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Introduction

an elusive population has N units of which n are identified by
some mechanism (trap, register, police database, ...)
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Introduction

Formulation of the Problem

I probability of identifying an unit is (1− p0)

I so that N = (1− p0)N︸ ︷︷ ︸
observed

+ p0N︸︷︷︸
hidden

≈ n + p0N

I and the Horvitz-Thompson estimator follows:

N̂ =
n

1− p0

I usually an estimate of p0 is required
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Introduction

Formulation of the Problem as Frequencies of
Frequencies

Frequencies of Frequencies

a common setting for estimating p0 is the Frequencies of
Frequencies setting:

Identifying Mechanism

the identifying mechanism provides a count Y of repeated
identifications (w.r.t. to a reference period)
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Introduction

Illustration of the CR-Concept

Table: Illustration with Case Data from Software Inspection (Wohlin
et al. 1995)

Reviewers
Error i R1 R2 ... R22 Marginal Yi

1 1 0 ... 1 2
2 1 1 ... 0 4
3 0 0 ... 1 2
4 0 0 ... 0 0
5 0 1 ... 0 1
... ... ... ... ... ...
38 1 1 ... 0 7
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Introduction

Formulation of the Problem as Frequencies of
Frequencies

Marginal distribution

marginal distribution of Y is leading to frequencies f1, f2, ..., fm of
the counts 1, 2, ..,m (m is the largest observed count)

estimating f0 on the basis of f1, f2, ..., fm
zero counts are not observed: hence f0 is unknown
Recall that N = f0 +n = f0 + f1 + f2 + ...+ fm, so that f̂0 leads to N̂
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Introduction

Illustration of the frequencies of frequencies
situation at hand of the software inspection data

Table: Zero-truncated count distribution of software errors

f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10
- 5 1 5 1 3 2 0 5 4 2

f11 f12 f13 f14 f15 f16 f17 f18 f19 f20 n

3 1 0 2 0 1 0 0 0 1 36
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Introduction

Some Applications

Application Areas

I Epidemiology and Medicine

I Biology and Agriculture

I Social Science and Criminology

I Research on Terrorism

I Systems Engineering

I Text Analysis and Language studies
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Introduction

Some Applications

Hser’s Data on Estimating Hidden Intravenous Drug
Users in Los Angeles 1989

I intravenous drug users in L.A. county were entered into the
California Drug Abuse Data System (CAL-DADS)

I the data below refer to the frequency distribution of the
episode count per drug user in 1989

the frequency distribution of the episode count per drug user for
the year 1989:

f0 f1 f2 f3 f4 f5 f6
- 11,982 3,893 1,959 1,002 575 340

f7 f8 f9 f10 f11 f12 n

214 90 72 36 21 14 20,198
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Introduction

Some Applications

Screening for colorectal adenomatous polyps

I In 1990, the Arizona Cancer Center initiated a multicenter
trial to determine whether wheat bran fiber (WBF) can
prevent the recurrence of colorectal adenomatous polyps
(Alberts et al. (2000) and Hsu (2007)).

I Subjects with previous history of colorectal adenomatous
polyps were recruited and randomly assigned to one of two
treatment groups, low fiber and high fiber.
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Introduction

Some Applications

Screening for colorectal adenomatous polyps

I The researchers noted that adenomatous polyp data are often
subject to unobservable measurement error due to
misclassification at colonoscopy. It can be assumed that
patients with a positive polyp count were diagnosed correctly,
whereas it is unclear how many persons with zero-count of
polyps were false-negatively diagnosed.

I Thus we approach the data as if zero-counts were not
observed, and we try to estimate the undercount from the
non-zero frequencies.

I the maximum polyp count in a patient is 77.

13 / 92



Capture-Recapture Estimation of Population Size by Means of Truncated Likelihood and Empirical Bayesian Smoothing

Introduction

Some Applications

Screening for colorectal adenomatous polyps

Table: Arizona polyps data: count distribution of recurrent
adenomatous polyps per patient, separated for low and fiber group

Count of polyps f0 f1 f2 f3 f4 f5 f6 f7 f8+

low fiber group
No. of subjects (285) 145 66 39 17 8 8 7 9
high fiber group
No. of subjects (381) 144 61 55 37 17 5 4 15
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Introduction

Some Applications

Del Rio Vilas’s Data on Estimating Hidden Scrapie
in Great Britain 2005

I sheep is kept in holdings in Great Britain (and elsewhere)

I the occurrence of scrapie is monitored in the Compulsory
Scrapie Flocks Scheme (CSFS) summarizing abbatoir survey,
stock survey and the statutory reporting of clinical cases

I CSFS established since 2004

the frequency distribution of the scrapie count within each
holding for the year 2005:

f0 f1 f2 f3 f4 f5 f6 f7 f8 n

- 84 15 7 5 2 1 2 2 118
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Introduction

Some Applications

Microbial diversity in the Gotland Deep.

I The data on microbial diversity shown in the table below stem
from a recent work by Stock et al. (2009).

Table: Protistan diversity in the Gotland Deep: Frequency counts of
observed species.

f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10
- 48 9 6 2 0 2 0 2 1 1
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Introduction

Some Applications

Microbial diversity in the Gotland Deep.

I Microbial ecologists are interested in estimating the number of
species N in particular environments.

I Unlike butterflies, microbial species membership is not clear
from visual inspection, so individuals are defined to be
members of the same species (or more general taxonomic
group) if their DNA sequences (derived from a certain gene)
are identical up to some given percentage, 95% in this case.

I Here the study concerned protistan diversity in the Gotland
Deep, a basin in the central Baltic Sea. The sample was
collected in May 2005, resulting in the data displayed in the
above table. The maximum observed frequency was 53.
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Introduction

Some Applications

How many words did Shakespeare know?

I Efron and Thisted (1987, Biometrika): How many words did
Shakespeare know, but not use?

I important question in text analysis and estimation of language
knowledge

f0 f1 f2 f3 f4 f5 f6 f7 ... n

- 14,376 4,343 2,292 1,463 1,043 837 638 .. 31,534
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Introduction

Solutions to the Population Size Problem

Formulation of the Problem and the Idea for its
Solution

Suppose we can find some model for the count probabilities

pj = pj(λ)

then estimate λ by some method (truncated likelihood) and then
use the model for p0:

N̂ =
n

1− p0(λ̂)
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Introduction

Solutions to the Population Size Problem

Formulation of the Problem and the Idea for its
Solution

Only to illustrate: Poisson model for the count probabilities

pj = pj(λ) = exp(−λ)λj/j!

then estimate λ maximizing the zero-truncated Poisson likelihood

m∏
j=1

(
pj

1− p0

)fj

=
m∏

j=1

(
1

1− exp(−λ)
exp(−λ)λj/j!

)fj

and yield estimate for N

N̂ =
n

1− p̂0
=

n

1− exp(−λ̂)
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Introduction

Solutions to the Population Size Problem

What speaks against this simple solution?

However: using a simple Poisson model for the count probabilities

pj = pj(λ) = exp(−λ)λj/j!

is not appropriate, since

I every unit is different

I there is population heterogeneity

so that more realistic

pj = pj(λ) =

∫ ∞

0
exp(−t)t j/j!λ(t)dt

where λ(t) stands for the heterogeneity distribution of the Poisson
parameter t
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Introduction

Solutions to the Population Size Problem

Effects of Heterogeneity?

Table: Simulation using Y ∼ 0.5Po(1) + 0.5Po(t) and N = 100

t estimator mean SD RMSE
1 MLE-hom 101.91 12.98 13.12
2 MLE-hom 94.07 7.02 9.19
3 MLE-hom 88.19 4.96 12.81
4 MLE-hom 85.34 4.30 15.30
5 MLE-hom 83.47 3.71 16.94
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Introduction

Solutions to the Population Size Problem

Effect of Heterogeneity on an estimator under
homogeneity:

underestimation because of Jensen’s inequality applied to
exp(x):

n

1− p0
=

n

1−
∫∞
0 exp(−t)λ(t)dt

≥ n

1− exp
(
−
∫∞
0 tλ(t)dt

)
=

n

1− exp(−µ)
,

where µ =
∫∞
0 tλ(t)dt
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Simple Nonparametric Estimates under Heterogeneity

Simple nonparametric estimates under heterogeneity

under heterogeneity

instead of providing an estimate λ̂(t) in

pj(λ) =

∫ ∞

0
exp(−t)t j/j!λ(t)dt

by means of

I parametric Poisson-Gamma (Chao and Bunge 2002
Biometrics)

I or nonparametric mixture models (Böhning and Schön
2005, JRSSC, B”ohning and Kuhnert 2006, Biometrics)

interest is on the lower bound approach by Chao (1987, 1989,
Biometrics)
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Simple Nonparametric Estimates under Heterogeneity

mixed Poisson
consider

pj =

∫ ∞

0
exp(−t)t j/j!λ(t)dt

with unknown λ(t) for t > 0. Then, by the Cauchy-Schwarz
inequality

p1

p0
≤ 2p2

p1
≤ 3p3

p2
... ≤

(j + 1)pj+1

pj
≤ ....

in particular, for j = 0
p2
1

2p2
≤ p0

leads to Chao’s lower bound estimate (truely nonparametric)

f̂0 =
f 2
1

2f2
or N̂ = n + f̂0
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Simple Nonparametric Estimates under Heterogeneity

Comparing the Estimators

Table: Simulation using Y ∼ 0.5Po(1) + 0.5Po(λ) and N = 100

λ estimator mean SD RMSE
1 MLE-hom 101.91 12.98 13.12

Chao 103.82 18.73 19.12
2 MLE-hom 94.07 7.02 9.19

Chao 99.10 12.22 12.25
3 MLE-hom 88.19 4.96 12.81

Chao 96.61 9.77 10.34
4 MLE-hom 85.34 4.30 15.30

Chao 97.03 10.00 10.43
5 MLE-hom 83.47 3.71 16.94

Chao 97.98 10.24 10.43
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Simple Nonparametric Estimates under Heterogeneity

Zelterman’s estimator

The Idea for a robust approach of Zelterman (1988, JSPI)

I he noted that

λ =
λj+1

λj
= (j + 1)

λj+1/(j + 1)!

λj/j!

λ = (j + 1)
Po(j + 1;λ)

Po(j ;λ)

I leading to the proposal

λ̂j = (j + 1)
fj+1

fj

I and in particular for j = 1

λ̂ = λ̂1 = 2
f2
f1
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Simple Nonparametric Estimates under Heterogeneity

Zelterman’s estimator

The idea for a robust approach of Zelterman

λ̂ = 2 f2
f1

is robust in the sense that

I it is not affected by any changes in counts larger than 2

I count distribution need only to behave like a Poisson for
counts of 1 or 2
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Simple Nonparametric Estimates under Heterogeneity

How are Chao’s and Zelterman’s Estimator related?

Zelterman larger than Chao?

Table: Simulation using Y ∼ 0.5Po(1) + 0.5Po(λ) and N = 100

λ estimator mean SD RMSE
1 MLE-hom 101.91 12.98 13.12

Chao 103.82 18.73 19.12
Zelterman 104.51 21.48 21.95

2 MLE-hom 94.07 7.02 9.19
Chao 99.10 12.22 12.25

Zelterman 101.49 16.22 16.29
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Simple Nonparametric Estimates under Heterogeneity

How are Chao’s and Zelterman’s Estimator related?

Table: Simulation using Y ∼ 0.5Po(1) + 0.5Po(λ) and N = 100

λ estimator mean SD RMSE
3 MLE-hom 88.19 4.96 12.81

Chao 96.61 9.77 10.34
Zelterman 102.23 15.31 15.47

4 MLE-hom 85.34 4.30 15.30
Chao 97.03 10.00 10.43

Zelterman 107.85 19.84 21.34
5 MLE-hom 83.47 3.71 16.94

Chao 97.98 10.24 10.43
Zelterman 115.19 23.12 27.66
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Simple Nonparametric Estimates under Heterogeneity

How are Chao’s and Zelterman’s Estimator related?

Zelterman larger than Chao?

I

N̂Z =
n

1− exp(−λ̂)
= n +

n

exp(λ̂)− 1
≈ n +

n

1 + λ̂ + 1
2 λ̂2 − 1

I

= n +
n

λ̂ + 1
2 λ̂2

= n +
n

2f2
f1

+ 1
2

(
2f2
f1

)2
= n +

(
f 2
1

2f2

)
n

f1 + f2

I

≥ n +

(
f 2
1

2f2

)
= N̂C

I yes, if λ̂ is small (Böhning SJOS 2009)
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Simple Nonparametric Estimates under Heterogeneity

How are Chao’s and Zelterman’s Estimator related?

Zelterman Estimation as a Result of a Truncated
Poisson Likelihood

Zelterman estimate truncates all counts different from 1 or 2:
write

1− p = p1 =
exp(−λ)λ

exp(−λ)λ + exp(−λ)λ2/2
=

1

1 + λ/2

p = p2 =
exp(−λ)λ2/2

exp(−λ)λ + exp(−λ)λ2/2
=

λ/2

1 + λ/2

and consider associated binomial log-likelihood

f1 log(p1) + f2 log(p2) = f1 log(1− p) + f2 log(p)

which is maximized for p̂ = p̂2 = f2
f1+f2

, or

λ̂ =
2p̂2

1− p̂2
=

2f2
f1
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Simple Nonparametric Estimates under Heterogeneity

How are Chao’s and Zelterman’s Estimator related?

Making Zelterman right

where Zelterman is right:

the Zelterman estimate of λ comes out as the MLE from a
2-truncated Poisson likelihood

λ̂ = 2f2/f1

where Zelterman is wrong:

it should use

E (f0|λ, f1, f2) =
Po(0|λ)

Po(1|λ) + Po(2|λ)
(f1 + f2) =

(f1 + f2)

λ + λ2/2

E (f0|λ̂, f1, f2) =
(f1 + f2)

λ̂ + λ̂2/2
=

f 2
1

2f2
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Simple Nonparametric Estimates under Heterogeneity

How are Chao’s and Zelterman’s Estimator related?

I Zelterman should use

N̂ = n + E (f0|λ = 2f2/f1, f1, f2) = n +
f 2
1

2f2
,

entirely identical to Chao’s estimator

I but instead uses

N̂ =
n

1− exp(−2f2/f1)

resulting in a potentially strong overestimation if
heterogeneity is strong
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Truncated Poisson Likelihoods

Truncated Poisson Likelihoods offer Flexibility

a likelihood framework offers generalizations:

I extending Chao’s estimator: finding best lower bounds

I capture-recapture modelling between robustness and efficiency

I include higher counts to improve efficiency
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Truncated Poisson Likelihoods

robustness versus efficiency:MLE-3

Robustness vs. Efficiency

original observed counts f1, f2, ..., fm with f0 unobserved
the following sequential truncation is considered:

1. f1, f2 (most robust, least efficient)

2. f1, f2, f3

3. ....

4. f1, f2, ..., fm−1

5. f1, f2, ..., fm−1, fm (most efficient, least robust)

note that 1) is the Chao approach, whereas 5) corresponds to the
conventional maximum likelihood approach
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Truncated Poisson Likelihoods

robustness versus efficiency:MLE-3

Maximum Likelihood Estimators

original observed counts f1, f2, ..., fm with f0 unobserved
the following sequential truncation is considered:

1. MLE-2 (Chao): f1, f2 (most robust, least efficient)

2. MLE-3: f1, f2, f3

3. MLE-4: f1, f2, f3, f4

4. ....

5. MLE-(m-1): f1, f2, ..., fm−1

6. MLE-m (homogeneity): f1, f2, ..., fm−1, fm (most efficient,
least robust)
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Truncated Poisson Likelihoods

robustness versus efficiency:MLE-3

Associated Likelihoods

original observed counts f1, f2, ..., fm with f0 unobserved
the following sequential truncation is considered with
log-Likelihoods:

1. f1, f2: f1 log p1 + f2 log p2

2. f1, f2, f3: f1 log p1 + f2 log p2 + f3 log p3

3. ....

4. f1, f2, ..., fm−1: f1 log p1 + f2 log p2 + ... + fm−1 log pm−1

5. f1, f2, ..., fm−1, fm: f1 log p1 + f2 log p2 + ... + fm log pm

with

pi = exp(−λ)λi/i !/

j∑
x=1

exp(−λ)λx/x!
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Truncated Poisson Likelihoods

robustness versus efficiency:MLE-3

Generalized Chao Estimator MLE-3 has a Closed
Form

truncate all counts different from 1, 2, and 3:

p1 =
exp(−λ)λ

exp(−λ)λ + exp(−λ)λ2/2 + exp(−λ)λ3/6
=

1

1 + λ/2 + λ2/6

p2 =
exp(−λ)λ2/2

exp(−λ)λ + exp(−λ)λ2/2 + exp(−λ)λ3/6
=

λ/2

1 + λ/2 + λ2/6

p3 =
exp(−λ)λ3/6

exp(−λ)λ + exp(−λ)λ2/2 + exp(−λ)λ3/6
=

λ2/6

1 + λ/2 + λ2/6
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Truncated Poisson Likelihoods

robustness versus efficiency:MLE-3

Generalized Chao Estimator as a Result of a
Truncated Poisson Likelihood

and consider associated trinomial log-likelihood

log L(λ) = f1 log(p1) + f2 log(p2) + f3 log(p3)

which is maximized for

λ̂ = −3

2

f1 − f3
f2 + 2f1

+

√
6(f2 + 2f3)

f2 + 2f1
+

(
3

2

(f1 − f3)

f2 + 2f1

)2

≥ 0

and, finally
N̂ = n + E (f0|λ̂, f1, f2, f3)
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Truncated Poisson Likelihoods

General Outline of the EM Algorithm for Truncated Poisson Likelihoods

EM Algorithm

consider arbitrary truncation count J, 2 ≤ J ≤ m:

observed, incomplete likelihood

J∏
j=1

p
fj
j

with

pj = exp(−λ)λj/j!/
J∑

x=1

exp(−λ)λx/x!
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Truncated Poisson Likelihoods

General Outline of the EM Algorithm for Truncated Poisson Likelihoods

EM Algorithm

unobserved, complete likelihood

m∏
j=0

p
fj
j

with
pj = exp(−λ)λj/j!
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Truncated Poisson Likelihoods

General Outline of the EM Algorithm for Truncated Poisson Likelihoods

Robustness vs. Efficiency: MLE-3

M-Step

suppose all counts f0, f1, f2, ..., fm were observed
then the parameter of the Poisson is easily available by maximizing
the Poisson likelihood

λ̂ =
m∑

x=0

x × fx/
m∑

x=0

fx

E-Step

1. e0, f1, f2, e3, ..., em

2. e0, f1, f2, f3, e4, ..., em

3. ...

4. e0, f1, f2, ...fm−2, em−1, em

5. e0, f1, f2, ..., fm−1, em
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Truncated Poisson Likelihoods

General Outline of the EM Algorithm for Truncated Poisson Likelihoods

E-Step details

consider an arbitrary truncation count J:

e0, f1, f2, ..., fJ , eJ+1, ..., em

clearly, for x = 0 or x > J

ex = E (fx |f1, f2, ..., fJ , λ) = Po(x |λ)N

= Po(x |λ)[e0 + f1 + f2 + ... + fJ + eJ+1 + ... + em]
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Truncated Poisson Likelihoods

General Outline of the EM Algorithm for Truncated Poisson Likelihoods

E-Step

e0 +
m∑

x=J+1

ex

= [1−
J∑

x=1

Po(x |λ)][f1+f2+...+fJ ]+[1−
J∑

x=1

Po(x |λ)][e0+
m∑

x=J+1

ex ]

hence

e0 +
m∑

x=J+1

ex =
1−

∑J
x=1 Po(x |λ)∑J

x=1 Po(x |λ)
[f1 + f2 + ... + fJ ]
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Truncated Poisson Likelihoods

General Outline of the EM Algorithm for Truncated Poisson Likelihoods

E-Step

finally:

ex = Po(x |λ)[e0 + f1 + f2 + ... + fJ + eJ+1 + ... + em]

= Po(x |λ)[f1 + f2 + ... + fJ ]

+Po(x |λ)
1−

PJ
x′=1 Po(x ′|λ)PJ

x′=1 Po(x ′|λ)
[f1 + f2 + ... + fJ ]

= Po(x |λ)PJ
x′=1 Po(x ′|λ)

[f1 + f2 + ... + fJ ]

= λx/x!PJ
j=1 λj/j!

[f1 + f2 + ... + fJ ]
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Truncated Poisson Likelihoods

General Outline of the EM Algorithm for Truncated Poisson Likelihoods

e0 for MLE-2 and MLE-3

J = 2 (Chao)

I

e0 =
1∑J

j=1 λj/j!
[f1 + f2 + ... + fJ ] =

f1 + f2
λ + λ2/2

J = 3 (Generalized Chao)

I

e0 =
1∑J

j=1 λj/j!
[f1 + f2 + ... + fJ ] =

f1 + f2 + f3
λ + λ2/2 + λ3/6
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Truncated Poisson Likelihoods

General Outline of the EM Algorithm for Truncated Poisson Likelihoods

Estimating N

N is now estimated as

N̂ = e0 +
m∑

i=1

fi = E (f0|λ̂) +
m∑

i=1

fi
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Truncated Poisson Likelihoods

A Simulation Study and Conclusions

Introduction
Some Applications
Solutions to the Population Size Problem

Simple Nonparametric Estimates under Heterogeneity
Zelterman’s estimator
How are Chao’s and Zelterman’s Estimator related?

Truncated Poisson Likelihoods
robustness versus efficiency:MLE-3
General Outline of the EM Algorithm for Truncated Poisson
Likelihoods
A Simulation Study and Conclusions

Problems with the NPMLE of the Mixing Distribution

Inference based upon ratios

An Empirical Bayes Approach

Examples and Comparative Simulation
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Truncated Poisson Likelihoods

A Simulation Study and Conclusions

Comparing the Estimators by Simulation

design

I sample Yi ∼ 0.5Po(1) + 0.5Po(λ) for i = 1, ...,N and
N = 100 for λ = 1, 2, 3, 4, 5

I determine f0, f1, ..., fm from sample y1, ..., yN

I drop f0
I determine MLE-2 (Chao), MLE-3, MLE-4, and MLE-m

(homogenous) with associated sample size estimates

I repeat B = 1, 000 times

I determine BIAS, SD, RMSE for MLE-2 (Chao), MLE-3,
MLE-4, and MLE-m
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Truncated Poisson Likelihoods

A Simulation Study and Conclusions

Comparing the Estimators

Table: Simulation using Y ∼ 0.5Po(1) + 0.5Po(λ) and N = 100

λ estimator mean SD RMSE
1 MLE-2(Chao) 103.82 18.73 19.12

MLE-3 102.49 14.35 14.56
MLE-4 103.58 13.07 13.55

MLE-hom 101.91 12.98 13.12
2 MLE-2(Chao) 99.10 12.22 12.25

MLE-3 96.59 8.73 9.38
MLE-4 96.74 7.71 8.37

MLE-hom 94.07 7.02 9.19
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Truncated Poisson Likelihoods

A Simulation Study and Conclusions

Table: Simulation using Y ∼ 0.5Po(1) + 0.5Po(λ) and N = 100

λ estimator mean SD RMSE
3 MLE-2(Chao) 96.61 9.77 10.34

MLE-3 93.23 6.52 9.40
MLE-4 91.73 5.62 10.00

MLE-hom 88.19 4.96 12.81
4 MLE-2(Chao) 97.03 10.00 10.43

MLE-3 92.68 6.41 9.73
MLE-4 89.86 5.15 11.37

MLE-hom 85.34 4.30 15.30
5 MLE-2(Chao) 97.98 10.24 10.43

MLE-3 93.10 6.35 9.37
MLE-4 89.28 5.18 11.91

MLE-hom 83.47 3.71 16.94
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Truncated Poisson Likelihoods

A Simulation Study and Conclusions

Application to Study Data

data size estimators N̂
Data set f1 f2 f3 n Zelt. Chao MLE-3

Drugs L.A. 11982 3893 1959 20198 42268 38637 33434
Polyps-l. 145 66 39 299 500 458 416
Polyps-h. 144 61 55 338 592 508 433
Scrapie 84 15 7 118 393 353 270
Terr. A. 286 114 101 785 1429 1144 983
Mic. Div. 48 9 6 84 269 212 154
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Truncated Poisson Likelihoods

A Simulation Study and Conclusions

Introduction
Some Applications
Solutions to the Population Size Problem

Simple Nonparametric Estimates under Heterogeneity
Zelterman’s estimator
How are Chao’s and Zelterman’s Estimator related?

Truncated Poisson Likelihoods
robustness versus efficiency:MLE-3
General Outline of the EM Algorithm for Truncated Poisson
Likelihoods
A Simulation Study and Conclusions

Problems with the NPMLE of the Mixing Distribution

Inference based upon ratios

An Empirical Bayes Approach

Examples and Comparative Simulation
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Problems with the NPMLE of the Mixing Distribution

Problems with the NPMLE

under heterogeneity:

pj(λ) =

∫ ∞

0
exp(−t)t j/j! λ(t)dt

I nonidentifiability of the population size under arbitrary
mixing

I boundary problem
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Problems with the NPMLE of the Mixing Distribution

Example by Link (2003) on lack of identifiability

under binomial mixture:

pj(λ) =

∫ 1

0

(
4

j

)
t j(1− t)4−j λ(t)dt

j = 0, 1, 2, 3, 4.

two mixing distributions:

I uniform λ(t) ∼ U(a, b) with a = 0.026 and b = 0.80

I discrete two-component mixture
0.576421× δ0.286245 + 0.423579× δ0.676474
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Problems with the NPMLE of the Mixing Distribution

the following table from Link (2003)

Table: untruncated and truncated count distributions

count j
model probability 0 1 2 3 4

uniform pj 0.227 0.255 0.243 0.190 0.085
pj/(1− p0) - 0.329 0.315 0.246 0.110

2 pt. mixture pj 0.154 0.279 0.266 0.208 0.093
pj/(1− p0) - 0.329 0.315 0.246 0.110
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Problems with the NPMLE of the Mixing Distribution

Consequences of lack of identifiability

I suppose n = 100 observed

I using uniform: N̂ = n/0.227 = 440

I using 2 point mixture: N̂ = n/0.154 = 650

I very different values, but both distributions are
indistinguishable as truncated, observable distributions
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Problems with the NPMLE of the Mixing Distribution

Problems with the NPMLE

under heterogeneity:

pj(λ) =

∫ ∞

0
exp(−t)t j/j!λ(t)dt

estimation under heterogeneity: the NPMLE

maximize zero-truncated Poisson mixture likelihood in Q

L(Q) =
m∏

j=1

(
pj

1− p0

)fj

=
m∏

j=1

(
k∑

`=1

Po(j |t`)λ`

1−
∑

i exp(−ti )λi

)fj

where

Q =

(
t1 t2 ... tk
λ1 λ2 ... λk

)
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Problems with the NPMLE of the Mixing Distribution

Problems with the NPMLE

boundary problem:

f (0|Q̂) ≥ f0/N

where
f (0|Q̂) =

∑
`

exp(−t`)λ`

(Wang and Lindsay 2005, 2008; Harris 1991)
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Problems with the NPMLE of the Mixing Distribution

Illustration of Severity of Boundary Problem

Table: Simulation using Y ∼ 0.5Po(1) + 0.5Po(t) and N = 100

t estimator mean SD
1 Chao 102 17

NPMLE 484 12098
2 Chao 99 12

NPMLE 4599 35028
3 Chao 97 10

NPMLE 12517 52425
4 Chao 97 9

NPMLE 11715 54501
5 Chao 98 10

NPMLE 4657 33069
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Problems with the NPMLE of the Mixing Distribution

log(N_BIC)log(N_NPMLE)
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Problems with the NPMLE of the Mixing Distribution

Introduction
Some Applications
Solutions to the Population Size Problem
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Truncated Poisson Likelihoods
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Likelihoods
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Inference based upon ratios

Where do we go from here?

looking at frequency distribution does not help!
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Inference based upon ratios
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Inference based upon ratios
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Inference based upon ratios
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Inference based upon ratios

Where do we go from here?

looking at ratios of neighboring frequencies does help:

ratio plot

y → ry = (y + 1)
fy+1

fy

because

y → (y + 1)
py+1

py

is monotone nondecreasing
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Inference based upon ratios
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Inference based upon ratios
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Inference based upon ratios
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Inference based upon ratios

Benefits

looking at ratios of neighboring frequencies is beneficial because

I no identifiability problem since
pj+1

pj
=

pj+1/(1−p0)
pj/(1−p0)

I no boundary problem involved
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An Empirical Bayes Approach

Justification by means of Empirical Bayes

conventional Horvitz-Thompson

N̂ =
n

1− exp(−λ)

better (each unit gets its own parameter):

N̂ =
f1

1− exp(−λ1)
+

f2
1− exp(−λ2)

+
f3

1− exp(−λ3)
+ ...

=
n∑

x=1

1

1− exp(−λx)

but: how to choose or estimate λx for x = 1, 2, 3, ...?
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An Empirical Bayes Approach

Justification by means of Empirical Bayes

We think of the mixing distribution λ(t) as a prior distribution on
t so that

λx = E (t|x) =

∫ ∞

0
t

Po(x |t)λ(t)∫∞
0 Po(x |θ)λ(θ)dθ

dt (1)

is the posterior mean w.r.t the prior λ(t) and Poisson likelihood for
observation x .
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An Empirical Bayes Approach

Note that (1) can be further simplified to

λx = E (t|x) =

∫∞
0 tPo(x |t)λ(t)dt∫∞
0 Po(x |t)λ(t)dt

=

∫∞
0 te−ttx/x!λ(t)dt∫∞
0 e−ttx/x!λ(t)dt

(x + 1)

∫∞
0 Po(x + 1|t)λ(t)dt∫∞

0 Po(x |t)λ(t)dt

= (x + 1)
px+1

px
,

where px =
∫∞
0 Po(x |t)λ(t)d(t) is the marginal density of X
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An Empirical Bayes Approach

An empirical Bayes version of the
Horvitz-Thompson estimator

choice of λx :

λx = E (t|x) = (x + 1)
px+1

px

to achieve

N̂ =
m∑

x=1

fx
1− exp[−λx ]

=
m∑

x=1

fx
1− exp[−(x + 1)px+1/px ]

with px =
∫∞
0 Po(x |t)λ(t)dt
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An Empirical Bayes Approach

empirical Bayes:

px can be estimated by the relative, empirical frequency fx/N so
that

Ê (t|x) = λ̂x = (x + 1)
fx+1

fx

provides an estimate of the posterior mean E (t|x) = λx

important:

I the unknown denominators N cancel out

I idea is a special case of the nonparametric, empirical Bayes
estimator (Robbins 1955, Carlin and Louis 1996).
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An Empirical Bayes Approach

Robbins approach:

hence, using

Ê (λ|x) = λ̂x = (x + 1)
fx+1

fx

the empirical Bayes approach (Robbins) leads to

N̂ =
m∑

x=1

fx

1− exp[−(x + 1) fx+1

fx
]
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An Empirical Bayes Approach

Empirical Bayesian Smoothing

N̂ =
m∑

x=1

fx
1− exp[−(x + 1)px+1

px
]

with

px =

∫ ∞

0
Po(x |t)λ(t)dt

offers options:

1. Robbins

2. nonparametric smoothing with discrete mixture model

3. parametric smoothing with Gamma-mixing distribution

4. nonparametric smoothing with empirical distribution function

p̂x =
m∑

y=1

Po(x |y)
fy
n
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An Empirical Bayes Approach

Empirical Bayesian Smoothing

1. Robbins (no need for estimating λ(t) !!!)

2. nonparametric smoothing with discrete mixture model
(computational expensive!)

3. parametric smoothing with Gamma-mixing distribution
(computational instable)

4. nonparametric smoothing with empirical distribution function
(not a good estimate of the mixing distribution)

84 / 92



Capture-Recapture Estimation of Population Size by Means of Truncated Likelihood and Empirical Bayesian Smoothing

An Empirical Bayes Approach
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Examples and Comparative Simulation

Software Inspection

Table: Zero-truncated count distribution of software errors

f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10
- 5 1 5 1 3 2 0 5 4 2

Table: Estimate N̂

conventional empirical Bayes
Chao k FM BIC FM Robbins Γ(t) EDF
49 1 36 244.1 36 50 37 37

2 38 211.4 37
3 124,279 215.2 40
4 84,946 219.7 40

FM = finite mixture, k = number of components in FM, Γ(t) =
Gamma density

86 / 92



Capture-Recapture Estimation of Population Size by Means of Truncated Likelihood and Empirical Bayesian Smoothing

Examples and Comparative Simulation

Drug Use in California 1989

f0 f1 f2 f3 f4 f5 f6
- 11,982 3,893 1,959 1,002 575 340

f7 f8 f9 f10 f11 f12 n

214 90 72 36 21 14 20,198
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Examples and Comparative Simulation

Drug Use in California 1989

Table: Estimate N̂

conventional empirical Bayes
Chao k FM BIC FM Robb. Γ(t) EDF
38,637 1 26,426 57,944 26,426 34,776 35,572 26,434

2 39,183 52,262 33,757
3 58,224 52,083 34,756
4 424,168 52,085 34,766

FM = finite mixture, k = number of components in FM, Γ(t) =
Gamma density
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Examples and Comparative Simulation

Hidden Scrapie in Great Britain

f0 f1 f2 f3 f4 f5 f6 f7 f8 n

- 84 15 7 5 2 1 2 2 118

Table: Estimate N̂

conventional empirical Bayes
Chao k FM BIC FM Robb. Γ(t) EDF
353 1 170 313.9 170 320 313 164

2 274 260.0 310
3 1,111 263.2 320

FM = finite mixture, k = number of components in FM, Γ(t) =
Gamma density
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Examples and Comparative Simulation

Table: Simulation using Y ∼ 0.5Po(1) + 0.5Po(t) and N = 100

t estimator mean SD RMSE
1 Chao 102 17.3 17.4

EB-FM 101 12.5 12.5
EB-Robbins 107 23.1 24.2

2 Chao 99 11.7 11.7
EB-FM 95 8.1 9.5

EB-Robbins 100 12.2 12.2
3 Chao 97 10.6 11.0

EB-FM 92 7.3 10.8
EB-Robbins 97 9.1 9.6

4 Chao 97 9.9 10.3
EB-FM 91 7.0 11.4

EB-Robbins 95 8.3 9.7
5 Chao 98 10.4 10.6

EB-FM 93 7.8 10.5
EB-Robbins 96 8.7 9.6
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Examples and Comparative Simulation

Conclusions

I application of conventional mixture models for CR is
problematic

I inference based upon ratios offers benefits

I Horvitz-Thompson estimator can be corrected and generalized
for nonparametric mixture models count specific parameters
can be estimated via posterior means

I using as priors estimated mixture models

I finally, a simple solution is a beautiful solution: the
nonparametric empirical Bayes estimator

N̂ =
m∑

x=1

fx

1− exp[−(x + 1) fx+1

fx
]
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Examples and Comparative Simulation

where to find things:

I paper available soon on this: Böhning, Kuhnert, and Del Rio
Vilas (2009)

I Software by Kuhnert (2009): CR Smooth

I references, publications, talks:

I www.reading.ac.uk/∼sns05dab
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