
Computational Statistics and Data Analysis 55 (2011) 466–474

Contents lists available at ScienceDirect

Computational Statistics and Data Analysis

journal homepage: www.elsevier.com/locate/csda

An extension of an over-dispersion test for count data
M. Fazil Baksh, Dankmar Böhning ∗, Rattana Lerdsuwansri
Section of Applied Statistics, School of Biological Sciences, University of Reading, Reading RG6 6BX, England, United Kingdom

a r t i c l e i n f o

Article history:
Received 10 December 2009
Received in revised form 14 May 2010
Accepted 14 May 2010
Available online 1 June 2010

Keywords:
Capture–recapture
Over-dispersion
Turing estimator
Zero-inflation
Zero-truncation

a b s t r a c t

While over-dispersion in capture–recapture studies is well known to lead to poor
estimation of population size, current diagnostic tools to detect the presence of
heterogeneity have not been specifically developed for capture–recapture studies. To
address this, a simple and efficient method of testing for over-dispersion in zero-truncated
count data is developed and evaluated. The proposed method generalizes an over-
dispersion test previously suggested for un-truncated count data and may also be used
for testing residual over-dispersion in zero-inflation data. Simulations suggest that the
asymptotic distribution of the test statistic is standard normal and that this approximation
is also reasonable for small sample sizes. Themethod is also shown to bemore efficient than
an existing test for over-dispersion adapted for the capture–recapture setting. Studies with
zero-truncated and zero-inflated count data are used to illustrate the test procedures.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The Poisson distribution is commonly used in modelling zero-modified (i.e. zero-truncated or zero-inflated) count data.
Zero-modified count data can be found in a range of disciplines including epidemiology, public health, biology, sociology,
engineering and agriculture. For instance, count data such as length of hospital stay, number of car accidents, catch rates
and wild fires within a particular time period are typically zero-modified. In particular, zero-truncated count data arise in
capture–recapture studies concerned with estimating the size of populations that are hidden or difficult to measure, such
as number of drug users within a region and elusive animal populations.
The conventional Poisson distribution Po(λ) hasmean λ equal to its variance. This is referred to as equi-dispersion.When

the variance of the observed counts is greater than the mean, we are said to have over-dispersion. The presence of over-
dispersed data in a study is often a result of sampling from different and unknown sub-populations and can lead to biased
inference in many ways (Lindsay, 1995; Böhning, 2000). For example when over-dispersion is ignored it is well known (see
for instance Aitkin et al., 1977) that estimates for the variance of parameter estimatesmight be too small. Furthermore, there
is the additional complication that the population size estimate from capture–recapture studies can be severely negatively
biased if population heterogeneity is ignored (Böhning et al., 2005).

Example 1. To illustrate the potential for biased inferencewe consider the capture–recapture study by van der Heijden et al.
(2003b) on illegal gun ownership in the Netherlands. Data from this study for the 2-year period from 1998 and 1999 and
for 5 regions of the Netherlands, obtained from police registers of violations against possession of firearms, is presented in
Table 1.
There are f1 = 2561 illegal gun owners who have been identified during the observational period exactly once, f2 = 72

have been identified exactly twice, and exactly f3 = 5 illegal gun owners have been identified three times; total size of the
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Table 1
Zero-truncated count distribution on illegal gun owners for the period 1998–1999 for 5 regions of the Netherlands.

f0 f1 f2 f3 n

– 2561 72 5 2638

observed sample is n = 2638. Clearly, illegal gun owners who never got caught do not appear in the register and hence
there are no zeros observed. Here, interest is in f0, the number of hidden or unobserved gun owners. A simple estimate N̂
of the population size N = n + f0 can be obtained using the Horvitz–Thompson estimator N̂ = n/(1 − p0), where the
probability of observing a zero count p0 is to be estimated. Under the assumption of a Poisson distribution with mean λ, we
get p0 = exp(−λ) = exp(−λ)λ/λwhich leads to the estimate p̂0 = f1/S with S = f1+ 2f2+· · ·+mfm (m being the largest
observed count) and consequently to the Good–Turing estimate of N , N̂ = n/(1− f1/S) (Good, 1953).

For this example the Good–Turing estimate is N̂ = 45,128. The Poisson assumption on which this estimate is built
is known to be frequently violated in capture–recapture studies. This violation is often caused by the occurrence of
heterogeneity implying that not one, but several Poisson parameters, are required in different parts of the population.
Heterogeneity is closely connected to the occurrence of over-dispersion. We return to this example later.
Whereas the question of over-dispersion and general goodness-of-fit is well discussed in various textbooks

including Cameron and Trivedi (1998, chap. 5), Winkelmann (2003, chap. 3) and Collett (2003, chap. 6), model evaluation
and goodness-of-fit testing is less discussed for zero-truncatedmodelling. However, there is the groundingwork by Rao and
Chakravarthi (1956) and, more recently, the assessment and review paper by Best et al. (2007) who compare a number of
tests for goodness-of-fit. Rao and Chakravarthi (1956) dispersion test statistic, in the spirit of exploratory data analysis, is

D =
(S(2) − S2/n)(1− e−λ̂)2

λ̂[1− (1+ λ̂)e−λ̂]
, (1)

where S(2) is the sum of squares of the observed counts and λ̂ is themaximum likelihood estimate for the parameter λ of the
zero-truncated Poisson distribution. In the comparison (Best et al., 2007) of the dispersion test based on U = (D− n)/

√
2n

with four other tests, it was shown that U is most efficient for the various alternatives considered.
In this paper we suggest a simple test statistic for examining the presence of over-dispersion in zero-modified count

data. This statistic will help practitioners develop trust in their inference, such as when estimating population size from
capture–recapture data under the assumption of homogeneity. It will also identify when a different procedure, such as
one capable of coping with heterogeneity, is more appropriate. In Section 2 we introduce the generalization of the over-
dispersion statistic suggested in Böhning (1994) for zero-truncated count data, including a correction to improve the normal
approximation and examine the sampling distribution of the test statistic. Also, type I error and efficiency of the proposed
test is compared with type I error and efficiency of the over-dispersion test using U . Finally, we illustrate an application of
the over-dispersion test to zero-inflated data and introduce a slightly different version of the test, suitable for sparse count
data.

2. The over-dispersion test

2.1. The test statistic T̃

Let X1, . . . , XN be a sample of size N of counts from an unknown distribution with mean λ, and suppose it is of interest
to test whether the sample is over-dispersed. When N is fixed and known, the test statistic

T =

1
N−1

N∑
i=1
(Xi − X̄)2 − X̄√

2
N−1 X̄

, (2)

where X̄ =
∑
Xi/N , was suggested (Böhning, 1994) for testing the null hypothesis H0 : X ∼ Po(λ) against the alternative

H1 : var(X) > λ. This statistic was proposed as the correction to the one of Tiago de Oliveira (1965) and is based on the fact
that, under the null, the expected value of the over-dispersion estimate

∑N
i=1(Xi − X̄)

2/(N − 1) − X̄ is equal to zero with
variance equal to 2λ2/(N−1). These propertieswill be used later to develop similar results for our proposed over-dispersion
statistic.
In studies with zero-truncated count data, such as in capture–recapture studies, the only observed counts are those

for which the random variable X is non-zero. Let N denote the population size and, without loss of generality, denote the
observed sample of non-zero counts from a capture–recapture study as X1, . . . , Xn and let Xn+1, . . . , XN be the remaining
unobserved zero counts. Thus the sample is now truncated at known nwhile N is unknown, but assumed fixed.
Unlike the Poisson randomvariable, themean of a zero-truncated Poisson randomvariableX+ is not equal to the variance.

Rather, the mean E(X+) = λ/(1− exp(−λ)) is related to the variance var(X+) by var(X+) = E(X+){1− E(X+) exp(−λ)},
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(see also Cameron and Trivedi, 1998, p. 119). Thus the zero-truncated, homogeneous Poisson is itself an under-dispersion
model and a test procedure for over-dispersion may be based on this mean–variance relationship. Alternatively, since all
sample elements Xn+1, . . . , XN are known to be zero counts, all that is required is an estimate N̂ of N to impute the residual
sample elements Xn+1, . . . , XN̂ . We then use the available over-dispersion statistic T of Eq. (2) for the observed sample
X1, . . . , Xn jointly with the imputed sample Xn+1, . . . , XN̂ to construct the over-dispersion test. The details follow.
The proposed test for over-dispersion first extends the statistic T in Eq. (2) by replacing N − 1 by N . This gives,

T ≈

N∑
i=1
(Xi − X̄)2 −

N∑
i=1
Xi√

2
N

N∑
i=1
Xi

=
S(2) − SX̄ − S
√

2X̄S
, (3)

where as before S(2) =
∑N
i=1 X

2
i , S =

∑N
i=1 Xi and X̄ = S/N . This approximation is valid when N is large. It is also important

to note that S(2) and S are known irrespective of whether the population size N is known or not while X̄ will only be known
if N is known. Thus, as can be seen from Eq. (3), in order to calculate the test statistic all that is now required is an estimate
for the mean λ, or equivalently, an estimate for N .
We propose the Good–Turing estimator N̂ = n/(1− f1

S ), where f1 is the frequency of observed counts 1, as an estimate
for N . Using this, we get λ̃ = X̄ = (S − f1)/n and the proposed test statistic becomes

T̂ =
S(2) − S

(
S−f1
n + 1

)
√
2S S−f1n

. (4)

Note that use of the Good–Turing estimator N̂ of N is justified under the Poisson assumption and, as we show below, the
over-dispersion estimate based on N̂ is unbiased. Furthermore, the distribution of T̂ is approximately standard normal, with
convergence for large N and λ.
Let X̄ =

∑N̂
i=1 Xi/N̂ and V

2
=
∑N̂
i=1(Xi − X̄)

2/(N̂ − 1) be the estimated mean and variance using the Good–Turing
estimator N̂ of N . From the fact that under the Poisson assumption, E

(∑N
i=1(Xi − X̄)

2/(N − 1) − X̄
)
= 0 (see Eq. (2)) we

get E(V 2 − X̄ |N̂) = 0 for all possible values of N̂ and hence E(V 2 − X̄) = 0. Thus the over-dispersion estimate based on an
estimated population size is also unbiased. We can also apply this same conditional expectation argument to the variance.
Using var{

∑N
i=1(Xi − X̄)

2/(N − 1) − X̄} = 2λ2/(N − 1) (Böhning, 1994) we get E[(V 2 − X̄)2|N̂] = 2λ2/(N̂ − 1) for any
given N̂ and hence var(V 2 − X̄) ≈ 2λ2/(N − 1) if N is large.
We next use simulated data to investigate the moments of our over-dispersion test statistic T̂ in Eq. (4). Figs. 1 and 2

show the mean and variance respectively of T̂ from 1000 replicates, for values of the Poisson mean λ in the range 0.5 to 5
and selected values of N . Also shown in the variance plot is the curve 1− exp(−λ). While the mean is consistently close to
zero, the variance seems to be reasonably close to one when λ ≥ 3 but is less than one for smaller values of λ. In order to
improve the standard normal approximation to the distribution of T , based on these findings we introduce the correction
factor 1− exp(−λ), where the parameter λ is again estimated under the null hypothesis of equi-dispersion. This gives the
over-dispersion test statistic

T̃ =
S(2) − S(λ̃+ 1)√
2Sλ̃(1− e−λ̃)

, (5)

where λ̃ = (S − f1)/n.

2.2. Sampling distribution of T̃

For values of the mean λ = 0.5, 1, 2, 5 and true population size N = 50, 100, 1000 and 10,000, a total of 2000 replicate
values each of the statistic T̃ in Eq. (5) and the statistic U = (D− n)/

√
2n (see Eq. (1)) were generated and compared with

the corresponding quantiles of the standard normal distribution. The resulting Q–Q plots in Fig. 3 suggest that the sampling
distribution of T̃ converges to the standard normal distribution as either N or λ increases. Similar findings (not shown) were
obtained for the sampling distribution of U .
The type I error of the over-dispersion tests based on T̃ and U was next evaluated by simulations. For each of a set of

values for λ and N we conducted 10,000 simulations under the null hypothesis of no over-dispersion; the achieved type I
errors for the test based on T̃ are shown in Table 2. As can be seen from this table, all analyses generate approximately the
correct type I error rate; similar results were found for U .
In the final simulation assessment, 10,000 replicate sets of over-dispersed data were generated using a two component

mixture of Poisson distributions and the number of times the null hypothesis was rejected using T̃ and U respectively, were
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Fig. 1. Simulated values of mean of the over-dispersion statistic T̂ for a range of values of λ and true population size N .

Fig. 2. Simulated values of var(T̂ ) for a range of values of λ and true population size N . The broken line is the curve 1− exp(−λ).

noted. The results for selected ratios of true variance σ 2 to mean µ of the mixture distributions and varying study sizes are
plotted in Fig. 4. Values of µ were 1, 1.3 and 1.9. As can be seen, the over-dispersion test based on T̃ is consistently more
efficient than the test using U . An added benefit is that T̃ is easily calculated and avoids the potential computational burden
of obtaining the maximum likelihood estimate of the mean λ.

Example 1 (Continued). For the illegal gun-owner data of van der Heijden et al. (2003b) introduced earlier, we get T̃ = 2.30
with a p-value of 0.0108, providing evidence for some amount of over-dispersion. The test based on U leads to the
same conclusion (p-value = 0.0019). It has been shown that estimators developed under the assumption of homogeneity
experience under-estimation bias if in fact heterogeneity is present (van der Heijden et al., 2003a; Böhning and Schön, 2005).
Thus the Good–Turing estimate of 45,128 for the population size is likely to be low. Indeed, the lower bound estimator of
Chao (1987), which was developed under the assumption of heterogeneity, is n + f 21 /2f2 = 48,185 which is a bit larger
than the Good–Turing estimate. Here we see that a small amount of over-dispersion correlates with a small amount of
under-estimation in the population size estimator.

Example 2. This example is from a study on dystrophin density in human muscle (Matthews and Appleton, 1993).
Dystrophin, a gene product of possible importance in muscular dystrophies, may be located within muscle fibres using an
electron microscope. Units (epitops) of dystrophin cannot be detected until they have been labelled by a suitable electron-
dense substance; gold-conjugated antibodies which adhere to the dystrophin were used. Not all units can be labelled and
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Fig. 3. Q–Q plots of simulated values of T̃ against standard normal quantiles.

more than one antibodymoleculemay attach to a dystrophin unit. To achieve anunbiased estimate of the dystrophin density,
it is important to account for all labelled and unlabelled units. Shown in Table 3 is the observed count of the number of
antibody molecules on each dystrophin unit within the muscle fibres of biopsy specimens taken from normal patients; f0
represents the number of units that are unlabelled and hence not observed.

Using the data in Table 3weget λ̃ = 0.9596 and T̃ = 1.90 (p-value=0.0284), providing evidence for over-dispersion. The
same conclusion is obtained usingU (p-value= 0.0192). In such situations,we can consider use of the followingmodification
of the Turing estimate. The rationale for this procedure is the assumption of an underlying Poisson model which has been
contaminated by a component with a potential large mean value. For this dataset, there is evidence (for example from
the analysis of the residuals) that the contamination is caused by the observed count of units labelled with five antibody
molecules f5. For the uncontaminated part f1, f2, f3, f4, we proceed now as follows. The original Turing estimate of p0 is
f1/S = (f1/N)/X̄ . Replacing X̄ by a more robust, but consistent estimate of λ such as λ̂∗ = (2f2 + 3f3 + 4f4)/(f1 + f2 + f3)
leads to the more robust Turing estimate N̂ = n/(1 − f1/N

λ̂∗
) which can be written in closed form as N̂ = n + f1/λ̂∗. In this

example we get λ̂∗ = 0.8947 with associated population size estimate N̂ = 334 and the value of the over-dispersion test
statistic is now T̃ = 0.007 (p-value= 0.4971). This is further evidence that the observed f5 count is a source of heterogeneity.
Note that this robustified estimate not only reduces the under-estimation bias involved in the original Turing estimate, but
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Table 2
Empirical type I error based on 10,000 replications of T̃ and U for selected values of λ and population size N .

N T̃ U
λ→ 0.50 1 2 5 0.50 1 2 5

α = 0.10
50 0.072 0.079 0.092 0.097 0.071 0.084 0.088 0.090
100 0.081 0.086 0.095 0.095 0.088 0.089 0.095 0.088
1,000 0.085 0.090 0.098 0.098 0.113 0.113 0.095 0.095
5,000 0.087 0.083 0.100 0.104 0.118 0.107 0.099 0.094
10,000 0.085 0.092 0.107 0.107 0.114 0.116 0.100 0.096

α = 0.05
50 0.040 0.045 0.055 0.059 0.042 0.050 0.053 0.052
100 0.051 0.050 0.052 0.053 0.056 0.056 0.054 0.048
1,000 0.047 0.048 0.052 0.051 0.065 0.068 0.050 0.048
5,000 0.040 0.043 0.050 0.052 0.067 0.059 0.050 0.048
10,000 0.043 0.046 0.054 0.054 0.064 0.063 0.050 0.048

α = 0.01
50 0.022 0.015 0.016 0.017 0.022 0.018 0.016 0.015
100 0.018 0.018 0.017 0.016 0.025 0.021 0.017 0.012
1,000 0.011 0.011 0.013 0.012 0.022 0.019 0.013 0.009
5,000 0.007 0.009 0.011 0.010 0.020 0.015 0.011 0.010
10,000 0.007 0.009 0.013 0.012 0.018 0.015 0.010 0.010

Fig. 4. Empirical power based on 10,000 replications for selected levels of over-dispersion and varying study size.

Table 3
Distribution of antibody counts attached to dystrophin units.

f0 f1 f2 f3 f4 f5 n

– 122 50 18 4 4 198

is also larger than the estimates obtained using any of the three estimators considered in Matthews and Appleton (1993),
which were developed under homogeneity.

Example 3. This example, concerning estimation of the grizzly bear population in Yellowstone, illustrates the over-
dispersion test procedure for small populations. The data, shown in Table 4 is taken from Chao and Huggins (2005) and
gives the sighting frequencies of female grizzly bears with cubs-of-the-year for three different observational periods. Also
shown in this table are the over-dispersion tests based on T̃ and on U . As in the preceding examples, the two tests lead to
similar conclusions.

It is also possible to apply the proposed over-dispersion test to zero-inflated data. Zero-inflation and over-dispersion
modelling have recently received a lot of attention (Deng and Paul, 2005; Hall and Berenhaut, 2002; Jansakul and Hinde,
2009; Moghimbeigi et al., 2008, 2009; Xie et al., 2009; Xiang et al., 2007). Zero-inflation leads to over-dispersion. However,
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Table 4
Female grizzly bears in the yellowstone ecosystem.

Year Counts Over-dispersion test
f1 f2 f3 f4 f5 f6 f7 T̃ p-value U p-value

1996 15 10 2 1 0 0 0 −0.529 0.702 −0.522 0.699
1997 13 7 4 1 3 0 1 2.543 0.005 2.447 0.007
1998 11 13 5 1 1 0 2 1.682 0.046 2.067 0.019

Table 5
DMFT distribution at the end of the BELCAP study.

School All Counts Over-dispersion test
0 1 2 3 4 5 6 7 8 T̃ p-value U p-value

1 124 16 6 19 10 22 14 16 12 9 −0.187 0.574 −0.211 0.583
2 127 40 8 18 16 11 8 13 7 6 1.155 0.124 1.119 0.131
3 136 18 13 16 16 19 20 14 10 10 1.049 0.147 0.718 0.236
4 132 31 16 9 14 15 14 12 10 11 2.426 0.008 1.781 0.037
5 155 39 17 11 11 15 22 17 13 10 1.712 0.043 1.035 0.150
6 123 28 13 23 13 13 5 13 13 2 2.234 0.013 2.064 0.019
All 797 172 73 96 80 95 83 85 65 48 3.561 0.000 2.752 0.003

it is often important to determine whether there is any residual over-dispersion in the presence of zero-inflation, i.e. over-
dispersion not caused by the amount of zero counts in the data, or whether there is over-dispersion given there is no zero-
inflation. This question is of interest because, as in the example given below, the presence of over-dispersion which is not
explained by zero-inflation or incorporated covariates will require further investigation for other associated covariates.
Conversely, if there is no evidence for residual over-dispersion, the investigator can be assured that there is then no need for
further covariate investigation as there is no residual variances that could be explained.We propose a test of over-dispersion
for zero-inflated data by applying the over-dispersion statistic T̃ to zero-inflated samples with all zero counts removed. We
also point out that this area has not only received interest from a theoretical side, but is also important for several application
fields (Carrivick et al., 2003; Xie et al., 2001).
The simple zero-inflated Poissonmodel is given as (1−p)+p exp(−λ) ifX = 0 and pPo(x|λ) ifX = x is larger than0. Itwas

shown (Dietz and Böhning, 2000) that inference for λ in the zero-inflation model can be fully based on the zero-truncation
model (maximum likelihood estimates are identical) without any loss of efficiency. Recall that, in obtaining the over-
dispersion test statistic T̃ , we denoted the observed sample of non-zero counts by X1, . . . , Xn and the remaining unobserved
zero counts by Xn+1, . . . , XN . For the test with zero-inflated count data, we still have X1, . . . , Xn as the observed sample of
non-zero counts but we now treat Xn+1, . . . , XN as the unknown zero counts attributable to the ‘‘Poisson component’’ of the
zero-inflated distribution. In this case, the estimate for N should be less than the total number of individuals sampled.

Example 4. To illustrate our method we use data from the Belo Horizonte Caries Prevention (BELCAP) study of school
children from Belo Horizonte, Brazil (Böhning et al., 1999). Our data, which is zero-inflated, consist of counts of the decayed,
missing and filled teeth for each child taken at the end of the study. This count, known as the DMFT index in dental
epidemiology, is commonly used to quantify dental status of an individual. The frequency distribution of the DMFT index
for the six schools studied is presented in Table 5. Also given are results of over-dispersion tests for individual schools and
for the pooled data from all schools (final four columns of table). The test, based on T̃ , of the overall data from the six schools
show evidence for over-dispersion (p-value= 0.0002) not due to zero-inflation. This is indicative of an important covariate.
Indeed, considering individual schools, the tests based on T̃ shows evidence of over-dispersion for schools 4 and 6, and
to a lesser extent, school 5 and confirms that the covariate school is important—the schools had received different caries
preventative treatments in this community randomized trial. The tests based on U will lead to the same conclusions, apart
from school 5 where it shows no evidence of over-dispersion.

The test statistic (5) is built upon λ̃ = (S − f1)/n which requires a good estimate of f1. Such an estimate is possible in
many data sets, particularly from capture–recapture studies, as f1 is large relative to f2, . . . , fm. However, it is not always the
case that f1 is large relative to the other counts. In such situations it is advisable to considermaximum likelihood estimation.
So, for example, we would estimate λ using the value λ̂maximizing the zero-truncated Poisson likelihood

m∏
j=1

(
pj

1− p0

)fj
=

m∏
j=1

(
1

1− exp(−λ)
exp(−λ)λj/j!

)fj
,

in λ. Alternatively, the maximum likelihood estimate λ̂ can be found by solving the equation

λ =
S
n
(1− exp(−λ)),
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in λ iteratively by cycling between the steps (i) λ(j) = S/N (j) and (ii) N (j+1) = n/{1− exp(−λ(j))}. This iterative solution is
a special case of the EM algorithm (Böhning et al., 2005). The modified over-dispersion statistic is then obtained by simply
replacing λ̃ in Eq. (5) with λ̂ leading to

T̂ =
S(2) − S(λ̂+ 1)√
2Sλ̂[1− e−λ̂]

.

3. Discussion

As over-dispersion is a consequence of latent heterogeneity, a simple diagnostic test for over-dispersion can rule out the
need for subsequent investigation of latent heterogeneity (Böhning, 1994), as well as the need for more complex modelling.
If over-dispersion can be ruled out, the use of an estimator under homogeneity such as the Good–Turing (for the truncated
situation) or the maximum likelihood estimator under homogeneity can be well justified.
Latent heterogeneity is an important issue in capture–recapture modelling since the presence of latent heterogeneity

invalidates inference on the population size parameter (Böhning et al., 2005). However, a simple and general test for over-
dispersion for truncated count data is currently not available in the literature. Clearly tests are availablewhen the alternative
is specific, such as a Poisson–Gamma mixture; here likelihood ratio and score tests have been developed (Deng and Paul,
2005; Jansakul and Hinde, 2002, 2009; Ridout et al., 2001; van den Broek, 1995). Although these tests might be more
powerful than the proposed test, they might be testing the wrong alternative since it is seldom clear which alternative is
valid, as is the case in capture–recapture approaches using truncated count modelling, for example. Hence it is beneficial to
have a test procedure readily availablewhich is valid for awider family of alternatives. In our case the alternative is a general,
arbitrary mixing distribution on the Poisson parameter. We have shown that the proposed test, under these circumstances,
is consistentlymore powerful than similar procedures recently advocated by Best et al. (2007). In futureworkwewill extend
the approach to incorporate available covariate information.
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