size of wildlife populations but can also be used in epidemiology and social sci-
ences, for estimating prevalence of a particular disease or the size of the homeless
population in a certain area. Here we focus on estimating the prevalence of infectious
diseases. Several estimators of population size are considered: the Lincoln–Petersen
estimator and its modified version, the Chapman estimator, Chao’s lower bound es-
timator, the Zelterman’s estimator, McKendrick’s moment estimator and the maxi-
mum likelihood estimator. In order to evaluate these estimators, they are applied to
real, three-source, capture-recapture data. By conditioning on each of the sources of
three source data, we have been able to compare the estimators with the true value
that they are estimating. The Chapman and Chao estimators were compared in terms
of their relative bias. A variance formula derived through conditioning is suggested
for Chao’s estimator, and normal 95% confidence intervals are calculated for this and
the Chapman estimator. We then compare the coverage of the respective confidence
intervals. Furthermore, a simulation study is included to compare Chao’s and Chap-
man’s estimator. Results indicate that Chao’s estimator is less biased than Chapman’s
estimator unless both sources are independent. Chao’s estimator has also the smaller
mean squared error. Finally, the implications and limitations of the above methods
are discussed, with suggestions for further development.
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1 Introduction

Capture–recapture methods are well established for estimating wildlife population
sizes (see Seber 2002; Borchers et al. 2002). Typically, we cannot take a complete
census of an entire animal population, so capture–recapture methods are used to
formulate estimates of population size. In a wildlife setting, surveys of the popu-
lation are carried out, where animals are captured, marked, re-released and allowed
to mix with the population. On the second survey, the number of animals captured
is again counted and marked, noting the number of animals which have already
been marked on the first sampling occasion. This capture–recapture method contin-
ues for k surveys, and we can use the numbers of captured and recaptured animals
obtained from all the surveys to estimate the total population size or the number of
animals which were not caught in any of the k surveys. More recently, these methods
have been applied to human populations in epidemiology (see Verstraeten et al. 2001;
Gallay et al. 2000; Chao et al. 2001; Carrao et al. 2000) and in the social sciences for
estimating number of drug users or the size of homeless populations (Smit et al. 2002;
Roberts and Brewer 2006). In epidemiology, we can determine an estimate of disease
occurrence by using a number of different sources (lists). We can treat each source as
a survey occasion, and if an individual appears within a source, this is analogous to an
animal being caught in a trap. If the same individual then appears in another source,
this is analogous to an animal being caught in two surveys. Typically we have two or
three incomplete lists (not including the entire population that is under study), avail-
able to us, usually in the form of hospital lists, treatment center registries or pharmacy
records. Each list will identify some of the cases with the disease under study, but
some individuals will remain undetected in any list (see also Hook and Regal 1995;
IWGDMF 1995). The number of cases that does not appear in either list is unknown,
and therefore the quantity that we wish to estimate. The methods used in estimating
wildlife population can be applied in these public health situations if we can match
individuals between lists. Animals in capture–recapture experiments are uniquely
marked, and so we need to uniquely match individuals in separate lists. Matching
is usually performed using information such as date of birth and initials of a patient.
Obviously, the more matching criteria that is used, the more likely we are to achieve
perfect matching between sources. If the matching between lists is not perfect, the
validity of the estimates obtained may be affected. The aim of this contribution is to
compare several different estimators of population size, using real data, to see how
well they are performing, in terms of bias and variance.

2 Methods

We will begin by looking at the properties of some estimators of population size that
are available to us. Here we will only be concerned with the situation where we have
two sources, so we can compare newer methods with the classic Lincoln–Petersen
and Chapman estimators, which can only be applied to two source data. Following
this, comparisons will be made between the estimators when they are applied to real
data. The data come from 19 three-source capture–recapture studies in epidemiology,
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compiled by Van Hest et al. (2007), from current and recent papers on disease occur-
rence. Details of the disease under study and the sources that were used in each study
can be found in the Appendix. For each study, we have three identifying sources. We
have the number of patients identified in just one source, the number identified in
two of the three sources and the number of cases observed in all three of the sources,
giving us a total of six pieces of information for each data set.

Often, however, two-source applications occur in public health and epidemiology
where the Lincoln–Petersen estimator can be applied. For this situation, we would
like to investigate the Chao estimator as an alternative. The Lincoln–Petersen estimate
is a well-known and therefore, commonly used estimator of population size. We wish
to see if Chao’s lower bound estimator is an improvement on this classic estimator.
Also available to us is the Zelterman estimator, which is said to be an upper bound
for population size.

To evaluate the estimators, we look at the three-source situations in the Appendix,
where we condition on one of the three sources. We can then check the validity of our
estimates by comparing them with the truth and with each other. Several assumptions
must be made about our data when applying the estimates:

1. Independence between sources
2. A closed population
3. Independence between individuals.

However, in human populations, it is highly unlikely to have complete independence
between sources. The nature of the sources used means there is sometimes high de-
pendence between sources. For example, study 9 examines bacterial meningitis. The
data sources for this study include the notifiable disease surveillance system, a vol-
untary hospital laboratory based surveillance system and the hospital discharge code
registry. We would expect that hospitals have strict notification procedures, and so if
a patient has been discharged from hospital after being diagnosed with meningitis,
we would expect that individual to also appear in the notifiable disease surveillance
system list. We can see from Table 8 that the log odds ratio between these two sources
is in fact relatively high.

The second of our assumptions is also not easily satisfied. If the disease under
study is fatal and an individual has been observed by one of the sources say, and
subsequently dies, it would be no longer possible for that individual to be identified
by a list which only identified live cases. In this case the closed population assumption
would be violated, as we would have an exit from the population. We would expect
independence between individuals unless we were studying a disease that could be
passed to immediate family members. In this case, affected individuals in the same
family may follow the same treatment route and therefore be identified by the same
sources. We can check the independence between two sources by calculating the odds
ratio. We can use this to see what effect any departures from independence have on
the validity of our estimators in terms of relative bias. Hence if we take the top four
lines of Table 1 (condition on source 1), we can calculate an estimate for the missing
cases from sources 2 and 3 and then check this estimate against f100. We can then
condition on each of the three sources for the 19 data sets we have available, giving
us 57 population estimates. We will assume a closed population and independence
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Table 1 The three-source
situation Source 1 Source 2 Source 3 Frequency

1 1 1 f111

1 1 0 f110

1 0 1 f101

1 0 0 f100

0 1 1 f011

0 1 0 f010

0 0 1 f001

0 0 0 f000 (unknown)

Table 2 The two-source
situation Source 1

1 0

Source 2 1 f11 f01 n2

0 f10 f00

n1

between individuals throughout, and that cases have been perfectly matched in each
of the datasets.

3 An overview of estimators

3.1 Lincoln–Petersen estimator

The Lincoln–Petersen estimator is based on the odds ratio and can be used in the two
source situation. It is assumed that identifying sources are independent and that cases
are equally likely to be identified within each source. The two source situation leads
to Table 2, with a case taking value 1 if present in a source and 0 otherwise.

If the two sources in the table were independent, the odds ratio would be close
to unity. Without conditioning, f00, the number of individuals that did not appear in
either source, is unknown, and the quantity we wish to estimate. Under independence
we have:

f11f00

f10f01
≈ 1. (1)

We can use this assumption of independence to give us an estimate for f00:

f̂00 = f10f01

f11
. (2)

If m2 = number observed in both sources and ni = the number observed in source i,
then the Lincoln–Petersen estimate is given by

N̂LP = f11 + f10 + f01 + f̂00 = f11 + f10 + f01 + f10f01

f11

= m2 + (n1 − m2) + (n2 − m2) + (n1 − m2)(n2 − m2)

m2
= n1n2

m2
. (3)
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If there is no overlap between sources (m2 = 0), we cannot compute the Lincoln–
Petersen estimator for population size. Another form of this estimator is the Chapman
estimator, which is given by

f̂00 = f10f01

f11 + 1
. (4)

The Chapman estimator of total population size is given by

N̂CPM = (n1 + 1)(n2 + 1)

m2 + 1
− 1. (5)

This estimate is less affected by zeros and is said to be less biased than the Lincoln–
Petersen estimator. For these reasons, we will use the Chapman’s modified form of
the Lincoln–Petersen estimate to compare with the other estimators.

3.2 Chao’s lower bound

Anne Chao (1987, 1989) proposed an alternative estimator of population size which
relaxes the assumption that identifying sources are independent. For the two-source
situation, we begin by looking at the mixed binomial with size parameter 2:

E(fj ) = N

∫
0

1 (
2
j

)
pj (1 − p)2−j f (p)dp, j = 0,1,2, (6)

where fj = the number present in j sources, i.e. f1 = f10 + f01 and f2 = f11. We
apply the Cauchy–Schwarz inequality to two random variables X and Y (see Kol-
mogorov and Formin 1970, for example):

[
E(XY)

]2 ≤ E
(
X2)E(

Y 2). (7)

Now if we choose X = p and Y = (1 − p) in (7) we have:

(∫
0

1

p(1 − p)f (p)dp

)2

≤
∫

0

1

(1 − p)2f (p)dp

∫
0

1

p2f (p)dp,

(
1

2
E(f1)

)2

≤ E(f0)E(f2),

from where

E(f0) ≥
{ [E(f1)]2

4E(f2)

}

follows. Replacing expected frequencies with observed frequencies provides the
Chao lower bound estimate of f00:

f̂0 = f 2
1

4f2
. (8)
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If we take n = f11 + f01 + f10, Chao’s estimate of total population size is given by

N̂C = n + f 2
1

4f2
. (9)

3.3 Zelterman’s upper bound

The Horvitz–Thompson estimator of population size is given by

N̂ = n

1 − p0
. (10)

Zelterman (1988) proposed to estimate p0 using only ones and twos from the zero-
truncated count distribution which should not only perform well in terms of bias if
the underlying count model is a Poisson, but also if contaminations occur such as
expressed in a Poisson mixture model. The estimator of Zelterman (1988) is

N̂Z = n

1 − exp(−2f2/f1)
. (11)

In the two-source situation, we can apply the same method used by Zelterman to the
mixed binomial likelihood, size parameter m = 2, with zeros truncated, as the cases
that appear in neither of the two sources are unobserved in the capture–recapture
setting. The binomial probabilities, with zeros truncated are given by the following:

P(X = 1) = 2p(1 − p)

p2 + 2p(1 − p)
= 2(1 − p)/p

1 + 2(1 − p)/p
,

P (X = 2) = p2

p2 + 2p(1 − p)
= 1

1 + 2(1 − p)/p
.

The likelihood is then given by

L(p) = P(X = 1)f1P(X = 2)f2

=
(

2(1 − p)/p

1 + 2(1 − p)/p

)f1
(

1

1 + 2(1 − p)/p

)f2

. (12)

Now we can re-parameterize this likelihood using θ = 1−p
p

→ p = 1
1+θ

. This pro-
vides a binomial likelihood

L(θ) =
(

2θ

1 + 2θ

)f1
(

1

1 + 2θ

)f2

with associated log-likelihood

l(θ) = f1 log(2θ) + f2 log(1) − f log(2θ + 1),

where f = f1 + f2. Now, we can find the maximum likelihood estimate of θ by
taking the derivative ∂l

∂θ
= f1

θ
− 2f

2θ+1 , and equating it to zero leads to

θ̂ = f1

2f2
. (13)
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Using the unique transformation θ into p, we achieve an estimate for p, which in
turn can be used to construct an estimate of p0. This is detailed in the following
using p̂ = 1

1+θ̂
:

p̂0 = (1 − p̂)2 =
(

1 − 1

1 + θ̂

)2

=
(

θ̂

1 + θ̂

)2

=
(

f1

f1 + 2f2

)2

. (14)

Putting this into the Horvitz–Thompson estimator will then give us the Zelterman
estimator of population size in the binomial setting, namely

N̂Z = n

1 − p̂0
= n

1 − (
f1

f1+2f2
)2

. (15)

4 Some characterizations

Now we note two relationships between the estimators given in Sect. 3, which helps
us to understand how they will perform with real data.

4.1 The identity of the Chao and the Zelterman estimators

Under the binomial model, with the number of capture occasions equal to 2, the
estimators for the population sizes as proposed by Chao and Zelterman are identical.
The formula for the estimated population size using the Chao estimate of f0 is given
by

N̂C = f1 + f2 + f̂0 = f1 + f2 + f 2
1

4f2
. (16)

According to (15), the Zelterman estimator is

N̂Z = n

1 − p̂0
= n

1 − (
f1

f1+2f2
)2

, (17)

and rearranging leads to

N̂Z = f1 + f2

1 − f 2
1

(f1+2f2)
2

= (f1 + f2)(f1 + 2f2)
2

4f1f2 + 4f 2
2

= (f1 + f2)(f1 + 2f2)
2

4f2(f1 + f2)

= (f1 + 2f2)
2

4f2
= f 2

1 + 4f1f2 + 4f 2
2

4f2
= f1 + f2 + f 2

1

4f2
= N̂C,

showing that the Zelterman estimator is identical to the Chao estimator for our situa-
tion.
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4.2 Relationship between the Lincoln–Peterson estimator and the Chao estimator

If there is symmetry in the two by two table, then we can see that the Lincoln–
Petersen estimator of f0 is equal to the Chao estimator of f0, and hence their es-
timates of the entire population are equal. Conformation of this is shown below. We
have the following equivalence:

f̂0,L-P = f̂0,C ⇐⇒ f01f10

f2
= f 2

1

4f2
,

where f1 = f10 + f01. Assume that the following symmetry condition holds:

f01 = f10 = f1

2
.

Note that this assumption of symmetry is identical to the assumption that both sources
have identical marginal probabilities of identifying a unit. Then, using the definition
of the Lincoln–Petersen estimator we have:

f̂0,L-P = (
f1
2 )2

f2
,

which simplifies to
f 2

1
4f2

= f̂0,C. If the expected frequencies for the number of cases
included in only one of the sources, were the same for both sources, then we would
expect the Lincoln–Petersen and the Chao estimates to give us similar results.

4.3 Two alternative estimators

Two more estimators of population size are examined in this section, with similar
findings to those in Sect. 4.1. Both estimators are developed under the assumption
that the observed data follow a binomial distribution. Firstly the maximum likelihood
estimator for p, which can then used in the Horvitz–Thompson estimator, N̂ = n

1−p̂0
,

to obtain the maximum likelihood estimate of population size. Similarly, we can use
the McKendricks moment estimator of p to estimate population size in the capture–
recapture setting.

Maximum Likelihood Estimator We can derive a general form for the maximum
likelihood estimator of p0 using the binomial distribution with trial parameter m and
probability p, with zeros truncated. We have the following general zero-truncated
likelihood: (

m
j

)
pj (1 − p)m−j

1 − (1 − p)m
, j = 1, . . . ,m.

Now, for j = 1,2, the log-likelihood becomes

l(p) = f1
{
log(p) + (m − 1) log(1 − p)

}
+ f2

{
2 log(p) + (m − 2) log(1 − p)

} − f log
(
1 − (1 − p)m

)
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= (f1 + 2f2) log(p) + (f m − f1 − 2f2) log(1 − p)

− f log
(
1 − (1 − p)m

)
= (f1 + 2f2) log(p) + (f m − f1 − 2f2) log(1 − p)

− f log
(
1 − (1 − p)m

)
.

Now, taking the derivative of this log-likelihood, we have:

∂l

∂p
= f1 + 2f2

p
− f m − f1 − 2f2

1 − p
− f m(1 − p)m−1

1 − (1 − p)m

= (f1 + 2f2)
[
(1 − p) − (1 − p)m+1]

− (f mp − f1p − 2f2p)
[
1 − (1 − p)m

] − f mp(1 − p)m

= (f1 + 2f2)(1 − p) − (f1 + 2f2)(1 − p)m+1

− f mp + f1p + 2f2p − (f1 + 2f2)p(1 − p)m

= f1 + 2f2 − f mp − (f1 + 2f2)(1 − p)m
[
(1 − p) + p

]
.

Now we equate the derivative of the log-likelihood to zero to get an expression for
the maximum likelihood estimate p̂ of p:

f mp̂ = (f1 + 2f2)
[
1 − (1 − p̂)m

]
,

p̂ = (f1 + 2f2)

(f1 + f2)m

[
1 − (1 − p̂)m

]
,

(18)

and, for m = 2,

p̂ = (f1 + 2f2)

(f1 + f2)2

[
1 − (1 − p̂)2]

= (f1 + 2f2)

2f

[
2p̂ − p̂2],

and a nonzero solution of this equation is provided by

p̂MLE = 2f2

(f1 + 2f2)
. (19)

Using this estimate p̂ of p, we can get an estimate for N using the Horvitz–Thompson
estimator:

N̂ = n

1 − (1 − p̂)m

and, for m = 2,

N̂MLE = n

2p̂ − p̂2
= n

4f2
f1+2f2

− 4f 2
2

(f1+2f2)
2
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= n

4f2(f1+2f2)−4f 2
2

(f1+2f2)
2

= n(f1 + 2f2)
2

4f2(f1 + f2)

= (f1 + 2f2)
2

4f2
= f 2

1

4f2
+ f1 + f2 = N̂C,

showing that the maximum likelihood estimate agrees with Chao’s and Zelterman’s
estimator. More generally, when m is greater than two, we can see from (18) that
there is no closed form expression for the mle p̂ of p. To obtain an estimate for p in
this situation an iterative procedure could be used, or the Taylor series expansion of
(1 − p̂)m could be applied to find an approximate solution.

McKendricks Moment Estimator We know that when Xi is binomial with size pa-
rameter m and success parameter p, then E(Xi) = mp and

Var(Xi) = E
(
X2

i

) − [
E(Xi)

]2 = mp(1 − p), or

E
(
X2

i

) = Var(Xi) + [
E(Xi)

]2 = mp(1 − p) + (mp)2.

We also know that the mean of X̄ = 1
N

∑
Xi is given by E(X̄) = mp. Using the

method of moments, we equate the expected value of the X̄ with the sample mean x̄

to obtain an expression for the sum of the xi in terms of the binomial parameters:

mp = 1

N

∑
xi. (20)

Since the expectation and summation can be interchanged and using (20) we have:

E

(∑
X2

i

)
=

∑
E

(
X2

i

) = Nmp
[
(1 − p) + mp

]
. (21)

Averaging the expression (21) gives:

E

(
1

N

∑
X2

i

)
= mp(1 − p) + (mp)2,

which we equate to the second sample moment 1
N

∑
x2
i giving the second moment

equation
∑

x2
i = Nmp

[
(1 − p) + mp

] =
∑

xi

[
(1 − p) + mp

]
,

where we have used the first moment equation (20). Rearranging this, we can obtain
an expression for p̂MO

∑
x2
i∑

xi

= 1 + p̂MO(m − 1), or

p̂MO =
∑

x2
i∑

xi
− 1

m − 1
=

∑
x2
i − ∑

xi∑
xi(m − 1)

.



Estimators in capture–recapture studies with two sources 33

Now, we know the sum of the xi to be f1 +2f2, and the sum of the x2
i to be f1 +4f2,

since f1 is the frequency of those xi that take the value 1, and f2 is the frequency of
those xi that take the value 2. Substituting these values into the above gives:

p̂MO = f1 + 4f2 − f1 − 2f2

(f1 + 2f2)(m − 1)
= 2f2

(f1 + 2f2)(m − 1)
.

As a fundamental result we see that this moment estimator of p0 is equal to the
maximum likelihood estimate of p0, when we have only two sources.

We can use this estimate to obtain an estimate for N by substituting into (20):

∑
xi = Nm

∑
x2
i − ∑

xi∑
xi(m − 1)

, or

N̂MO = (m − 1)(
∑

xi)
2

m(
∑

x2
i − ∑

xi)
= (m − 1)(f1 + 2f2)

2

m(f1 + 4f2 − f1 − 2f2)
= (m − 1)(f1 + 2f2)

2

m2f2
.

This is the moment estimator for the total population. In the two source case, m = 2.
Substituting this value into the above, we have that

N̂MO = (f1 + 2f2)
2

4f2
= f 2

1 + 4f1f2 + 4f 2
2

4f2
= f 2

1

4f2
+ f1 + f2 = N̂C,

which again coincides with the Chao estimator.
To summarize we have looked at the following approaches and estimators:

1. Chao’s estimator
2. Zelterman’s estimator
3. Maximum likelihood estimator for a zero-truncated binomial with size parame-

ter 2
4. The associated moment estimator (McKendrick’s estimator)

and shown that all four agree in our situation of a capture–recapture setting with
two sources. The only substantially different estimator remaining is the Lincoln–
Petersen or Chapman estimator. Hence, in our further analysis we will concentrate on
comparing only Chao’s and Chapman’s estimator.

5 Analysis

In order to see how these estimators were behaving with real data, they were applied
to the 19 data sets available to us. The data were collected from recent and current
papers on disease occurrence. As we are interested in the two-source situation and
we have three-source data sets, we can condition on each of the three sources from
each data sets so we have 57 values with which to compare the different estimators.
The resulting estimates can be found in the Appendix.

To compare the estimators we will look at several measures. One of these is the
relative bias, which is calculated as the difference between true and the estimated
value of f00 and then scaled by the estimate of the number of unobserved values (f̂00).
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We will also look at a variance formula for the estimators of Chao and Zelterman
in this two-source binomial situation when their estimates coincide. We can then
compare this with the variance of the Chapman estimator by computing the associated
confidence intervals, to see if these confidence intervals do in fact include the true
value of N .

5.1 Relative bias

In order to compare the different estimates for the number of missing cases, we can
calculate the relative bias. Here, we take this to be the following:

Relative bias = f00 − f̂00

f̂00
. (22)

A good estimate of population size will have an associated relative bias close to zero.
Calculating this relative bias for the Chao and the Chapman estimators for the 57
estimates that we have (three for each dataset), we can see that there are only seven
occurrences when the Chapman estimator performs ‘better’ than the Chao estimator,
i.e. it has a relative bias closer to zero. This is important for capture–recapture studies,
as the Chapman estimator is still the most commonly used. However, here we see that
Chao’s alternative estimator is less biased than the Chapman estimator and is just as
simple to calculate.

Figure 1 shows the relative bias plotted against the log odds ratio, and we can see
a smoothness in the relationship between the log odds ratio and the relative bias of

Fig. 1 Relative bias against log odds ratio for the Chapman and Chao estimators
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the Chapman estimator. Investigating this relationship further, we have:

log(OR) = log

(
f11f00

f10f01

)
, (23)

Chapman Relative bias = f00 − f̂00

f̂00
. (24)

Now,

f̂00 = f10f01

f11 + 1

Substituting into (24) = f00

f̂00
− 1

= f00(f11 + 1)

f10f01
− 1

= f11f00

f10f01
+ f00

f10f01
− 1

= OR

(
1 + 1

f11

)
− 1 so that

log(Chapman relative bias + 1) = log(OR) + log

(
1 + 1

f11

)
. (25)

We can see that the relative bias for the Chapman estimator is a function of the odds
ratio, hence the smoothness when the relative bias is plotted against the log(OR). We
can see that not all points lie exactly on the line that has been fitted. When f11 is large,
the second term on the right-hand side of (25) is close to zero. This fact, along with
a positive odds ratio, makes it appear as though these points are anomalous results.
Six of these points come from studies 3a and 3b where the number of cases identified
by all three sources was four and two respectively. The other occurrence is study 5,
where f111 is equal to two. However, it is only when we condition on source one
that this point departs from the fitted line in Fig. 1, as this is the only occasion when
conditioning on study 5 produces a positive log odds ratio.

As we have seen in Sect. 4.2, we can expect that the Chapman and Chao estima-
tors are close when the identifying probabilities of the two sources are similar. This
comes out in the analysis if we plot the relative bias against the difference of the es-
timated capture probabilities of source 1 and source 2. Figure 2 shows the associated
scatterplot with the LOWESS-smoother included. Clearly, the benefit of using the
Chao estimator diminishes if this difference is close to zero.

We have defined the relative bias as f00−f̂00

f̂00
. Alternatively, the relative bias could

have been defined as the Pearson-type residual f00−f̂00√
f̂00

. However, the results and

graphs were not substantially different so that they are not presented here for the sake
of brevity.
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Fig. 2 Relative bias against the difference of the capture probabilities of the two sources for the Chapman
and Chao estimators

5.2 Variance estimation

We now consider variance estimation for our estimates. An approximately unbiased
estimate of the variance of N̂CPM was derived by Seber (1970) to be as follows:

Var(N̂) = (n1 + 1)(n2 + 1)(n1 − m2)(n2 − m2)

(m2 + 1)2(m2 + 2)
, (26)

where n1 = f11 + f10, n2 = f11 + f01, m2 = f11 We can calculate this variance for
our 57 estimates of N and also construct normal based confidence intervals.

Similarly, this can be done for the Chao estimate. A relatively simple variance
estimate can be found by applying a general technique suggested in Böhning (2008)
(see also Van der Heijden et al. 2003) to the Zelterman estimator (which is identical
here to Chao’s estimator) and leads to

V̂ar(N̂Z) = f2θ̂
2(θ̂ + 1)2 = f 2

1

4f2

(
f1

2f2
+ 1

)2

. (27)

More details can be found in Brittain and Böhning (2007).1

We now consider the two variance estimators for our data sets. Figure 3 shows that
as the f1/f2 ratio increases, the variance for both the Chapman and Chao estimators
increases. In Fig. 3, the relative variance was plotted (variance divided by n), and
the natural log of this quantity was taken to scale the sometimes large estimates of

1Unpublished, available on request.
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Fig. 3 Log(relative variance) against the f1/f2 ratio for all 57 estimates

the variance. When the f1/f2 ratio is close to zero or smaller, the variances for the
different estimators are fairly similar. However, as the ratio increases, the variance
for the Chao estimator is larger than the Chapman variance. The variance of Chao
estimator is a smooth function of the f1/f2 ratio, which we can also see from Fig. 3.
Although the Chapman variance is less than the variance of Chao’s estimator in all of
the datasets, this does not make it necessarily a better estimate.

We cannot compare the size of the variances directly as they are variances of differ-
ent quantities. To make any meaningful comparison, we need to calculate confidence
intervals to see how often these contain the true value of N for each of the estimators.
Obviously, this will also depend on how good the original estimates were, and we
have already seen in Sect. 5.1 that the relative bias for Chao’s estimator was lower
than that of Chapman’s estimator in most cases.

The normal based 95% confidence intervals were calculated with the variance for-
mulae for the Chapman and Chao estimators given in (26) and (27) respectively. The
results can be found in the Appendix. We can then compare these intervals to see
whether or not they contain the true value of N for each of the 57 confidence inter-
vals. Table 3 is a summary of how often each of the confidence intervals for the two
estimators contained the truth. (1 = Covered N , 0 = Did not cover N .) We can see
that the confidence interval for the Chao estimator, using the variance derived above,
includes the true value of N 26 times out of the 57, whereas the Chapman confidence
interval only includes the truth 19 times. We can also see from the table that there are
only two occasions out of 19 (11%) when the Chapman confidence interval covers the
truth, and the Chao confidence interval does not. From 26 occasions in which Chao’s
estimator covered the true N , there were 9 occasions (35%) in which the Chapman
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Table 3 Summary table of
number of times 95%
confidence intervals cover the
true value of N (1 = C.I
covers N , 0 = True value not
covered by 95% C.I)

Chapman Total

1 0

Chao 1 17 9 26

0 2 29 31

Total 19 38 57

Table 4 Design of the
simulation study with capture
probabilities p00, p10, p01, p11

and odds ratio OR = p00p11
p10p01

Population number p00 p10 p01 p11 OR

1 0.25 0.25 0.25 0.25 1.00000

2 0.30 0.20 0.25 0.25 1.50000

3 0.30 0.15 0.30 0.25 1.66667

4 0.35 0.20 0.20 0.25 2.18750

5 0.35 0.15 0.20 0.30 3.50000

6 0.35 0.10 0.20 0.35 6.12500

estimator did not. We can also see that when only the confidence interval for one of
the estimators covers the truth, it is Chao’s estimator nine times out of 11.

This would suggest that the Chao estimator is a more appropriate estimator of
population size, particularly when the independence assumption is in doubt.

6 Simulation study

To provide further insights into the behaviour of the two estimators a simulation study
was designed. The population size was chosen N = 100 and capture–recapture prob-
abilities were chosen according to Table 4. For example, in the second population the
probability p11 that an individual is identified by both sources is 0.25, the probability
p10 that it is identified by the first source and not by the second is 0.20, the prob-
ability p01 that it is identified by the second source but not the first source is 0.25,
and the probability p00 that it remains unidentified at all is 0.30. For each of the 6
populations, 1000 samples were generated, each of these leading to frequencies f00,
f10, f01 and f11 fulfilling that their sum is 100. The fact that the frequency f00 is
known was ignored and was estimated instead using Chapman’s and Chao’s estima-
tor. Since this was done 1000 times, their bias, variance and mean squared error could
be calculated.

Note that the population differ in various aspects. Most importantly, they carry
different dependence structures between the two sources. For example, in the first
population the sources are independent. This can be seen by looking at the odds ratio
defined as OR = p00p11

p10p01
, which takes the value 1 in this case. For all other populations,

the odds ratio is calculated in the last column of Table 4. Clearly, the populations are
ordered with respect to their dependence structure as measured by the odds ratio.
We expect that the odds ratio is a key factor in the behaviour of the estimators. In
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Fig. 4 Mean of Chapman and Chao estimator against the odds ratio for the six populations of Table 4

fact, it is known that with increasing dependencies between sources the Lincoln–
Petersen/Chapman estimator will underestimate the population size. The reason for
this behaviour in empirical data has been given in (25), which relates the relative bias
of the Chapman estimator to the odds ratio. Another argument on population level
is as follows. Consider the odds ratio estimate ÔR = f00f11

f10f01
. The Lincoln–Petersen

estimate is found by setting the ÔR = 1 and solving the occurring equation for f00. If

there is positive dependency, the estimate f̂00 = ÔRf10f01
f11

should be used. Note that

ÔR
f10f01

f11
≥ f10f01

f11
, (28)

where the expression on the right-hand side of (28) is conventionally used in estima-
tion. Hence, the underestimation.

Figure 4 shows that both estimators indeed underestimate the true population size,
the more the higher the odds ratio. However, Chao’s estimator shows consistently
less bias unless we are in the case of independence where we know that Chapman’s
estimator is unbiased.

As known from the analysis in the previous chapters, Chao’s estimators has a
larger variance than the one of Chapman. This is also visible in Fig. 5. Hence, it might
be valuable to look at the trade-off measure of mean squared error (MSE), which is a
sum of squared bias and variance. The resulting Fig. 6 indicates that Chao’s estimator
has superior MSE in all cases unless we are in the independence case.

We have seen in Sect. 4.2 that Chao’s estimator will be close to the Chapman es-
timator if the identifying sources have similar marginal probabilities. In other words,
we expect that the estimators of Chao and Chapman agree if p11 + p10 = p11 + p01.
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Fig. 5 Standard deviation of Chapman and Chao estimator against the odds ratio for the six populations
of Table 4

Fig. 6 Root mean squared error of Chapman and Chao estimator against the odds ratio for the six popu-
lations of Table 4
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Fig. 7 Mean of Chapman and Chao estimator against the odds ratio for the six populations of Table 4 and
a further one with more extreme difference in the identifying probabilities

Table 5 Design of the
simulation study with capture
probabilities p00, p10, p01, p11
and difference between
identifying probabilities
p01 − p10

Population number p00 p10 p01 p11 p01 − p10

1 0.25 0.25 0.25 0.25 0.00

2 0.30 0.20 0.25 0.25 0.05

3 0.30 0.15 0.30 0.25 0.15

4 0.35 0.20 0.20 0.25 0.00

5 0.35 0.15 0.20 0.30 0.05

6 0.35 0.10 0.20 0.35 0.10

7 0.25 0.10 0.40 0.25 0.30

Table 5 displays the populations with respect to their difference in the marginal, iden-
tifying probabilities (p11 + p01) − (p11 + p10) = p01 − p10. As can be seen, these
differences range from 0 to 0.15 for the populations 1 to 6. To study a more extreme
case, we have added population 7 with a difference of 0.3 and an odds ratio of 1.56.
The results of the simulation study (including population 7 now) with respect of bias
are provided in Fig. 7. With the new population included, it becomes clear that Chao’s
estimator will be most beneficial if there is dependency between sources as well as
both sources differ in their identification probabilities.
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7 Discussion

We have seen several estimators being applied to epidemiological data. We have been
able to see how well they are performing, as we have been able to compare each of
our estimates with the truth and each other. Overall, we have seen that Chao’s esti-
mator has a lower relative bias, a larger variance, but with better confidence interval
coverage than the more commonly used Chapman estimator.

However, Van Hest et al. (2007) suggest that this technique for evaluating estima-
tors has its limitations, particularly when dealing with infectious disease incidence
data. We have seen that the dependencies between two of the sources varies greatly
between data sets, and most of the two sources do have a positive dependence. With
this data, we should expect to see positive interdependence between the three sources
(Van Hest et al. 2007). Extracting 2×2 tables in this manner ignores these possible
dependencies, thus the estimates that we obtained for the total population size are not
using all possible information available.

Other limitations of these methods include the violation of assumptions. Already
discussed is the independence between sources, but we also assume that each indi-
vidual has equal ascertainment probability within sources. This assumption is more
likely to be violated in human populations than animal populations as we would
expect human behaviour to be less homogeneous than that of animals. Whether a
member of the population is identified by a particular source may depend on sev-
eral covariates such as severity of disease, the location of that individual in the study
area, or gender. This suggests that regression modelling could be a valuable tool in
achieving a more accurate estimate of the population, especially when individuals
have different ascertainment probabilities.

The assumption that we are dealing with a closed population is also likely to be
violated in capture–recapture experiments. Particularly when we are considering fatal
diseases, where death will mean an exit from the population. There are other methods
available for dealing with open populations (Seber 2002), and a comparison of these
methods would test the validity of this assumption in our situation.

Using real data sources as well as simulated data, we have been able to demon-
strate that Chao’s lower bound does provide a more reliable estimate of population
size, especially when the odds ratio is high between sources and the difference be-
tween the identifying probabilities of the two sources are large, by looking at the
relative bias for the real data sources and by looking at bias and mean squared er-
ror for the simulated data. This important result means that we have an estimator
that is as simple to calculate as the more commonly used Chapman estimator and is
a better predictor of population size. The ease of calculation of Chao’s estimator is
particularly beneficial as some studies are carried out by epidemiologists with lim-
ited mathematical ability. Here we have presented evidence for wider use of Chao’s
estimator as a more reliable alternative to the Chapman estimator.

We have also provided a simple formula to calculate the variance of Chao’s es-
timator (27). Although the confidence interval for this estimate is wider, it is more
likely to include the true value of N than the confidence interval for the Chapman
estimate.

In conclusion, Chao’s estimator has been shown to be more viable than Chapman’s
estimator, and efforts should be made to introduce it more widely to epidemiologists
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and biologists, many of whom preferentially use the Chapman estimator. An evalu-
ation of the use of covariates in estimating population size would also be a topic for
further investigation. Whether or not the extra effort of data collection gave us a sig-
nificantly more accurate estimate of population size, compared with Chao’s estimator
would need to be assessed.
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Appendix

In the following we provide more details on the studies which formed the empirical
base for all comparisons.

Table 6 Overview of studies: Three-source capture–recapture studies of infectious diseases (Van
Hest et al. 2007)

Study Disease Objective Data sources

1 Legionnaires’
disease

To estimate the level of underreport-
ing of Legionnaires’ disease and to
evaluate the feasibility of a laboratory
based reporting system in France in
1995

1. National Notification System
2. Reference laboratory
3. Hospital laboratory survey

2 AIDS/HIV To estimate the completeness of the
prison AIDS register in Spain in 2000

1. Prison register of AIDS pa-
tients
2. Prison register of tuberculosis
patients
3. Prison register of hospital
admissions

3a, 3b Pertussis To estimate under notification of
whooping cough in the north west of
England, 1994–1996

1. Notification data from the of-
fice for national statistics (ONS)
2. Hospital admission data
3. Public health laboratory reports

4 Salmonella
infection

To assess the number of foodborne
Salmonella outbreaks in France, 1995

1. Mandatory public health notifi-
cation
2. Mandatory veterinary notifica-
tion
3. National Salmonella reference
centre

5 Pertussis To improve estimates of pertussis
deaths in England and identify rea-
sons for under ascertainment, 1994–
1999

1. Hospital episode statistics
2. Enhanced laboratory pertussis
surveillance
3. ONS mortality data
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Table 6 (Continued)

Study Disease Objective Data sources

6 Meningococcal
Meningitis

To evaluate the exhaustiveness
of three information sources on
meningococcal disease in Tener-
ife, Spain, 1999–2001

1.Mandatory notifiable disease sur-
veillance system
2. Laboratory survey
3. Hospital discharge codes

8 Tuberculosis Assessment of completeness of
the tuberculosis systems in the
Piedmont region of Italy, 2001

1. Physician notification system
2. Reference laboratory
3. Hospital admission statistics

9 Meningitis,
bacterial

to estimate the incidence of bac-
terial meningitis and to assess the
quality of the surveillance sys-
tems in the Lazio region of Italy,
1995–1996

1. Notifiable disease surveillance
system
2. Voluntary hospital laboratory-
based-surveillance system
3. Hospital discharge code registry

10 Malaria To estimate the completeness of
notification of malaria by physi-
cians and laboratories in The
Netherlands in 1996

1. Passive national notification
register
2. Active laboratory survey
3. National hospital admission
registration

11 Legionnaires’
disease

To evaluate improvements made
to the mandatory notification sys-
tem for Legionnaires’ disease in
France in 1998

1. National Notification System
2. Reference laboratory
3. Hospital laboratory survey

12 Hepatitis A Estimation of individuals infected
with hepatitis A during an out-
break in Taiwan, 1995

1. Laboratory serological test re-
cords
2. Hospital records
3. Epidemiological questionnaires

13a & 13b Tuberculosis Description of systematic ex-
amination and case-verification,
record-linkage, capture–recapture
analysis and assessment of the
completeness of three tuberculo-
sis registers in The Netherlands,
1998

1. Physician notification system
2. Reference laboratory
3. Hospital admission statistics

14 Tuberculosis Description of case-verification,
record-linkage, capture–recapture
analysis and assessment of com-
pleteness of three tuberculosis
registers in England, 1999–2002

1. Notification
2. Laboratory reports
3. Hospital discharge codes

15 Legionnaires’
disease

Assessment of Legionnaires’ dis-
ease incidence and completeness
of notification in The Nether-
lands, 2000–2001

1. Passive national notification
register
2. Active laboratory survey
3. National hospital admission
registration

16a & 16b Meningo-
coccal
disease

Assessment of completeness of
three data sources for meningo-
coccal disease after correction for
false-positive diagnoses in The
Netherlands, 1993–1999

1. Notification register
2. Hospital Episode Statistics
3. Reference Laboratory for bacter-
ial meningitis records
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Table 7 Population size estimates: Conditioning on Source 1

Study f100 f110 f101 f111 Estimates of f100 log-OR f1
f2

Relative bias

Chap. Chao Chap. Chao

1 7 6 10 14 4.00 4.57 0.49 1.14 0.75 0.53

2 26 17 29 33 14.50 16.03 0.55 1.39 0.79 0.62

3a 24 19 4 4 15.20 33.06 0.23 5.75 0.58 −0.27

3b 17 20 1 2 6.67 55.13 0.53 10.50 1.55 −0.69

4 45 10 39 20 18.57 30.01 0.84 2.45 1.42 0.50

5 12 2 6 2 4.00 8.00 0.69 4.00 2.00 0.50

6 5 4 7 30 0.90 1.01 1.68 0.37 4.54 3.96

7 1 14 15 49 4.20 4.29 −1.46 0.59 −0.76 −0.77

8 125 183 96 153 114.08 127.19 0.08 1.82 0.10 −0.02

9 5 7 6 76 0.55 0.56 2.20 0.17 8.17 7.99

10 54 37 94 123 28.05 34.88 0.65 1.07 0.93 0.55

11 132 77 52 95 41.71 43.79 1.14 1.36 2.16 2.01

12 69 21 17 28 12.31 12.89 1.69 1.36 4.61 4.35

13a 78 30 510 388 39.33 187.89 0.68 1.39 0.98 −0.58

13b 40 30 548 388 42.26 215.26 −0.06 1.49 −0.05 −0.81

14 7777 6503 3789 6075 4055.28 4359.06 0.65 1.69 0.92 0.78

15 56 31 131 155 26.03 42.33 0.76 1.05 1.15 0.32

16a 189 189 314 2234 26.55 28.31 1.96 0.23 6.12 5.68

Table 8 Population size estimates: Conditioning on Source 2

Study f100 f110 f101 f111 Estimates of f100 log-OR f1
f2

Relative bias

Chap. Chao Chap. Chao

1 73 6 100 14 40.00 200.64 0.53 7.57 0.83 −0.64

2 17 17 29 33 14.50 16.03 0.13 1.39 0.17 0.06

3a 285 19 33 4 125.40 169.00 0.60 13.00 1.27 0.69

3b 308 20 21 2 140.00 210.13 0.38 20.50 1.20 0.47

4 24 10 19 20 9.05 10.51 0.93 1.45 1.65 1.28

5 1 2 4 2 2.67 4.50 −1.39 3.00 −0.63 −0.78

6 2 4 3 30 0.39 0.41 1.61 0.23 4.17 3.90

7 1 14 1 49 0.28 1.15 1.25 0.31 2.57 −0.13

8 64 183 6 153 7.13 58.37 2.19 1.24 7.98 0.10

9 52 7 46 76 4.18 9.24 2.51 0.70 11.43 4.63

10 41 37 127 123 37.90 54.67 0.07 1.33 0.08 −0.25

11 93 77 105 95 84.22 87.17 0.09 1.92 0.10 0.07

12 55 21 18 28 13.03 13.58 1.40 1.39 3.22 3.05

13a 93 30 99 388 7.63 10.72 2.50 0.33 11.18 7.67

13b 35 30 99 388 7.63 10.72 1.52 0.33 3.58 2.26

14 2478 6503 512 6075 547.98 2025.11 1.51 1.15 3.52 0.22

15 30 31 45 155 8.94 9.32 1.20 0.49 2.35 2.22

16a 253 189 808 2234 68.33 111.24 1.31 0.45 2.70 1.27

16b 250 189 808 2234 68.33 111.24 1.30 0.45 2.66 1.25
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Table 9 Population size estimates: Conditioning on Source 3

Study f100 f110 f101 f111 Estimates of f100 log-OR f1
f2

Relative bias

Chap. Chao Chap. Chao

1 46 10 100 14 66.67 216.07 −0.44 7.86 −0.31 −0.79

2 22 29 29 33 24.74 25.48 −0.15 1.76 −0.11 −0.14

3a 66 4 33 4 26.40 85.56 0.69 9.25 1.50 −0.23

3b 51 1 21 2 7.00 60.50 1.58 11.00 6.29 −0.16

4 451 39 19 20 35.29 42.05 2.50 2.90 11.78 9.73

5 6 6 4 2 8.00 12.50 −0.69 5.00 −0.25 −0.52

6 2 7 3 30 0.68 0.83 1.05 0.33 1.95 1.40

7 0.5 15 1 49 0.30 1.31 0.49 0.33 0.67 −0.62

8 30 96 6 153 3.74 17.00 2.08 0.67 7.02 0.76

9 7 6 46 76 3.58 8.89 0.66 0.68 0.95 −0.21

10 189 94 127 123 96.27 99.27 0.67 1.80 0.96 0.90

11 161 52 105 95 56.88 64.87 1.03 1.65 1.83 1.48

12 63 17 18 28 10.55 10.94 1.75 1.25 4.97 4.76

13a 301 510 99 388 129.79 238.97 0.84 1.57 1.32 0.26

13b 301 548 99 388 139.47 269.72 0.77 1.67 1.16 0.12

14 1544 3789 512 6075 319.28 761.26 1.58 0.71 3.84 1.03

15 332 131 45 155 37.79 49.96 2.17 1.14 7.79 5.65

16a 612 314 808 2234 113.52 140.88 1.68 0.50 4.39 3.34

16b 536 314 808 2234 113.52 140.88 1.55 0.50 3.72 2.80
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