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Lecture 6: Survival Analysis

Introduction

A couple of questions and...

I What makes survival data so special that their analysis needs
a special treatment, even as long as a one-term course?

I Why isn’t it simply covered as a sub-topic in, let’s say,
regression analysis?

3 / 16



Lecture 6: Survival Analysis

Introduction

...a clarification

I Survival data subsume more than only times from birth to
death for some individuals.

I Analysis of duration data, that is the time from a well-defined
starting point until the event of interest occurs.
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Lecture 6: Survival Analysis

Introduction

Examples

I how long patients survived after diagnosis or treatment

I the length of unemployment spells

I how long a marriage lasts

I how long PhD students need to finish writing their theses

I and more...
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Lecture 6: Survival Analysis

Introduction

Features

I Survival data result from a dynamic process and we want to
capture these dynamics in the analysis properly.

I The observation scheme for duration data can be rather
complex, leading to data that are somehow cut.
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Lecture 6: Survival Analysis

Basic definitions

The basic functions

In the following we will assume that time is running continuously,
and we therefore will describe duration by a continuous random
variable, denoted by T .

I T ≥ 0

I f (t) ⇒ density function

I F (t) ⇒ cumulative density function (cdf)

I S(t) ⇒ survival function
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Lecture 6: Survival Analysis

Basic definitions

Recall that...

I The density function f (t) describes how the total probability
of 1 is distributed over the domain of T .

I The function f (t) itself is not a probability and can take
values bigger than 1. But still one can derive basic properties
from looking at the density.

I For regions where the density has large values the area under
the curve over an interval of given length will be larger as
compared to an interval of same length where the density is
lower.

I Regions over which the density is high are regions where we
expect to observe more data points than in regions with low
densities.
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Lecture 6: Survival Analysis

Basic definitions

Recall that...

I The cdf F (t) is defined as F (t) := P(T ≤ t) which can be
computed from the density as

F (t) =

∫ t

0
f (s)ds

.

I A cdf is an increasing function, even strictly increasing if the
density f (t) > 0 everywhere.

I F (0) = 0 and limt→∞ F (t) = 1.

I There is a one-to-one link between f (t) and F (t) as
F ′(t) = f (t). Knowing one of the functions means, at least in
principle, knowing the other (you may have to take the
derivative or perhaps solve an ugly integral).
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Lecture 6: Survival Analysis

Basic definitions

Recall that...

I Instead of looking at the cdf, which gives the probability of
surviving at most t time units, one prefers to look at survival
beyond a given point in time. This is described by the survival
function S(t):

S(t) = P(T > t) = 1− P(T ≤ t) = 1− F (t)

I Consequently, S(t) starts at 1 for t = 0 and then declines to 0
for t →∞.

I It should be obvious that knowing any one of f (t), F (t) and
S(t) allows to derive the other two functions.
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Lecture 6: Survival Analysis

Basic definitions

To summarize

Pr(a ≤ T ≤ b)

All the three functions introduced so far allowed to describe, in one
way or another, how the survival times are distributed over the
potential range.
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Lecture 6: Survival Analysis

The hazard

The dynamic process

I Density, cdf and survival function look at the marginal
distribution

I Conditioning on the survival experience so far, we have

Pr(t < T ≤ t + ∆t | T > t)

I Defining the Hazard Rate

h(t) = lim
∆t→0

Pr(t < T ≤ t + ∆t | T > t)

∆t
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Lecture 6: Survival Analysis

The hazard

The hazard in more details

The basic information in the hazard is, first of all, its qualitative
behavior.

13 / 16



Lecture 6: Survival Analysis

The hazard

Some useful identities

I h(t) = f (t)
S(t) ⇒ f (t) = h(t)S(t)

I h(t) = [− log S(t)]′

I S(t) = exp
{
−

∫ t
0 h(s)ds

}
I Define the cumulative hazard H(t)

H(t) =

∫ t

0
h(s)ds ⇒ S(t) = exp{−H(t)}or log S(t) = −H(t)
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Lecture 6: Survival Analysis

The hazard

By using the definition of conditional probabilities

Pr(t < T ≤ t + ∆t | T > t) =
Pr([t < T ≤ t + ∆t] ∩ [T > t])

Pr(T > t)

=
Pr(t < T ≤ t + ∆t | T > t)

Pr(T > t)

It may be helpful to sketch this relation graphically
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Lecture 6: Survival Analysis

The hazard

An example
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Survival Analysis: Non-Parametric Estimation

General Concepts

Few remarks before starting

I Each subject has a beginning and an end anywhere along the
time line of the complete study.

I In many clinical trials, subjects may enter or begin the study
and reach end-point at vastly differing points.

I Each subject is characterized by

1. Survival time
2. Status at the end of the survival time (event occurrence or

censored)
3. The study group they are in.
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Survival Analysis: Non-Parametric Estimation

General Concepts

Censoring

I The total survival time for that subject cannot be accurately
determined.

I A subject drops out, is lost to follow-up, or required data are
not available

I The study ends before the subject had the event of interest
occur, i.e., they survived at least until the end of the study,

I There is no knowledge of what happened thereafter.
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Survival Analysis: Non-Parametric Estimation

General Concepts

Censoring

I Right censoring: the period of observation expires, or an
individual is removed from the study, before the event occurs.

I Left censoring: the initial time at risk is unknown.

I Interval censoring: both right and left censored
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Survival Analysis: Non-Parametric Estimation

Non-Parametric Estimation (no censoring)

Estimation

I Random variable T with cdf F (t)

I S(t) = 1− F (t)

I With no censored observations:

Ŝ(t) = 1− F̂ (t)

I To estimate F (t) at each time t:
I data t1, . . . , tn
I parameter of interest θ = F (t) = Pr(T ≤ t)

I θ̂ = #obs.≤t
n =

Pn
i=1 I(0,ti )

(t)

n
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Survival Analysis: Non-Parametric Estimation

Non-Parametric Estimation (no censoring)

Confidence intervals

I Confidence interval for F (t):

θ̂ ∓ zα/2

√
θ̂(1− θ̂)

n

I Confidence interval for S(t):

1− θ̂ ∓ zα/2

√
θ̂(1− θ̂)

n
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Survival Analysis: Non-Parametric Estimation

Non-Parametric Estimation (no censoring)
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Survival Analysis: Non-Parametric Estimation

Non-Parametric Estimation (including censoring)

Estimation

I To estimate the proportions θi

I ni = # of individuals at risk at the beginning of the i-th
interval

I di = # of individuals experiencing the event

θ̂i =
ni − di

ni

I Kaplan Meier estimator

Ŝ(t) =
∏

i :ti≤t

ni − di

ni

I It reduces to 1− F̂ (t) with no censored observations
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Survival Analysis: Non-Parametric Estimation

Non-Parametric Estimation (including censoring)

Example

Subject Group Survival # surviving Event # surviving Cumulative
time at risk after event survival

in the interval rate

1 1 1 6 1 5 1× 5
6

2 1 2 5 1 4 1× 5
6
× 4

5
3 1 3 4 1 3 1× 5

6
× 4

5
× 3

4
4 1 4 3 1 2 1× 5

6
× 4

5
× 3

4
× 2

3
5 1 4.5 2 1 1 1× 5

6
× 4

5
× 3

4
× 2

3
× 1

2
6 1 5 0

7 2 0.5 6 1 5 1× 5
6

8 2 0.75 5 1 4 1× 5
6
× 4

5
9 2 1 4 1 3 1× 5

6
× 4

5
× 3

4
10 2 1.5 0

11 2 2 2 1 1 1× 5
6
× 4

5
× 3

4
× 1

2
12 2 3.5 1 1 0 1× 5

6
× 4

5
× 3

4
× 1

2
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Survival Analysis: Non-Parametric Estimation

Non-Parametric Estimation (including censoring)

Example

1

1

0.
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0.
50

0.
75

1.
00

0 1 2 3 4 5
analysis time

group = 1 group = 2

Kaplan-Meier survival estimates
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Survival Analysis: Non-Parametric Estimation

Non-Parametric Estimation (including censoring)

Understanding KM analysis

I The lengths of the horizontal lines represent the survival
duration for that interval.

I The interval is terminated by the occurrence of the event of
interest.

I The vertical distances between horizontal lines illustrate the
change in the cumulative probability.

I The KM curve is a step-wise estimator, not a smooth function.

I What about estimate of point survival?

I Which is the effect of censoring?

12 / 15



Survival Analysis: Non-Parametric Estimation

Non-Parametric Estimation (including censoring)

Comparison of KM estimates

I It is simple to visualize the difference between two survival
curves.

I The difference must be quantified in order to assess statistical
significance.

I Methods
I log-rank test ⇒ Most sensitive to consistent difference
I Wilcoxon test ⇒ Most sensitive to early differences
I hazard ratio ⇒ gives relative event rate in the groups
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Survival Analysis: Non-Parametric Estimation

Non-Parametric Estimation (including censoring)

Log-Rank test: Example

Time Group 1 Group 2 Group 1 Group 2 Group 1 Group 2
Event Event At Risk At Risk Expected Expected

0.5 0 1 6 6 0.50 0.50
0.75 0 1 6 5 0.55 0.45
1 1 1 6 4 1.20 0.80
2 1 1 5 2 1.43 0.57
3 1 0 4 1 0.80 0.20

3.5 0 1 3 1 0.75 0.25
4 1 0 3 0 1.00 0.00

4.5 1 0 2 0 1.00 0.00

The logrank test statistic is constructed by computing the observed
and expected number of events in one of the groups at each

observed event time and then adding these to obtain an overall
summary across all time points where there is an event.

χ2 = 3.07; p − value = 0.0798
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Survival Analysis: Non-Parametric Estimation

Non-Parametric Estimation (including censoring)

What to avoid

I Compare mean survival ⇒ Censoring makes this meaningless

I Overinterpret the tail of a survival curve ⇒ There are
generally few subjects in tails

I Compare proportions surviving at a fixed time ⇒ Fine for
description, not for hypothesis testing
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Cox Proportional Hazards Regression for Survival Data

Some simple distributions

Survival distributions

I Survival analysis focuses on the distribution of survival times.

I Although there are well known methods for estimating
unconditional survival distributions, most interesting survival
modeling examines the relationship between survival and one
or more predictors.

I In principle, every distribution on R+ can serve to characterize
survival data.

I Constant hazard
I Gompertz distribution
I Weibull distribution
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Cox Proportional Hazards Regression for Survival Data

Some simple distributions

Survival distributions

Modeling of survival data usually employs the hazard function

h(t) = lim
∆t→0

Pr(t < T ≤ t + ∆t | T > t)

∆t

I Constant hazard: h(t) = λ ⇒ S(t) = e−λt

I Gompertz: h(t) = aebt , a > 0, b > 0 ⇒ S(t) = e
a
b
[1−ebt ]

I Weibull: h(t) = λata−1 ⇒ S(t) = e−λta

4 / 11



Cox Proportional Hazards Regression for Survival Data

The Cox PH model

Regression-like model

A parametric model based on the exponential distribution may be
written as

log hi (t) = β0 + β1xi1 + · · ·+ βpxip

log-baseline hazard

The constant β0 represents a kind of log-baseline hazard
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Cox Proportional Hazards Regression for Survival Data

The Cox PH model

The Cox model

The Cox model leaves the baseline hazard function
β0(t) = log h0(t) unspecified

log hi (t) = β0(t) + β1xi1 + · · ·+ βpxip

The model is semiparametric, because while the baseline hazard
can take any form, the covariates enter the model linearly.

I The baseline hazard does not depend on covariates, but only
on time

I The covariates are time-constant

I Proportional hazard assumption follows
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Cox Proportional Hazards Regression for Survival Data

The Cox PH model

The hazard ratio

For two observations i and j , the hazard ratio

hi (t)

hj(t)
=

h0(t) exp(β1xi1 + · · ·+ βpxip)

h0(t) exp(β1xj1 + · · ·+ βpxjp)

=
exp(β1xi1 + · · ·+ βpxip)

exp(β1xj1 + · · ·+ βpxjp)

= exp

(
p∑

l=1

βl(xil − xjl)

)

is independent of time t. Consequently, the Cox model is a
proportional hazards model.
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Cox Proportional Hazards Regression for Survival Data

The Cox PH model

The hazard ratio: an example

I Only one covariate: Treatment
I xi = 1 ⇒ Placebo
I xj = 0 ⇒ Treatment

I Hazard ratio is then exp(β1)

I We expect that hazard is larger in the placebo group, i.e. the
hazard ratio is expected grater than 1.
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Cox Proportional Hazards Regression for Survival Data

The Cox PH model

Time-constant covariates

I Not changing over time (e.g. gender)

I Values are set at time t = 0

I Variables unlikely to change are often considered
time-constant

I Other variables are sometimes treated as time independent

I Time-dependent covariates are allowed, but PH assumptions
is not satisfied (an extended Cox model is needed)
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Cox Proportional Hazards Regression for Survival Data

The Cox PH model

Advantages

I Robustness

I Because of the model form, the estimated hazards are always
non-negative

I We can estimate fixed effects and compute the hazard ratio
even though the baseline hazard is left unspecified
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Cox Proportional Hazards Regression for Survival Data

Model diagnostics

Checking proportional hazards

I Test and graphical diagnostic for PH may be based on scaled
Schoenfeld residuals

I Influential observations

I Nonlinearity
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Survival Analysis - Stata

Introduction

Aim

Illustrate how to use Stata to

I prepare survival data for analysis

I estimate hazard and survival functions
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. . . . . .

Survival Analysis - Stata

Introduction

Data manipulation
A manipulation of the data is needed to facilitate summary and
analysis.

help st
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. . . . . .

Survival Analysis - Stata

Introduction

Assumptions

I Continuous time survival data

I Single failure data, i.e. one record per unit

I No complications such as truncation and/or missing values

I Data do not need to be weighted
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. . . . . .

Survival Analysis - Stata

Introduction

Data structure

Data have a very simple structure

I One row per unit (e.g. subject)

I The survival time and the censoring status must be included
as variables (1= failure, 0 = otherwise)

I Covariates (explanatory variables) could be included
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Survival Analysis - Stata

Introduction

Data description
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. . . . . .

Survival Analysis - Stata

Coding

stset

stset declares the data in memory to be st data
I Main

I Time variable ⇒ survival time
I Failure variable ⇒ censoring status

I Options
I Origin time expression sets when a subject becomes at risk
I Enter time expressions specifies when a subject first comes

under observation
I Exit time expression specifies the latest time under which the

subject is both under observation and at risk.
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Survival Analysis - Stata

Coding

stset in practice
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Survival Analysis - Stata

Coding

stset in practice
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Survival Analysis - Stata

Coding

stset: example
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Survival Analysis - Stata

Coding

Using stset
New variables in the data, why? Which is your meaning? Should
you use them?
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. . . . . .

Survival Analysis - Stata

Coding

Using stset

I st is a binary variable indicating cases included (1) or
excluded (0) from the analysis

I d is a censoring indicator

I t is the survival time

I t0 is the time at which units are observed to be at risk
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Survival Analysis - Stata

Coding

Using stset
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Survival Analysis - Stata

Coding

Summary statistics
You must stset your data before using

I stdescribe produces a summary of the st data

I stsum summarizes survival-time data
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. . . . . .

Survival Analysis - Stata

Kaplan-Meier

Kaplan-Meier

I Simple single-spell type

I Right censoring

I No left censoring (truncation)
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. . . . . .

Survival Analysis - Stata

Kaplan-Meier

sts

Survival times are treated as observations on a continuous variable

I sts list

I sts graph

I sts test

I sts generate
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Survival Analysis - Stata

Kaplan-Meier

sts list
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Survival Analysis - Stata

Kaplan-Meier

sts list: example
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Survival Analysis - Stata

Kaplan-Meier

sts graph
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Survival Analysis - Stata

Kaplan-Meier

sts graph: example
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Kaplan−Meier survival estimate
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Survival Analysis - Stata

Kaplan-Meier

sts graph: example
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Nelson−Aalen cumulative hazard estimate
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. . . . . .

Survival Analysis - Stata

Kaplan-Meier

sts graph: example
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Survival Analysis - Stata

Kaplan-Meier

sts graph: stratification
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Survival Analysis - Stata

Kaplan-Meier

sts graph: stratification
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Survival Analysis - Stata

Kaplan-Meier

sts test
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Survival Analysis - Stata

Kaplan-Meier

sts test
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Survival Analysis - Stata

PH Cox model

stcox
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Survival Analysis - Stata

PH Cox model

stcox: options for model checking
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Survival Analysis - Stata

PH Cox model

stcox: example
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Survival Analysis - Stata

PH Cox model

stphplot: model checking
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Survival Analysis - Stata

PH Cox model

stphplot: model checking
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Survival Analysis - Stata

PH Cox model

estat phtest: model checking
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Survival Analysis - Stata

PH Cox model

estat phtest: model checking
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