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Abstract

This note considers the variance estimation for population size estimators based on capture–recapture
experiments. Whereas a diversity of estimators of the population size has been suggested, the question of
estimating the associated variances is less frequently addressed. This note points out that the technique of
conditioning can be applied here successfully which also allows us to identify sources of variation: the
variance due to estimation of the model parameters and the binomial variance due to sampling n units
from a population of size N . It is applied to estimators typically used in capture–recapture experiments
in continuous time including the estimators of Zelterman and Chao and improves upon previously used
variance estimators. In addition, knowledge of the variances associated with the estimators by Zelterman
and Chao allows the suggestion of a new estimator as the weighted sum of the two. The decomposition
of the variance into the two sources allows also a new understanding of how resampling techniques
like the Bootstrap could be used appropriately. Finally, the sample size question for capture–recapture
experiments is addressed. Since the variance of population size estimators increases with the sample
size, it is suggested to use relative measures such as the observed-to-hidden ratio or the completeness of
identification proportion for approaching the question of sample size choice.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The size N of some population is frequently wished to be determined. In the biological
sciences this is often a wildlife population whereas in the life or social sciences this population
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might be a group of people difficult to sample such as illegal drug users or car drivers without a
license. Suppose that a specific mechanism identifies some, say n, but not all units of a population
of size N . Furthermore, assume that identification occurs independently for each population unit
with probability 1 − p0. This stochastic situation can be described by tuples of size N

(δ1, δ2, . . . , δN )

where δi = 1 indicates that the i th unit is identified (and observed) and δi = 0 otherwise (and the

unit remains unobserved). Each of these tuples occurs with probability (1−p0)
∑N

i=1 δi p
N−

∑N
i=1 δi

0 .

We are interested in the probability that exactly n units are identified. Since there are
(

N
n

)
tuples

(δ1, δ2, . . . , δN ) with
∑N

i=1 δi = n the probability of observing exactly n units is a simple
binomial distribution:(

N
n

)
(1 − p0)

n pN−n
0 . (1)

Then, the well-known Horvitz–Thompson estimator of the population size is given as

N̂ =
n

(1 − p0)
. (2)

Note that (1) can be viewed as a likelihood function in N which is maximized for N being
the integer part of (2). Note that all sources of random variation occurring in (2) are due to the
random structure of n, in other words, depend on its probability distribution which in fact is
binomial with success parameter (1 − p0) and sample size parameter N . Hence, its variance is
readily available as

Var(N̂ ) =
N (1 − p0)p0

(1 − p0)2 . (3)

As a consequence, relative measures such as the observed/hidden ratio n/(N − n) or the
completeness of identification measure n/N are free of any random error when estimated:
n/(N̂ − n) = 1/[(1 − p0)

−1
− 1] = p0/(1 − p0) and n/N̂ = (1 − p0). This implies that

these measures will have reduced variation (if the unknown parameter is estimated) if compared
to estimates of population size.

Furthermore, since E(n) = N (1 − p0), the variance given in (3) can readily be estimated as

V̂ar(N̂ ) = n
p0

(1 − p0)2 . (4)

However, p0 will be known only in exceptional cases and usually an estimate of p0 will be
required for practical use. This will add additional variation and the variance estimate (4) (with
p̂0 replacing p0) will no longer be valid. In addition, some modeling for p0 will be required. We
will address this question in the following sections.

1.1. Estimators based upon counts arising from capture–recapture experiments in continuous
time (CRECT)

The mechanism that identifies units with probability 1 − p0 can be quite general. It might
be that several sources identify the units leading to a log-linear modeling approach [1]. Another
common approach for deriving an estimator of p0 is based upon counting repeated identifications
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of the same unit by the mechanism over a given time span. This is usually referred to as a
capture–recapture experiment in continuous time (CRECT). For example, in a CRECT repeated
occurrences of dolphins are counted by some mechanism or it may be counted how often a patient
comes for the treatment of a certain disease to a treatment institution. We will denote by f0, f1,
f2, . . . fm the frequency of those units identified exactly 0, 1, 2, . . . , m times where m is the
largest count occurred. Also, we will denote with p0, p1, p2, . . . pm the probability of exactly 0,
1, 2, . . . . m identifications. Clearly, f0 is unobserved and is the target of the inference. We have
that n = f1 + f2 + · · · + fm and N = n + f0.

Example 1. To illustrate, we look at the following CRECT: Oremus [8] tried to estimate the
size of a small community of spinner dolphins which are residing around the island of Moorea
(near Tahiti). In 2002, using an interval of 8 months, skin samples were randomly taken and
12 microsatellite loci were genotyped which makes mis-matching of dolphins very unlikely.
f1 = 42 dolphins were sampled only once, f2 = 7 dolphins were sampled exactly twice and
f3 = 2 dolphins were sampled exactly three times. This leads to n = 51 different dolphins that
were observed in the experiment (see also Table 1).

It is interesting to recall the likelihoods involved in CRECT. The CRECT can be described
with a multinomial likelihood(

N
f0 f1 . . . fm

)
p f0

0 p f1
1 . . . p fm

m (5)

which can be written as the product of the two likelihoods(
N
f0

)
p f0

0 (1 − p0)
N− f0 ×

(
n

f1 . . . fm

)(
p1

1 − p0

) f1

. . .

(
pm

1 − p0

) fm

. (6)

Note that the first binomial likelihood in (6) is identical to (1) with f0 = N − n, also using

that
(

N
f0

)
=

(
N
n

)
. Also note that 1 − p0 = p1 + · · · + pm . The second, truncated multinomial

likelihood is independent of N and this fact is exploited in the conditional maximum likelihood
approach where the second likelihood is maximized in p j separately from the first, the binomial
likelihood.

Now some parametric or at least semi-parametric structure needs to be imposed on p j =

p j (λ). Since, if the p j s are left nonparametric, the re-parameterized p∗

j = p j/(1 − p0) would
simply be estimated by f j/n and carry no information on p0. Having found an estimate for
p0(λ) = 1−g(λ), the estimate of N is readily available with the Horvitz–Thompson estimator. To
illustrate the conditional approach in a simple model, one can assume that the counts arise from
a Poisson with parameter λ, so that p j = exp(−λ)λ j/j ! and g(λ) = 1 − p0 = 1 − exp(−λ). The
estimation could be done by maximizing the likelihood function based upon the zero-truncated
Poisson density

L(λ) =

m∏
i=1

{
Po(i, λ)

1 − exp(−λ)

} fi

(7)

with respect to λ, where m is the largest observed count and Po(i, λ) = exp(−λ)λi/ i !
The simple zero-truncated Poisson requires homogeneity of the Poisson parameter which
appears to be unlikely in CRECT. It might be more appropriate to incorporate unobserved
heterogeneity leading to p j (λ) =

∫
∞

0 t j exp(−t)/j !λ(t)dt for j = 0, 1, 2, . . . . with λ(t) being
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the density of the heterogeneity distribution and now the parameter of interest. Chao [4] uses the
Cauchy–Schwartz inequality to deduce(∫

∞

0
t exp(−t)λ(t)dt

)2

≤

∫
∞

0
exp(−t)λ(t)dt

∫
∞

0
t2 exp(−t)λ(t)dt

or simply p2
1 ≤ p0(2p2), from which the Chao lower bound estimator f̂0 = f 2

1 /(2 f2) or
NC = n + f 2

1 /(2 f2) follows.
Zelterman [16] was inspired by developing a more robust approach being valid even if

contaminations in the Poisson model occurred. His suggestion was based upon

λ = (i + 1)
Po(i + 1, λ)

Po(i, λ)
(8)

so that the simple estimator λ̂i = (i + 1) fi+1/ fi can be constructed, with the typical choice
i = 1 leading to λ̂1 = 2 f2/ f1 and associated population size estimator N̂Z =

n
1−exp(−2 f2/ f1)

.

Evidently, λ̂1 = 2 f2/ f1 will not be affected by counts larger than 2, so that it will retain its
unbiased property if only the f2/ f1 ratio remains invariant which can be expected for a wider
class of Poisson mixture models. The Zelterman’s estimator turns out to be less dependent on
the Poisson assumption, so that it might still be considered even if the Poisson model is not
valid [16] and it is likely that for this reason it has found popularity in many applied areas [6,9].
For the data of Example 1 we find the Zelterman estimate and the Chao lower bound estimate to
be N̂Z = 180 and N̂C = 177, respectively, both estimates being quite similar.

2. A general approach by conditioning

We are interested in developing an expression for the variance of N̂ =
n

1−p0(λ̂)
=

n
1−p0(λ̂)

. It

is important to take two sources of random variation into account: the binomial random variation
induced by sampling n units out of N with N unknown, and the random variation due to the
estimation of λ. It is assumed that λ is estimated by some well-motivated estimator λ̂ such as
the estimator of Chao [4] or Zelterman [16], though not necessarily by maximum likelihood.
For conditional and unconditional maximum likelihood estimations, Sanathan [11,12] provided
variance estimates of the population size estimator based upon the full information matrix with
respect to the truncated likelihood. In the following we apply a technique for computing moments
usually referred to as conditioning [10 (p. 92),7 (p. 191),13 (p. 9)] to population size estimation.
The technique provides a simple formula for variance computation of population size which can
be applied to a general estimator of λ. If maximum likelihood estimation is used the variance
estimating formula based upon conditioning appears to be simple in its application. Let f (λ̂, n)

be the joint distribution of λ and n, which can be written as f (λ̂, n) = f (λ̂|n)b(n), the product
of the conditional distribution of λ̂ given n, and the marginal distribution (binomial) b(n) of n.
Let

E
λ̂,n

(
n

g(λ̂)

)
=

∑
n

∫
λ̂

n

g(λ̂)
f (λ̂|n)dλ̂ b(n), (9)

E
λ̂|n

(
n

g(λ̂)

)
=

∫
λ̂

n

g(λ̂)
f (λ̂|n)dλ̂ (10)
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denote the unconditional mean (9), the mean with respect to the joint distribution, and the
conditional mean (10). We are interested in computing the variance with respect to the joint
distribution f (λ̂|n)b(n) and will use the following lemma (see [10, (p. 129)]).

Lemma. Let X and Y be two random variables. Then,

Var(X) = E[Var(X |Y )] + Var(E[X |Y ]). (11)

Now, choose X =
n

g(λ̂)
and Y = n. Then,

Var
λ̂,n

(
n

g(λ̂)

)
=

∑
n

{∫
λ̂

(
n

g(λ̂)
− E

λ̂,n

(
n

g(λ̂)

))2

f (λ̂|n)dλ̂

}
b(n) (12)

=

∑
n

Var
λ̂|n

(
n

g(λ̂)

)
b(n) (=E[Var(X |Y )])

+

∑
n

(
E

λ̂|n

(
n

g(λ̂)

)
− E

λ̂,n

(
n

g(λ̂)

))2

b(n)

(=Var(E[X |Y ])). (13)

In conclusion, we may summarize the finding from (13) as the following

Theorem.

Var
λ̂,n

(
n

g(λ̂)

)
= Varn

{
E

λ̂|n

(
n

g(λ̂)

)}
+ En

{
Var

λ̂|n

(
n

g(λ̂)

)}
, (14)

where En and Varn refer to the marginal distribution b(n) of n.

Clearly, the two terms in (14) reflect the two sources of random variation. The first term arises
from the (binomial) random variation involved in sampling the n units from the population of
size N with probability g(λ) each, the second term stands for the random variation arising from
estimating λ on the basis of the observed n units.

2.1. Varn{E
λ̂|n( n

g(λ̂)
)}

If we assume that E
λ̂|n( n

g(λ̂)
) can be estimated by n

g(λ)
, then the variance becomes

Varn

{
E

λ̂|n

(
n

g(λ̂)

)}
≈ Varn

(
n

g(λ)

)
(15)

= N
g(λ)(1 − g(λ))

g(λ)2 , (16)

so that a variance estimate of this term can be reached by replacing λ by λ̂ and Ng(λ) by n
leading to

V̂arn

{
E

λ̂|n

(
n

g(λ̂)

)}
≈ n

(1 − g(λ̂))

g(λ̂)2
. (17)
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Note that the approximation E
λ̂|n( n

g(λ̂)
) ≈

n
g(λ)

can be justified by the δ-method which is applied

here to the first moment and states that the expected value of the transformed random variable
can be approximated by the transformation of the expected value (see [1 (p. 493),3 (p. 240)]).

2.2. En{Var
λ̂|n( n

g(λ̂)
)}

We let λ be a vector of parameters and consider the term n2Var
λ̂|n( 1

g(λ̂)
) further and will use

the multivariate δ-method ([1 (p. 493),3 (p. 240)]) to achieve that

Var
λ̂|n

(
1

g(λ̂)

)
≈

(
1

g(λ)2

)2

∇g(λ)T Cov
λ̂|n(λ̂)∇g(λ). (18)

Replacing Cov
λ̂|n with an estimate Ĉov

λ̂|n , then a final estimate of En{Var
λ̂|n( n

g(λ̂)
)} can again

be achieved as(
n

g(λ̂)2

)2

∇g(λ̂)T Cov
λ̂|n(λ̂)∇g(λ̂). (19)

If λ is a scalar, (19) simplifies to

n2

(
g′(λ̂)

g(λ̂)2

)2

V̂ar
λ̂|n(λ̂). (20)

3. Variance of N̂ based upon a CRECT

Wilson and Collins [15] compare a number of estimators including Zelterman’s estimator and
the lower bound estimator of Chao [4,5]. We consider them here in more detail, since both do
not require the assumption that the number of recapture occasions is fixed and known. Therefore,
they are both suitable for a CRECT.

3.1. Zelterman’s estimator

Let us come back to the estimators suggested in Section 1.1 for a CRECT. We consider
λ̂i = (i + 1) fi+1/ fi , in particular λ̂1 = 2 f2/ f1 for i = 1, as suggested by Zelterman [16].
It is now straightforward to provide a variance estimate for λ̂ = λ̂i . According to (20) and with
g(x) = 1 − exp(x)

En

{
Var

λ̂|n

(
n

g(λ̂)

)}
≈ n2

(
g′(λ̂)

g(λ̂)2

)2

V̂ar
λ̂|n(λ̂) = n2

 exp(−λ̂)(
1 − exp(−λ̂)

)2


2

V̂ar
λ̂|n(λ̂)

so that only V̂ar
λ̂|n(λ̂) is left to be evaluated. Two routes are possible. Assuming a truncated

Poisson model in which all counts are truncated except counts i and i + 1, we achieve the
truncated probability for count i as

exp(−λ)λi/ i !

exp(−λ)λi/ i ! + exp(−λ)λi+1/(i + 1)!
=

1
1 + λ/(i + 1)
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and similarly for count (i + 1) as λ/(i+1)
1+λ/(i+1)

, so that the (truncated) log-likelihood is provided as

fi+1 log(λ) − ( fi + fi+1) log(1 + λ/(i + 1))

with maximum likelihood estimate λ̂ = (i + 1) fi+1/ fi and second derivative − fi+1/λ
2
+ ( fi +

fi+1)/(i+1+λ)2, from where the variance estimate as inverse of the observed Fisher information
fi+1/λ

2
− ( fi + fi+1)/(i + 1 + λ)2 evaluated at λ = λ̂

V̂ar
λ̂|n(λ̂) =

(i + 1)2( fi + fi+1) fi+1

f 3
i

= λ̂2
i

(
1
fi

+
1

fi+1

)
(21)

is obtained. This variance estimate implicitly assumes the validity of the Poisson distribution
which the Zelterman estimate allows to be violated. Therefore it seems wise to consider a
distribution-free estimate of the variance. Alternatively, we might use the bivariate δ-method
to achieve that

V̂ar
λ̂|n((i + 1) fi+1/ fi ) = ∇g( fi , fi+1)

T Cov
(

fi
fi+1

)
∇g( fi , fi+1)

with g(x, y) = y/x . The conventional estimator of the covariance matrix of the multinomial

provides the covariance matrix for
(

fi
fi+1

)
as

Ĉov
(

fi
fi+1

)
=

(
fi (1 − fi/n) − fi fi+1/n
− fi fi+1/n fi+1(1 − fi+1/n)

)
.

This gives

V̂ar
λ̂|n((i + 1) fi+1/ fi ) = (i + 1)2 f 2

i+1

f 2
i

[
1 − fi/n

fi
+ 2/n +

1 − fi+1/n

fi+1

]
(22)

which simplifies further to

V̂ar
λ̂|n((i + 1) fi+1/ fi ) = (i + 1)2 f 2

i+1

f 2
i

[
1
fi

+
1

fi+1

]
. (23)

Note that (23) is identical to (21) which is a remarkable result: Both routes (assuming a Poisson
likelihood versus the nonparametric multinomial) lead to the same variance estimator. We put all
the terms together:

Corollary 1. Consider the Zelterman’s estimator λ̂ = (i +1)( fi+1/ fi ). Then, an (unconditional)
variance estimator is provided as:

V̂ar
λ̂,n

(
n

g(λ̂)

)
= nG(λ̂)

[
1 + nG(λ̂)λ̂2

(
1
fi

+
1

fi+1

)]
, (24)

where G(λ̂) =
exp(−λ̂)

(1−exp(−λ̂))2 .

Zelterman [16] provides also a variance estimator which ignores the first term in (14). In
addition, Wilson and Collins [15, (p. 549)] point out an error in the variance computation:

This is what happened with Zelterman’s [16] analysis: his Tables 1 and 2 have some
anomalous values caused by the mean squared errors he calculates being close to zero,
when in fact it is only the highest order term which vanishes.
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We will come back to this point and compare the variance estimator (24) with the one given by
Zelterman [16].

3.2. Chao’s estimator under heterogeneity

Chao [4] suggested the estimator N̂ = n + f 2
1 /(2 f2) based on a mixed Poisson model with

pi =
∫

t e−t t i/ i !λ(t)dt for i = 0, 1, 2, . . . and arbitrary density λ(t). Then, using the inequality
of Cauchy–Schwartz, Chao [4] arrived at 2p0 p2 ≤ p2

1 from where the estimator follows. The
important result here is that the Chao’s estimator provides a lower bound for the population size
independent of the form of the heterogeneity distribution λ(t). Using the theorem of Section 2
we have that

Var
λ̂0,n

(n + λ̂0) = En

{
Var

λ̂0|n
(n + λ̂0)

}
+ Varn

{
E

λ̂0|n
(n + λ̂0)

}
, (25)

where En and Varn refer to the marginal distribution b(n) of n and λ̂0 = f̂0 = f 2
1 /(2 f2).

Assuming that E
λ̂0|n

(n + λ̂0) in the second term in (25) can be estimated by n + λ̂0, we have that

Varn(n + λ̂0) = Varn(n) = N p0(1 − p0).

Since E( f0) = N p0 and 1 − p0 = 1 − E( f0)/N , we can estimate this variance as

V̂arn(n) =
f 2
1

2 f2

(
1 −

f 2
1

2 f2 N̂

)
=

f 2
1

2 f2

(
1 −

f 2
1

2 f2n + f 2
1

)
.

Assume again that En{Var
λ̂0|n

(n + λ̂0)} can be estimated by Var
λ̂0|n

(n + λ̂0) = Var
λ̂0|n

(
f 2
1

2 f2
).

Using the δ-method similar to the way it was used in the previous section we arrive at

V̂ar
λ̂0|n

(
f 2
1

2 f2

)
=

f 3
1

f 2
2

(
1 +

1
4

f1

f2
(1 − f2/n)

)
.

Adding both variances we obtain

Corollary 2. Consider the estimator N̂ = n + f 2
1 /(2 f2). Then:

V̂ar
λ̂0,n

(
n +

f 2
1

2 f2

)
=

1
2

f 2
1

f2

(
1 −

f 2
1

2 f2n + f 2
1

)
+

f 3
1

f 2
2

(
1 +

1
4

f1

f2
(1 − f2/n)

)
(26)

=
1
4

f 4
1

f 3
2

+
f 3
1

f 2
2

+
1
2

f 2
1

f2
−

1
4

f 4
1

( f 2
2 n)

−
1
2

f 4
1

f2(2 f2n + f 2
1 )

. (27)

Note that the first three terms in (27) correspond to the variance estimate given in Chao [4].

Example 1 (Continued). Let us illustrate the variance formula at the spinner dolphin data
set used in Section 2.1. Zelterman’s estimator provides 180 dolphins with a wide confidence
interval (Table 2). Chao’s estimator gives a value of 177 dolphins with a smaller (but still wide)
confidence interval.
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Table 1
Observed frequencies of repeated counts of identifications for n = 51 spinner dolphin’s in the Moorea island community

f0 f1 f2 f3

– 42 7 2

Table 2
Zelterman’s and Chao’s estimates of the population size of spinner dolphin’s in the Moorea island community

Estimator N̂ ŜE 95% CI

Zelterman 180 65.45 52–308
Chao 177 59.20 61–293

3.3. A simulation study

To investigate the variance estimates in more detail the following simulation was done.
N = 100 counts y were sampled from a two-component mixture qPo(y | λ1)+(1−q)Po(y | λ2)

with 0 < q < 1. Using the zero-truncated counts only, the population size N was estimated
with the Zelterman’s estimator as well as Chao’s estimator. True variances were estimated
and compared with the estimated variances according to (23) and (27). Four scenarios were
considered (for all four λ1 = 0.5): experiment 1 used q = 0.5 and λ2 = 5, experiment 2 used
q = 0.9 and λ2 = 5, experiment 3 used q = 0.5 and λ2 = 1, and experiment 4 used q = 0.9 and
λ2 = 1.

Zelterman [16] provided the variance approximation Var(eλ̂1) ≈
1
n e−λ(1 − e−λ)(2 + λ) with

λ̂1 = 2 f2/ f1 which we use to provide a corrected version of the variance of the population size
estimate based upon the Zelterman estimate:

V̂ar(N̂ ) = V̂ar
(

n

g(λ̂1)

)
= nG(λ̂1)

(
1 +

λ̂1 + 2

1 − e−λ̂1

)
. (28)

The simulation results of Table 3 indicate that Zelterman’s estimator and the estimator of
Chao are quite close with that of Zelterman always being larger than the estimator of Chao.
The simulation study also supports the bona-fide knowledge that the variance of Zelterman’s
estimator is rather large, at least larger than Chao’s estimator. Wilson and Collins [15] write:

For although it often does have a smaller bias than the other estimators (used by Wilson
and Collins in their comparison), it does so at the cost of having a larger standard deviation
which overwhelms the reduced bias.

Most importantly, it can be seen that both variance formulas provide reasonable approximations
of the true variances with the approximating formula providing conservative approximations of
the true variances. In particular, it appears that the variance formula for Chao’s estimator (27)
gives a slightly better approximation than Chao’s variance formula. The variance approximation
(23) is conservative, whereas the one in (28) appears to be very good, but underestimates
occasionally drastically. A more detailed analysis explains when this can happen. Let us consider
the two variance approximations for n/N̂ = 1 − exp(−λ̂) with λ̂ = λ̂1 = 2 f2/ f1:

n × Var(n/N̂ ) ≈ exp(−λ)2λ2 (2 + λ/2 + 2/λ) (29)
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Table 3
Results of a simulation study comparing Zelterman’s estimator with Chao’s estimator under Poisson model violations;
true N is 100

Experiment Zelterman
Mean True SE SE (23) Zelterman’s SE

1 128 58 67 40
2 124 68 78 69
3 101 27 29 28
4 109 46 51 51

Chao
Experiment Mean True SE SE (27) Chao’s SE

1 91 20 22 22
2 109 52 58 60
3 100 25 25 26
4 108 42 46 48

Table 4

Comparing the two variance estimators: exp(−λ̂)(1 − exp(−λ̂))(2 + λ̂)/n and exp(−λ̂)2λ̂2 (1/ f1 + 1/ f2)

Experiment True exp(−λ̂)(1 − exp(−λ̂))(2 + λ̂) exp(−λ̂)2λ̂2 (1/ f1 + 1/ f2)

1 0.02282 0.00923 0.02321
2 0.01634 0.01336 0.01628
3 0.01347 0.01293 0.01295
4 0.01466 0.01444 0.01437

n × Var(n/N̂ ) ≈ exp(−λ)(1 − exp(−λ)) (2 + λ) (30)

where the second approximation (30) goes back to Zelterman [16]. Consider Fig. 1: clearly, both
approximations are close if λ is small whereas they differ considerably for larger values of λ. A
simulation study again helps us to illustrate that using V̂ar(n/N̂ ) = exp(−λ̂)2λ̂2 (1/ f1 + 1/ f2)

should be preferred. The results of the simulation study for which we have used the same
parameter constellations as used previously are shown in Table 4.

Most of the differences occur when the Poisson assumption is strongly violated (Experiments
1 and 2), whereas both variance approximations are close (and close to the true variance)
when the Poisson assumption is mildly violated (Experiments 3 and 4). The suggested variance
estimate exp(−λ̂)2λ̂2 (1/ f1 + 1/ f2) appears to provide a quite reasonable approximation to the
true variance.

4. Some consequences

4.1. The implication of using resampling procedures

Frequently, resampling procedures such as the Bootstrap are used to estimate the variance of
N̂ [14,2]. This is done in the following way: from the original sample the estimator N̂ = n/g(λ̂)

is constructed. Then, binomial resamples are generated using the size parameter N̂ and event
parameter g(λ̂). This will lead to B samples of sizes n(1), n(2), . . . , n(B) from which estimates
λ̂(b) and N̂ (b)

= n(b)/g(λ̂(b)) for b = 1, . . . , B can be constructed and their sample variance
1
B

∑
b(N̂ (b)

− N̂ )2 provides the variance estimate of N̂ . This procedure can be improved upon in
terms of a technical simplification.



Author's personal copy
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Fig. 1. The two standard errors according to (29) and (30) as functions of λ.

Table 5
Bootstrap mean and variance of Zelterman’s and Chao’s population size estimates of spinner dolphin’s in the Moorea
Island community

Estimator Mean Variance SE

N̂ E∗(N̂ ) Î ÎI∗ Î + ÎI∗
√

Î + ÎI∗

Zelterman 180 183.52 455 1599 2054 45
Chao 177 177.75 36 1433 1469 38

Let us consider again the variance decomposition

Var
λ̂,n

(
n

g(λ̂)

)
= Varn

{
E

λ̂|n

(
n

g(λ̂)

)}
+ En

{
Var

λ̂|n

(
n

g(λ̂)

)}
= I + II,

where the first part I (binomial variance) can always be estimated by n (1−g(λ̂))

g(λ̂)2 , for which only

an estimate λ̂ of λ is required. To illustrate we find for Zelterman’s estimate λ̂ = 2 f2/ f1 that

Î = n (1−g(λ̂))

g(λ̂)2 = n exp(−λ̂)

[1−exp(λ̂)]2 (see Section 3.1), and for Chao’s lower bound estimate f 2
1 /(2 f2)

that the corresponding part I can be estimated by Î =
f 2
1

2 f2
(1 −

f 2
1

2 f2n+ f 2
1
) (see Section 3.2).

Now, the estimate n2Var
λ̂|n( 1

g(λ̂)
) of the second part is conditional upon n, so that a

conventional, nonparametric Bootstrap might be used by sampling n units with replacement
and calculating the variance of B such samples. This procedure will provide a more efficient
estimation of the variance. An application of this modified Bootstrap procedure to Spinner
Dolphin’s data is provided in Table 5.

4.2. A weighted estimator

As was mentioned before, the Zelterman’s estimator is known to have a small bias but
large variance. Chao’s estimator is a lower bound estimator (thus negatively biased) with small
variance. In addition, reasonable variance approximations were provided for both estimators.
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This suggests the need to combine the positive aspects of both estimators by construction of a
weighted estimator

N̂W = (w1 N̂Z + w2 N̂C )/(w1 + w2), (31)

where N̂C and N̂Z are the estimators of Chao and Zelterman, respectively. The weights could
be chosen according to the inverse variances. However, the true variances are unknown and
replacing them by estimates will introduce additional variation and loss in efficiency can be
expected. Instead we will use equal weights and motivate this choice as follows. Consider
the Zelterman’s estimator N̂Z = n +

n
exp(2 f2/ f1)−1 and the Taylor-series approximation of the

exponential around zero ex
≈ 1 + x + x2/2, so that

N̂Z = n +
n

exp(2 f2/ f1) − 1
≈ n +

n

2 f2/ f1 + 2 f 2
2 / f 2

1

(32)

= n +
f 2
1

2 f2

n

f1 + f2
(33)

which provides a representation of the Zelterman’s estimator in terms of the Chao’s estimator

since N̂C = n +
f 2
1

2 f2
. Note that (33) also provides an explanation for the fact that the Zelterman’s

estimator is often larger than Chao’s estimator since n
f1+ f2

≥ 1. Let us define

N̂W =
1
2
(N̂Z + N̂C ) = n +

f 2
1

2 f2

(
1
2

+
n

2( f1 + f2)

)
(34)

which has two advantages. For one, we can incorporate the low bias of the Zelterman’s estimator
in a weighted estimator which turns out to be an inflated Chao’s estimator. Hence, we can retain to
a certain degree the lower variance of the Chao’s estimator. Secondly, the inflation representation
allows a closed form expression for the variance of N̂W . Assuming again that the second term
in (25) can be estimated by N p0(1 − p0), where 1 − p0 can be further estimated by n/N̂W , we
arrive at

ÎI = n(N̂W − n)/N̂W .

To evaluate the first term in (25) we assume once more that En{Var
λ̂0|n

(n + λ̂0)} for λ̂0 =

f 2
1

2 f2
( 1

2 +
n

2( f1+ f2)
) can be estimated by

Var
λ̂0|n

(n + λ̂0) =

(
1
2

+
n

2( f1 + f2)

)2

Var
λ̂0|n

(
f 2
1

2 f2

)
.

Using the δ-method for Var
λ̂0|n

(
f 2
1

2 f2
) similar to the way it was used in the previous sections we

arrive at

V̂ar
λ̂0,n

(N̂W ) =
n

N̂W
(N̂W − n) +

(
1
2

+
n

2( f1 + f2)

)2 f 3
1

f 2
2

(
1 +

f1

4 f2

(
1 −

f2

n

))
. (35)

To illustrate the beneficial behavior of the new, weighted estimator it was included in the
previously described simulation experiment. The results are provided in Table 6. Though Chao’s
estimator is well-behaved in most situations, it underestimates strongly occasionally such as in
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Table 6
Results of a simulation study comparing Zelterman’s, Chao’s estimator and the weighted estimator under Poisson model
violations; true N is 100

Exp. Zelterman Chao Weighted
Mean True SE SE (23) Mean True SE SE (27) Mean True SE SE (35)

1 124 39 46 91 15 16 107 27 32
2 117 48 54 103 38 40 110 43 48
3 101 28 30 99 25 25 100 27 28
4 108 41 45 107 39 41 107 40 44

Experiment 1, whereas the new weighted estimator provides a better balance between bias and
variance.

4.3. Size of a CRECT

Frequently, in a CRECT the lower confidence limit of the population size estimator is close
or even below the observed number of units (see Table 5). This raises questions of designing
the CRECT with an appropriate sample size. It is quite clear by considering (4), however,
that the variance of the population size estimator increases with the sample size. Therefore,
a relative measure such as the proportion n/N̂ of completeness of identification should be
considered. Let us consider this measure in connection with Zelterman’s estimator. We have
that n/N̂ = 1 − exp(−λ̂) and the variance can be simply estimated as

V̂ar(n/N̂ )1/2
= exp(−λ̂)λ̂

√
1
fi

+
1

fi+1

and nV̂ar(n/N̂ ) converges to exp(−λ)2λ2
(

1
pi

+
1

pi+1

)
. Thus, confidence intervals for this

measure can be made arbitrarily small by increasing n. For the spinner dolphin data we
find n/N̂ = 51/180 = 0.28 with V̂ar(n/N̂ ) = 0.0095 and an approximate 95% CI of
(0.0883–0.4783) for the capture probability of this particular CRECT. Clearly, this confidence
interval is rather large. How many dolphins need to be captured to achieve a desired margin of
error? This is answered as follows. For achieving a (1 − α)100% confidence interval of length ε

one needs to solve the equation

2 × zV̂ar(n/N̂ )1/2
= (2z exp(−λ)λ)

√
2 + λ/2 + 2/λ = ε (36)

for n leading to

n = (2z exp(−λ)λ)2(2 + λ/2 + 2/λ)/ε2

with z = Φ−1(1 − α/2) and Φ being the standard normal distribution function. For the spinner
dolphin data, using λ̂ = 0.28, we have that ε = 0.1, 0.2, 0.3, 0.4 lead to the associated sizes
n = 715, 180, 80, 45. If no prior knowledge on the value for λ is available, then an upper bound
for the standard error (see also Fig. 2)

exp(−λ)λ
√

2 + λ/2 + 2/λ ≤ 0.8 (37)

might be used, leading to required sample sizes of 983, 246, 109, 61 associated with ε =

0.1, 0.2, 0.3, 0.4, respectively.
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Fig. 2. Standard error exp(−λ)λ
√

2 + λ/2 + 2/λ as a function of λ.
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