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Meta-analysis of rare event studies has recently become a subject of controversy and debate. We will argue
and demonstrate in this paper that the occurrence of zero events in clinical trials or cohort studies, even
if zeros occur in both arms (the case of a double-zero trial), is less problematic, at least from a statistical
perspective, if the available statistical tools are applied in the appropriate way. In particular, it is neither
necessary nor advisable to exclude studies with zero events from the meta–analysis. In terms of statistical
tools we will focus here on Mantel-Haenszel techniques, mixed Poisson regression and related regression
models.
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1 Introduction and background

We are interested in meta–analysis of clinical trials with binary endpoints and with the occurrence of rare
events. A rare event here means that the event occurrence probability is so low that frequently a small
number or no events are observed in a trial, despite the fact that either the trial sizes or the observation
times are not small. Hence it is different from meta-analysis of clinical trials with sparse events where trial
sizes are small (often for reasons of patient recruitment) but event probabilities might not necessarily be
small. Meta-analysis allows the researcher to reach conclusions based on a set of independently performed
studies. Provided that the information on an intervention effect is reliable, meta-analysis is a powerful
tool, used for analyzing and combining the results obtained from individual studies (Böhning et al., 2008).
However, there are potential weaknesses when designing and performing a meta-analysis, which is why
controversy often arises among researchers.

The work is motivated by a recent debate on the cardiovascular safety of the diabetes drug Rosiglitazone
which arose after a publication of a meta–analysis that showed a significantly elevated risk for myocardial
infarction (MI) and a borderline significant increased risk for cardiovascular (CV) mortality (Nissen and
Wolski 2007). Some meta–analyses confirmed the original findings (Singh et al. 2007) whereas others
reported inconclusive findings (Diamond et al. 2007).

After the publication of the meta-analysis conducted by Nissen and Wolski (2007), numerous scientists
carried out their own analyses, in order to assess the ’true’ effect of Rosiglitazone with respect to the
occurrence of MI and CV deaths, including the meta-analyses of Home et al. (2007), Bracken (2007),
Diamond et al. (2007), Shuster et al. (2007), Dahabreh (2008), Tian et al. (2009), Friedrich et al. (2009),
Mannucci et al. (2009), and Cai et al. (2010).
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As been pointed out in Kaul and Diamond (2011), one issue of this debate is whether trials with zero
events should be excluded from the analysis and what biasing effect this exclusion would have. We will
argue here that, at least from a statistical perspective, such exclusions can and should be avoided if the
available statistical repertoire is used appropriately.

The standard approach to meta-analysis assumes that an estimate of the effect measure of interest is
available from each study together with an estimate of its variance which is then typically treated as a
known parameter. In the standard approach, it is further assumed that the effect measure is normally
distributed within studies and all further investigations, such as heterogeneity modelling, build on these
assumptions. This approach is reviewed in Stijnen et al. (2010) and it is pointed out that the approach
has several shortcomings when the effect-measure involves count data and therefore is very relevant here.
Instead, Stijnen et al. (2010) highlight the benefits that occur when exact methods, reflecting the count
nature of the data involved in the meta-analysis, are used. They point out that the bias in the standard ap-
proach, caused by the correlation between estimate and standard error, can be avoided. As a second benefit,
the use of a more appropriate within-study likelihood incorporates the uncertainty in the estimates of the
standard errors and, hence, provides a more realistic approach. In addition, it avoids the use of continuity
corrections. This point is most relevant for meta-analysis of studies with many single– or double–zero
studies where the study-specific effect measure itself, the risk ratio say, would not be estimable without the
use of a continuity correction. This is crucial for the standard approach since it builds on study-specific
effect measures. Here, very much in the spirit of the approach taken by Stijnen et al. (2010), we focus on
alternative approaches that avoid the use of continuity corrections.

The paper is organized as follows. In section 3 we will focus on Mantel-Haenszel methodology, which
has the property of being robust with respect to the occurrence of zero-events, whereas in section 4 we
focus on Poisson modelling. In particular, we demonstrate that the question of homogeneity of effect
can be investigated using a random effect for the study factor. In addition, we mention zero–inflation
modelling as an option to check whether a large number of zeros in the meta-analytic data would require a
zero–inflation component. The paper ends with a short discussion.

2 Data

Recently, Nissen and Wolski (2010) published a second meta-analysis on Rosiglitazone including 56 trials
with in total 35531 patients. The inclusion criterion for a trial was a duration of at least 24 weeks. Their
current findings suggest an increase in risk ratio for Rosiglitazone, as the Rosiglitazone therapy signifi-
cantly increased the risk of MI, but not CV mortality. We take this data set as the most complete data basis
and all our analysis is grounded on the data reproduced in Tables 1 and 2. Note that the trials differ in
observation time, ranging from 24 weeks to 260 weeks. Hence the person-time (= size of trial × duration)
differs across trials and this needs to be taken into account.

Forest plots for MI events and CV events are provided in Figures 1 and 2, respectively, using the package
STATA. These not only show the distribution of the risk ratio across studies, they also illuminate how many
studies have been excluded by STATA for the analysis due to zero events.

3 Mantel-Haenszel techniques

Let xT
i and xC

i denote the number of events (CV or MI) in the treatment and in the control arms respectively
of the i−th trial. Further denote by PT

i and PC
i the person-time in the treatment and in the control arms

respectively of the i−th trial. Also let xT =
∑k

i=1 xT
i denote the total number of events in the k trials

for the treatment arm with similar definitions for xC , PT and PC . Then the crude risk ratio is simply
R̂R = xT P C

xCP T which relates the estimated overall risk xT /PT in the treatment arm to the estimated overall
risk xC/PC in the control arm. The calculation of the crude risk ratio is straightforward unless xT or xC
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Table 1: Study data for the meta–analysis on rare events in the Rosiglitazone and control arms; MI refers
to myocardial infarction events, CV to cardiovascular deaths, n is the size and P is the person-time of the
respective study arm and ’duration’ refers to the study period at risk (in weeks)

treatment arm control arm
ID study label n P MI CV n P MI CV duration

1 49653/011 176 4224 0 0 357 8568 2 1 24
2 49653/020 207 10764 1 0 391 20332 2 0 52
3 49653/024 185 4810 1 0 774 20124 1 0 26
4 49653/093 109 2834 1 0 213 5538 0 0 26
5 49653/094 116 3016 0 0 232 6032 1 1 26
6 100684 47 2444 1 0 43 2236 0 0 52
7 49653/143 124 2976 0 0 121 2904 1 0 24
8 49653/211 114 5928 2 4 110 5720 5 5 52
9 49653/284 384 9216 0 0 382 9168 1 0 24

10 712753/008 135 6480 0 0 284 13632 1 0 48
11 AVM100264 302 15704 1 1 294 15288 0 2 52
12 BRL49653C/185 142 4544 0 0 563 18016 2 0 32
13 BRL49653C/334 279 14508 1 1 278 14456 2 0 52
14 BRL49653C/337 212 5088 0 0 418 10032 2 0 24
15 49653/015 198 4752 1 0 395 9480 2 2 24
16 49653/079 106 2756 1 1 203 5278 1 1 26
17 49653/080 99 15444 2 0 104 16224 1 0 156
18 49653/082 107 2782 0 0 212 5512 2 1 26
19 49653/085 139 3614 1 0 138 3588 3 1 26
20 49653/095 96 2496 0 0 196 5096 0 1 26
21 49653/097 120 18720 1 0 122 19032 0 0 156
22 49653/125 173 4498 1 0 175 4550 0 0 26
23 49653/127 58 1508 0 0 56 1456 1 0 26
24 49653/128 38 1064 0 0 39 1092 1 0 28
25 49653/134 276 7728 2 0 561 15708 0 1 28
26 49653/135 111 11544 3 1 116 12064 2 2 104
27 49653/136 143 3718 0 0 148 3848 1 2 26
28 49653/145 242 6292 0 0 231 6006 1 1 26
29 49653/147 88 2288 0 0 89 2314 1 0 26
30 49653/162 172 4472 0 0 168 4368 1 1 26

continued in Table 2

is zero, a situation that can be excluded in nearly all practical cases and, in particular, for the meta–analysis
at hand.

However, it is important in any meta–analysis to investigate the factor study as a potential confound-
ing factor and one way to do this is to stratify. Calculation of a weighted estimator with weights being
calculated on the basis of the inverse variance is almost impossible for at least two reasons. First, the cal-
culation of the study specific risk ratio R̂Ri = xT

i P C
i

xC
i P T

i
is prohibited if zero events occur, and secondly, the

variance of R̂Ri is difficult to compute reasonably accurately and the existing estimator, based on the the
δ−method and treating the estimated weights as non-random, becomes an unstable estimator when zero-
events occur (Böhning and Sarol 2000). This problem could be addressed by using continuity corrections
(adding a constant to all cells, as suggested in Jewell (2004, p. 80) ) as in Kaul and Diamond (2011), but
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Table 2: Study data for the meta–analysis on rare events in the Rosiglitazone and control arms (continued
from Table 1)

treatment arm control arm
ID study label n P MI CV n P MI CV duration
31 49653/234 61 1586 0 0 116 3016 0 0 26
32 49653/330 377 19604 0 0 1172 60944 1 1 52
33 49653/331 325 16900 0 0 706 36712 0 1 52
34 49653/137 185 5920 2 1 204 6528 1 0 32
35 SB-712753/002 280 6720 0 0 288 6912 1 1 24
36 SB-712753/003 272 8704 0 0 254 8128 1 0 32
37 SB-712753/007 154 4928 0 0 314 10048 1 0 32
38 SB-712753/009 160 3840 0 0 162 3888 0 0 24
39 49653/132 112 2688 0 0 442 10608 1 1 24
40 AVA100193 124 2976 0 0 394 9456 1 1 24
41 AVD102209 131 10218 0 1 132 10296 0 0 78
42 AVD104742 213 5538 0 0 160 4160 0 0 26
43 AVD100521 337 9436 7 3 331 9268 8 4 28
44 AVA105640 250 6500 1 1 331 8606 1 0 26
45 ARA102198 49 1176 0 0 49 1176 0 0 24
46 49653/044 51 1326 0 0 101 2626 0 0 26
47 49653/096 115 2990 0 0 232 6032 0 0 26
48 49653/109 25 650 0 0 52 1352 0 0 26
49 49653/325 195 4680 0 0 196 4704 0 0 24
50 49653/282 75 1800 0 0 70 1680 0 0 24
51 49653/351 29 1508 0 0 28 1456 0 0 52
52 49653/369 24 624 0 0 25 650 0 0 26
53 49653/452 24 576 0 0 26 624 0 0 24
54 DREAM 2634 410904 9 10 2635 411060 15 12 156
55 ADOPT19 2895 602160 41 5 1456 302848 27 2 208
56 RECORD 2227 579020 56 71 2220 577200 64 60 260

these corrections often add bias of unclear size and direction. See also the debate on adding something to
nothing in Sweeting et al. (2004), Rücker et al. (2009), Shuster et al. (2007) and Friedrich et al. (2009).
Furthermore, Bhaumik et al. (2012) show that, if a continuity correction is used, a constant value of 1

2
removes the first-order bias.

Fortunately, the need to estimate study–specific risk ratios is unnecessary with Mantel-Haenszel meth-
ods. The beauty of Mantel-Haenszel methods can be seen in the fact that they follow the rule sums before
ratios which leads to their celebrated robustness properties. The Mantel-Haenszel estimate of relative risk
(Clayton and Hills 1993; Jewell 2005) is

R̂RMH =
∑

i xT
i PC

i /Pi∑
i xC

i PT
i /Pi

, (1)

where Pi = PC
i +PT

i . Note that R̂RMH is only undefined when xT or xC is zero. It also can be viewed as

a weighted sum
P

i wi
dRRiP

i wi
of the R̂Ri’s with weights wi = xC

i PT
i /Pi. We point out that the computational

form to be actually used is given by (1) since the weighted version would remove any study with at least
one arm having zero–events.

Table 3 provides the analysis for MI and CV mortality. We have used the package STATA with more
details given in the supplementary material. For MI we see a slight confounding (masking) effect making
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Figure 1: Forest plot for the risk ratio of MI events; 15 double-zero trials had to be excluded for the
construction of this plot

the Mantel-Haenszel estimate borderline significant. For CV there is a more pronounced confounding
(inflation) effect leading to non-significant Mantel-Haenszel estimate, only slightly above the null-effect.

One of the benefits of using the Mantel-Haenszel (MH) estimate is that we can clearly see the effect
of including/excluding single-zero or double-zero trials. Note that zero events will not change the denom-
inator or numerator in the MH estimate. Hence, in the case of a double-zero trial, neither denominator
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Figure 2: Forest plot for the risk ratio of CV deaths; 29 double-zero trials had to be excluded for the
construction of this plot

or numerator will be affected by the exclusion or inclusion of the trial. In the case of a single-zero trial,
the numerator or denominator of the MH estimate will be affected depending in which arm the non-zero
event occurs. Hence the estimator might experience bias if single-zero trials are excluded. Hence we argue
here to include all trials, single- and double-zero trials, in the estimation. This is also in line with other
evidence, for example in Friedrich et al. (2007) or Bhaumik et al. (2012). In addition, it might be argued
on ethical grounds that patients have the right to have their data stemming from zero trials entered into the
meta-analysis (Keus et al. 2009). We also investigate in Table 3 the effect of excluding zero-studies from
the analysis on the MH estimate. As expected, there is no effect of excluding double-zero studies on the
MH estimate of the risk ratio. More serious are the effects when single-zero trials are excluded. In the
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Table 3: Mantel-Haenszel (MH) estimate, defined in (1), in the rare events meta–analysis of Rosiglitazone
and the crude risk estimate given as R̂R = xT P C

xCP T ; the effect of excluding double-zero (DZ) and single-zero
(SZ) studies on the MH estimate; number of studies included is given in brackets in the first column

method estimate confidence interval P-value
MI

crude(56) 1.2561 0.9928 – 1.5911 0.0504
MH(56) 1.2782 1.0125 – 1.6137 0.0390
DZ(41) 1.2782 1.0125 – 1.6137 0.0390
SZ(15) 1.2097 0.9489 – 1.5422 0.1244

CV
crude(56) 1.1281 0.8496 – 1.4987 0.4051

MH(56) 1.0257 0.7760 – 1.3557 0.8585
DZ(27) 1.0257 0.7760 – 1.3557 0.8585

SZ(8) 0.9374 0.7015 – 1.2526 0.6620

case of MI-events, the significance of the effect is lost and in the case of CV-events the effect, although
not significant, changes from harmful to protective. In summary, in the case of a double-zero trial, the
MH-estimate does not change in either direction, which seems to be a desirable property as there is no
evidence in a double-zero trial of benefit in either the treatment or control arms. In the case of a single-zero
trial, the MH-estimate changes in favor of treatment or control depending where the non-zero event occurs.

The major difficulty in MH estimation with rare events, however, lies in investigating homogeneity of
effect. There exists a χ2-test of homogeneity which, unfortunately, requires both stable study–specific
effect estimates and stable study–specific variance estimates of the study–effects. Hence the available χ2-
test of homogeneity is of unknown behaviour even if infeasible study-specific effect estimates are omitted.
In the following we present a modelling approach based on random effects which allows the homogeneity
of effect to be investigated in a straightforward way.

4 Poisson regression

It was seen in the previous section that MH estimation provides a simple and powerful tool for adjusting
the risk ratio for the potentially confounding study factor. In this section we turn to regression models as
these can incorporate additional covariates as fixed and/or random effects. This will also allow a more
satisfying way of dealing with effect heterogeneity. The major idea of Poisson modelling is to consider
the count of events X as a Poisson distributed variable with mean E(X) = µP (Breslow and Day 1987;
Clayton and Hills 1993). Evidently, µ = E(X)/P is the incidence rate. We have that for each trial i and
each treatment arm j E(Xij) = µjPij where now j = 1 means being on the treatment arm and j = 0
otherwise. Hence the risk ratio is RR = µ1/µ0. Taking logarithms yields the basic log-linear model:

log E(Xij) = log Pij + log µj = log Pij + α + β × j, (2)

where often the notation β for the log-risk ratio is used and α is the baseline risk. Note that the model
allows non–identical within–trial person times. This is a slightly more general formulation of the model
than necessary for the data set at hand but we leave it this way for the sake of generality. Parameter
estimates are found by maximizing the associated Poisson likelihood. Since the basic model does not
involve study as a factor the maximum likelihood estimate of β corresponds to the crude log-risk ratio.

Model (2) has one peculiarity in that it involves the logarithmic person-times log Pi as an offset. An
offset represent covariate information with a fixed parameter of 1 attached to it. Most statistical packages,
including STATA, the package we use in our analyses, have options to include an offset. More details are
given in the appendix.
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4.1 Poisson regression and random study effect

Clearly, model (2) suffers from the fact that the factor study is ignored. This can be easily modified to
include the study effect as

log E(Xij) = log Pij + log µij = log Pij + αi + βi × j. (3)

Model (3) not only allows different study-specific baseline risks αi, but also study-specific log-risk ratios
βi. Assuming βi = β for all i leads to an estimate of β that is equivalent to the MH analysis. Let
ηij = E(Xij), so that the Poisson likelihood becomes for the common effect model∏

i

∏
j

Po(xij |ηij) =
∏

i

[Po(xi0|Pi0 exp(αi))× Po(xi1|Pi1 exp(αi + β))] , (4)

where the Po(x|η)) = exp(−η)ηx/x! are Poisson probabilities. In this likelihood (4) study occurs as a
fixed effect. However, it is a common understanding that in this situation study should be a random effect.
This means that αi is not considered as a fixed but unknown parameter. Instead it is assumed to be random
quantity, here as normal with unknown mean α and unknown variance σ2

α. In this case, likelihood becomes∏
i

∫
[Po(xi0|Pi0 exp(αi))× Po(xi1|Pi1 exp(αi + β))]φ(αi|α, σ2

α)dαi, (5)

where φ(αi|α, σ2
α) denotes the probability density of a normal random variable with mean α and standard

deviation σα. Note that the order of products in (5) is no longer exchangeable and, hence, this better reflects
the split-plot character of the data (treatment varies only within study). This approach is preferred for the
following reasons:

• It avoids the so-called Neyman–Scott problem, meaning that there could arise a consistency problem
since the number of parameters in the αi is connected to the number of studies. Hence the number
of parameters will increase with the number of studies. The random effect approach avoids this
(only one variance parameter throughout) and it is possible to estimate the random effects distribution
consistently (Kiefer and Wolfowitz 1956).

• Finally, considering study as a fixed effect could lead to unstable parameter estimates, as is the case
here because of the rare event nature of the data.

Another benefit of this approach is that it may easily be generalized to include a random effect for the
log-risk ratio, βi ∼ N(β, σ2

β), again a mean β normal distribution with variance σ2
β . The likelihood then

becomes∏
i

∫
Po(xi0|Pi0 exp(αi))×

[∫
Po(xi1|Pi1 exp(αi + βi))φ(βi|β, σ2

β)dβi

]
φ(αi|α, σ2

α)dαi. (6)

The integrals are usually approximated by Hermite-Gaussian quadrature (Aitkin 1999) but other techniques
including the Laplacian approximation are available as well. For more details on computation with he
software STATA see the supplementary material. The likelihoods (4), (5), and (6) can be used in likelihood-
ratio testing of whether random effects are necessary and whether they should involve a random intercept
or a random slope or both forms. We exemplify these ideas in the following.

The results of the analysis are provided in Table 4. For both MI and CV we see that a random study-effect
for the intercept is needed, but the random effect for the log relative risk, as estimated by σ2

β , is virtually
zero in both cases. Note that also a more formal evaluation of models is possible using the likelihood ratio
test (LRT). If Log-L1 and Log-L0 are the maximised log-likelihoods associated with two models, M1 and
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Table 4: Poisson regression estimates in the rare events meta–analysis of Rosiglitazone; Log-L stands for
the maximised log-likelihood under the respective model; σ2

α and σ2
β refer to the variance of the random

intercept and random slope, respectively

Poisson model estimate confidence interval Log-L
MI

treatment 1.2561 0.9991 – 1.5793 -174.2054
treatment 1.2634 1.0006 – 1.5952 -137.9566

σ2
α 0.6352 0.3213 – 1.2559

treatment 1.2634 1.0006 – 1.5952 -137.9566
σ2

α 0.6352 0.3213 – 1.2559
σ2

β 0.
CV

treatment 1.1281 0.8579 – 1.4835 -172.0216
treatment 1.0192 0.7737 – 1.3426 -100.3147

σ2
α 1.2328 0.5908 – 2.5723

treatment 1.0192 0.7737 – 1.3426 -100.3147
σ2

α 1.2328 0.5908 – 2.5723
σ2

β 0.

M0, under consideration, then the test statistic of the likelihood ratio test is given as 2(Log-L1 − Log-L0)
assuming that model M0 is nested in model M1 (M0 occurs as a special case of M1). Note that roles of
M1 and M0 change when applied to Table 4 as the three models are nested in increasing order. Under
M0, this test statistic is approximately distributed as χ2 where the degrees of freedom are determined as
the difference of the number of parameters involved in M1 and M0. As a cautionary note we add that the
conventional asymptotic χ2-result is only valid under the assumption that M0 is not on the boundary of
M1. However, this assumption is violated when testing M0 : σ2

α = 0 against M1 : σ2
α > 0. In this case,

the null-distribution of the likelihood ratio statistic is 1
2χ2

0 + 1
2χ2

1 (Self and Liang 1987) where χ2
0 is the

one-point distribution at 0. In practice this means that ordinary p-values have to be divided by 2 to get
the correct asymptotic p-values. Applying this test to the log-likelihood values in Table 4, we confirm that
the LRT for comparing the random intercept with the fixed intercept model is highly significant, whereas
the LRT comparing the random intercept and random slope model with the random intercept-only model
is non-significant (the log-likelihoods are virtually identical). We conclude that there is a homogeneous
treatment effect which is borderline significant for MI but not significant for CV mortality.

In Table 5 we investigate, on the basis of model (5), the effect of excluding zero-studies from the anal-
ysis. As expected, the effect of excluding double-zero studies on the risk ratio is rather minor with almost
negligible impact on standard errors and confidence intervals, at least as far as MI-events are concerned but
with slightly more change for CV-events. More serious are the effects when single-zero trials are excluded.
It can be seen in Table 5 that, for MI-events, the borderline significance is lost, with a confidence interval
now clearly including the reference value. But also for CV-events, there is an interesting change: although
not significant the effect crosses the reference value and becomes protective. Hence great care must be
taken when excluding zero trials and and ideally such exclusions should be avoided.

We mention briefly that the Poisson regression model with random intercept and random slope can be
extended to allow correlation between these two random effects. The associated likelihood is provided as

∏
i

[∫ ∫
Po(xi0|Pi0 exp(αi))× Po(xi1|Pi1 exp(αi + βi))φ(αi, βi|α, β, Σ)

]
dβidαi, (7)
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Table 5: Poisson random effects regression estimates of the risk ratio in the rare events meta–analysis of
Rosiglitazone: the effect of excluding DZ and SZ studies and none excluded (NONE); number of studies
included is given in brackets in the first column

zero-studies (k) RR-estimate SE Z P-value 95% CI
MI

NONE(56) 1.2633 0.1503 1.96 0.049 1.0006 – 1.5952
DZ(41) 1.2634 0.1503 1.97 0.049 1.0008 – 1.5955
SZ(15) 1.2101 0.1512 1.53 0.127 0.9473 – 1.5458

CV
NONE(56) 1.0193 0.1433 0.14 0.892 0.7738 – 1.3426

DZ(27) 1.0246 0.1441 0.17 0.863 0.7778 – 1.3497
SZ(8) 0.9427 0.1395 -0.40 0.690 0.7054 – 1.2599

where φ(αi, βi|α, β, Σ) is the bivariate normal density with mean vector elements α and β, and covariance
matrix Σ with elements σ2

α, σ2
β on the diagonal and covariance σα,β . This model can be also fitted in

STATA although we have not done so here since already the independence model showed that the random
slope effect does not yield any significant increase in the likelihood.

4.2 Zero-inflation models

We have seen above that more than 50% of the trials involved in the meta-analysis have zero–events in at
least one arm. Dealing with count data in which there are many zero counts leads naturally to the question
whether these represent an excess of zero counts relative to the Poisson model. An excess in zero counts
is also called zero–inflation. Zero-inflated Poisson (ZIP) models have become an accepted methodology to
cope with excess zeros. The original work by Lambert (1992) suggests a way of modelling count data with
excess zeros as follows. It is assumed that there is a compartment that generates only zero counts and which
occurs with probability α. Furthermore, it is assumed that outside this compartment the regular Poisson
model holds. This occurs with probability (1 − α), evidently. Hence we have the following ZIP–model,
adapted to our situation

Pr[Xij = 0] = πij + (1− πij)e−ηij (8)
Pr[Xij = x] = (1− πij)Po(x|ηij) for x = 1, 2, ... (9)

where i is the trial number index and j = 0, 1 indicates the trial arm – as before. The Poisson part
Po(x|ηij) of (9) is modelled as previously. A feature of the Lambert model that the excess zero part is
modelled by means of a logistic regression approach, which leads to

log ηij = log Pij + log µij = log Pij+ α + β × j (10)
logit πij = log πij − log(1− πij) = α′ + β′ × j. (11)

In this formulation (10) and (11) have the same covariates occurring, though this is not a requirement.
Different covariates may occur in (10) and (11). Note that here β is a log-relative risk whereas β′ is a log-
odds ratio. The ZIP regression models are easy to fit and are available in many packages including STATA.
Note that there is no offset term in (11). Although this is technically possible it is rarely meaningful for
the logistic part of the ZIP–model. Whereas it is reasonable to assume that the average count of cases is
linearly related to the amount of person-time, it is not plausible to assume that the probability of an extra
zero count is linearly related to the person-time. STATA offers an offset term for both parts of (10) and
(11), so it is important to see that the offset term is only appropriate for (10).
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Table 6: Zero-inflated Poisson regression estimates in the rare events meta–analysis of Rosiglitazone; Log-
L stands for the maximised log-likelihood

model estimate confidence interval Log-L
MI

– ZIP model with treatment effect in both logistic and Poisson parts – -174.1394
Poisson part

exp(β) 1.2685 1.0034 – 1.6036
logistic part

β′ 11.9924 -2739.2 – 2763.2
– ZIP model with treatment effect only in Poisson part – -174.1943

Poisson part
exp(β) 1.2600 0.9987 – 1.5895

– logistic part has constant zero-inflation with π̂ = 0.0060 –
– standard (no zero–inflation) Poisson model – -174.2054

exp(β) 1.2561 0.9991 – 1.5793
CV

– ZIP model with treatment effect in both logistic and Poisson parts – -171.7274
Poisson part

exp(β) 1.0953 0.8257 – 1.4530
logistic part

β′ -16.3474 –12095. – 12063.
– ZIP model with treatment effect only in Poisson part – -171.9951

Poisson part
exp(β) 1.1310 0.8588 – 1.4894

– logistic part has constant zero-inflation with π̂ = 0.0287 –
– standard (no zero–inflation) Poisson model – -172.0216

exp(β) 1.1281 0.8579 – 1.4835

We have applied ZIP modelling to the meta-analytic data at hand and the results are shown in Table 6.
The conventional Poisson regression model is compared with the ZIP model where there is constant zero-
inflation as well as assuming a treatment effect in the logistic part. Note that we have included the estimate
of the proportion of extra-zeros in Table 6 in the case of constant inflation. On the basis of the LRT,
neither of the two comparisons is significant for either endpoint. We conclude that, although the data
contain many zeros, these are compatible with the conventional Poisson regression model. Finally, we
address the question how a random effect could be supplemented to the zero-inflated Poisson regression
model. This can be accomplished by allowing αi to be a normal mean α random-effect with variance σ2

α,
αi ∼ N(α, σ2

α), and, if desired, by allowing α′
i ∼ N(α′, σ2

α′):

log ηij = log Pij + log µij = log Pij+ αi + β × j (12)
logit πij = log πij − log(1− πij) = α′

i + β′
i × j, (13)

where i is the trial number index and j = 0, 1 indicates the trial arm – as before. This is more for
completeness than for reasons of necessity in this case, since there is no evidence of any zero-inflation.
The model of interest for our case would be the Poisson regression part with random intercept effect
supplemented by constant zero-inflation πij = π for all studies i and both arms j = 0, 1. The associated
likelihood is given by

∏
i

∫  ∏
j=0,1

[δ0{xij}π + (1− π)Po(xij |Pi1 exp(αi + β × j))]

 φ(αi|α, σ2
α)dαi, (14)

c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com
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where φ(αi|α, σ2
α) denotes the probability density of a normal random variable with mean α and standard

deviation σα and δ0{xij} = 1 if xij = 0 and 0 otherwise. Unfortunately, there is no computational way
that this model can be fitted in STATA. However, it is possible to fit the models (12) and (13) with proc
nlmixed in SAS (SAS 2008). We provide details in the appendix. For our case, we only consider testing the
Poisson part of the ZIP-model with constant inflation against the ZIP model with constant inflation where
the Poisson part is supplemented by a random intercept effect. Not surprisingly, the likelihood ratio test
is not significant, neither for MI-events nor for CV-events; in fact, both likelihoods are virtually identical.
In the appendix, we also provide the associated versions of proc nlmixed which would fit models (12)
and (13) simultaneously.

5 Discussion

We have seen that MH techniques and Poisson regression with random effects lead to almost identical
results. The benefit of using a Poisson model approach lies in its ability to include additional covariates
although in our case no further covariates were available. Whilst we are interested primarily in the treat-
ment effect, the Poisson model also captures variation in the baseline event risks which is most visible in
the random effects intercept variance σ2

α, a term that showed up significantly for both, MI and CV events.
Hence there is considerable baseline risk variation across trials.

Another question relates to the issue of interpretation of the observed risk ratio estimate of 1.27 for MI
events. We recall that the risk ratio is only one effect measure among others, but a very popular one. Also,
it is a relative measure as it ignores the baseline risk. As one may say, a risk ratio of 100 leads also to zero
cases if the baseline risk is negligible. For the choice of outcome measure, see also Arends et al. (2003) for
more. In contrast, absolute effect measures such as the risk difference incorporate the size of the baseline
risk and neither SZ nor DZ studies create any problems in the estimation process. A large number of DZ
studies would only put a lot of weight on the no-effect. Figure 3 shows bubble plots for CV death and MI
event rates. Note that the three larger studies have bubbles centered above zero for MI events, whereas they
balance on zero for CV deaths. In addition, the risk difference might be used to arrive at more interpretable
numbers of cases to be expected under the given scenario. For example, we find a risk difference estimate
for MI events of 0.0019 (using now a risk estimate as number of cases divided by number at risk) which
corresponds to a number-needed-to-treat (NNT) of 531. This means that, on average, 531 persons need
to be treated to have one additional case. This seems to be a considerable number, depending on how
widespread the use of the drug is. In any case, all previous meta-analyses on this issue concentrated on
relative risk as we have done here.

Clearly, we find it important to include duration of the studies as an important component in the mod-
elling, as the longer the follow-up of the study, the more events can be expected. This has been widely
ignored in previous analyses. This leads naturally to the concept of incidence rate, sometimes also known
as incidence density, xT

i /PT
i and xC

i /PC
i in trial i for the treatment and control arm, respectively. Often

the emphasis has been on odds–ratio analysis (Tian et al. 2009). For the situation here we find the concept
of incidence rate more appropriate since it accounts for different trial duration. Odds ratio modelling might
be more appropriate in situations of meta-analysis where different study types occur, such as case-control
studies as well as cohort studies or clinical trials. Here the odds ratio as effect measure would be more ap-
propriate as it can be estimated on the basis of all these study designs. Odds ratio modelling leads naturally
to logistic regression

logit pij = αi + β × j,

where pij is the probability for an event in study i in the j−th treatment arm. Also, αi = α might
be a fixed effect or a random effect αi ∼ N(α, σ2

α) as before. Ignoring the varying duration time and
only considering the frequency of events and no-events we find an estimated odds ratio of 1.0088 with
95% confidence interval 0.7633 – 1.3332 for CV-events and an odds ratio of 1.2538 with 95% confidence
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interval 0.9904 – 1.5872. These results are very close to the results from the Poisson random effects
modelling in Table 4. An explanation for this similarity might be the highly balanced nature of the trials
in the sense that all trial arms have the same duration (although duration varies across trials). Logistic
regression models with random effects can be easily fitted with STATA.

Another, elegant way of involving logistic regression is mentioned in Stijnen et al. (2010). The basic
idea is to consider Xi1 conditional on Xi = Xi1 + Xi0. Since E(Xi1) = µ1Pi1 and E(Xi0) = µ0Pi0,
Xi1 is binomial with size parameter Xi and event parameter

qi =
µ1Pi1

µ1Pi1 + µ0Pi0
=

RRi
Pi1
Pi0

RRi
Pi1
Pi0

+ 1
.

This is remarkable for two reasons. For one, the event parameter involves only the parameter of interest
RRi. Furthermore, notice that its functional form makes it really prone to logistic regression. Indeed,

logit qi = log
qi

1− qi
= log RRi + log

Pi1

Pi0
= αi + log

Pi1

Pi0

where the RHS of the above equation can be used for further modelling such as αi = α (a common risk
ratio across studies) or αi ∼ N(α, σ2

α) (a random effect for the risk ratio). Note this model does not
involve a treatment effect as we are used to with the models above but rather the risk ratio estimation and
modelling works on the intercept in this case. A disadvantage of the approach is that it has to exclude all
double–zero studies. Again, these models can easily be fitted with STATA.

Returning now to the Poisson regression model, we have seen that another benefit of the Poisson re-
gression model is that it may easily be extended to allow for zero-inflation and the fundamental model has
been suggested by Lambert (1992). The basic ZIP model of Lambert adjusts for overdispersion that arises
solely from the occurrence of extra–zeros. Generalizations have been made more recently to account for
residual overdispersion stemming from the non-zero part of the count distribution. One of these is the zero-
inflated negative binomial model which has received much attention (Hilbe 2011). Another generalization
is to replace in the logistic part the logistic link-function by other appropriate links such as the probit-link
(offered also by STATA). In principle, any other cumulative distribution function may be applied here to
specify the link function. ZIP models are easy to interpret and they can lead to more refined data analysis.
More on zero-inflation models can be found in Lambert (1992), Cameron and Trivedi (1998), Winkelmann
(2003) or Zelterman (2006).
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