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introduction to Poisson regression

the Poisson distribution
» count data may follow such a distribution, at least
approximately

» Examples: number of deaths, of diseased cases, of hospital
admissions and so on ...

> Y ~ Po(p):
P(Y =y) = 1 exp(—p)/y!

where p > 0
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I—intmduction to Poisson regression

P(Y=y)

u]
o)
1
n
it
&)
e
)



Lecture 5: Poisson and logistic regression

[

introduction to Poisson regression

but why not use a linear regression model?

» for a Poisson distribution we have E(Y) = Var(Y). This
violates the constancy of variance assumption (for the
conventional regression model)

» a conventional regression model assumes we are dealing with
a normal distribution for the response Y, but the Poisson
distribution may not look very normal

» the conventional regression model may give negative predicted
means (negative counts are impossible!)

/AR
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I—intn:ndut:tit:m to Poisson regression

the Poisson regression model

log E(Y;) = log pi = a + B

» the RHS of the above is called the linear predictor
> Yi~ Po(ui)

» this model is the log-linear model
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Lintroduction to Poisson regression

:

:
the Poisson regression model

log E(Y;) = log i = a + Bx;
can be written equivalently as

wi = expla+ Bx;i]

Hence it is clear that any fitted log-linear model will always give
non-negative fitted values!




Lecture 5: Poisson and logistic regression

[

introduction to Poisson regression

an interesting interpretation in the Poisson regression
model

suppose x represents a binary variable (yes/no, treatment
present/not present)

1 if person is in intervention group
0 otherwise

log E(Y) =logu = a+ fx

> x = 0: 10g flintervention = @ + X = «
» x =1: log no intervention = ¢ + Bx =a+p
» hence
|0g Hintervention — |0g Hno intervention = ﬁ

QO /AR
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introduction to Poisson regression

an interesting interpretation in the Poisson regression
model

» hence
Iog Mintervention - Iog /J’no intervention — /B

Himenention o)

#no intervention

» the coefficient exp(/3) corresponds to the risk ratio comparing
the mean risk in the treatment group to the mean risk in the
control group

O /AK
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introduction to Poisson regression

Poisson regression model for several covariates

log E(Y;) = o+ fixti + -+ + BpXpi

> where xy;,- -+, xp; are the covariates of interest

> testing the effect of covariate x; is done by the size of the
estimate [3; of [3;

S.€. Bj)

> if |tj| > 1.96 covariate effect is significant

tj

10/ AR
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introduction to Poisson regression

estimation of model parameters
consider the likelihood (the probability for the observed data)

L=[1n exp(—pi)/yi!
i=1

for model with p covariates:

log 1j = a + Bixin + Poxiz + ... + BpXip

» finding parameter estimates by maximizing the likelihood L
(or equivalently the log-likelihood log L)

» guiding principle: choosing the parameters that make the
observed data the most likely

11/ AR



Lecture 5: Poisson and logistic regression
L application to the BELCAP study

The simple regression model for BELCAP

with Y = DMFSe:
log E(DMFSej) =

o+ B1OHE; 4+ 8o ALLy; + B4 ESD; + Bs MW, + 36 OHY; + (3 DMFSb;

1 if child 7 is in intervention OHE
0 otherwise

> ALL — 1 if child 7 is in intervention ALL
" )0 otherwise

19/ AR
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L application to the BELCAP study

analysis of BELCAP study using the Poisson regression

model including the DMFS at baseline

covariate Bj s.e.(0)) tj P-value
OHE -0.7043014 0.0366375 -6.74  0.000
ALL -0.5729402 0.0355591 -8.97  0.000
ESD -0.8227017 0.0418510 -3.84  0.000
MW -0.6617572 0.0334654 -8.16  0.000
OHY -0.7351562 0.0402084 -5.63  0.000
DMFSb 1.082113  0.0027412 31.15 0.000

12/ AR
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L application to the BELCAP study

The Poisson regression model with offset

frequently the problem arises that we are interest not in a count
but in a rate of the form number of events per person time

hence we are interested in analyzing a rate

log E(Y;/Pi) = a+ Bixi1 + BaXiz + ... + BpXip

where Y; are the number of events and P; is the person-time

14"/ AR
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L application to the BELCAP study

energy intake (as surrogate for physical inactivity) and

Ischaemic Heart Disease

E (<2750 kcal)

NE ( >2750kcal)

cases

28

17

45

person-time

1857.5

2768.9

4626.40

indicator

log E(Yi/Pi) = o + Bx;

where i stands for the two exposure groups and x; is a binary

157/ AR
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L application to the BELCAP study

how is this dealt with?
note that
log E(Y;/Pi) = a+ Bx;

can be written as
log E(Y;) — log(P;) = a + Bx;

or
log E(Y;) = log(P;) + o + Bx;

log(P;) becomes a special covariate, one with a known coefficient
that is not estimated: an offset

167/ AR
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introduction to logistic regression

Introduction to logistic regression

Binary Outcome Y

v {1, Person diseased

0, Person healthy
Probability that Outcome Y =1

Pr(Y =1) = p is probability for Y =1
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introduction to logistic regression
:

Odds
P __ odds
odds = —p(:)p_odds—i-l
Examples
» p=1/2= odds =1
» p=1/4= odds =1/3
» p=3/4=o0dds=3/1=3
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introduction to logistic regression

Odds Ratio

OR — odds( in exposure )

~ odds( in non-exposure )
_p/(1—p1)

~ po/(1— po)
Properties of odds ratio

» 0 < OR < o0

» OR = 1(p1 = po) is reference value

SO
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Lintroduction to logistic regression

Examples

1— 13

=1/4
risk = P1 / effect measure =
po=1/8 RR =2 =2

PO
—1/1 OR = M2 _ 10.09
risk = L /100 eff. meas. = 1/999
po = 1/1000 RR = %:10

Fundamental Theorem of Epidemiology

po small = OR = RR

benefit: OR is interpretable as RR which is easier to deal with

271/ 6K
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introduction to logistic regression

A simple example: Radiation Exposure and Tumor
Development

cases | non-cases
E| 52 2820 2872
NE 6 5043 5049

odds and OR

odds for disease given exposure (in detail):

52/2872

e RS _52/282
2820/2872 > /2820

odds for disease given non-exposure (in detail):

6,/5049

P 6504
5043,/5049 6/5043

279/ AR
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Lintroduction to logistic regression

A simple example: Radiation Exposure and Tumor
Development

cases | non-cases
E| 52 2820 2872
NE 6 5043 5049

OR

odds ratio for disease (in detail):

| 52/2820 52 x 5043

R = = =154
0 6/5043 ~ 6x 2820 >

or, log OR = log 15.49 = 2.74
for comparison
~ 52/2872

_ —15.24
6,/5049

RR

277/ AR
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introduction to logistic regression

Logistic regression model for this simple situation

Px
1 — Px

log =a+ fx

where
> px = Pr(Y =1|x)

1, if exposure present
> X =

0, if exposure not present

> log lepX is called the logit link that connects px with the

linear predictor

21/ G5
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introduction to logistic regression

benefits of the logistic regression model

log P —a + Bx
1- Px
is feasible
» since
B exp(a + (x)
X
whereas

14 exp(a+ Bx) €(0.1)

px = a + Bx
is not feasible
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introduction to logistic regression

Interpretation of parameters o and [

log Px = a+ [Bx
— Px

Po
=0:lo =« 1
S — (1)
x=1:log =a+p (2)
now
(- (1) =log—2 —log 2 —a+p-a=p
1—po
plv
log -~ pl—logOR

lpo

logOR=p3< OR=¢

o8 ALY
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|—t:onfounding and effect modification

A simple illustration example

cases non-cases
E| 60 1100 1160
NE | 1501 3100 4601
OR
odds ratio: 60 x 3100
X
OR = 1501 x 1100 0-1126

‘/‘::wh &:’ N

~ ¢
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Lconfounding and effect modification
stratified:
Stratum 1:
cases | non-cases
E| 50 100 150
NE | 1500 3000 4500
50 x 3000
R = =1
0 100 x 1500
Stratum 2:
cases | non-cases
E| 10 1000 1010
NE 1 100 101

10 x 100
OR = Tooo 1 !

NN NG
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|—t:onfounding and effect modification
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|—t:onfounding and effect modification

:

The logistic regression model for simple confounding

Px
lo

g 1_
where

=a+pPE+~7S
Px

x = (E,S)

is the covariate combination of exposure E and stratum S
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Lconfounding and effect modification

:

in detail for stratum 1

Px
|
Ogl_

=a+PE+~S
Px

E=0,5=0:log Po,0 =«
— Po,0
E=1,5=0:log

P10
now

1—pio =ath
(4)—(3)=logORi=a+f—a=0

logOR = 3 < OR = €’
the log-odds ratio in the first stratum is 3

NP NG
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Lconfounding and effect modification

:

in detail for stratum 2:

|Og pX
1—

=a+PBE+~S
Px

E=0,S=1:log Pos

:Oé_'_
— Po,1 7
E=1,5S=1:log

()
P1,1
’ =a+p0+ 6
— B+ (6)
now:
(6) = (5) =logORy =a+fB+y—a—-y=0
the log-odds ratio in the second stratum is

2L
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|—t:onfounding and effect modification

important property of the confounding model:

assumes the identical exposure effect in each stratum!

NP NG
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confounding and effect modification

(crude analysis) Logistic regression
Log likelihood = -3141.5658

Y | 0Odds Ratio Std. Err. [95% Conf. Intervall
_____________ +____________________________________________.
E | .1126522 .0153479 .0862522 .1471326

(adjusted for confounder) Logistic regression
Log likelihood = -3021.5026

Y | 0dds Ratio Std. Err. [95% Conf. Intervall
_____________ +____________________________________________.
E | 1 .1736619 .7115062 1.405469
S | .02 .0068109 .0102603 .0389853

24/ AR
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|—t:onfounding and effect modification

cancer

A simple illustration example: passive smoking and lung

cases | non-cases
E 52 121 173
NE 54 150 204
OR
odds ratio: 52 % 150
X
OR = 54 x 121 1.19

) NG
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Lconfounding and effect modification
:
stratified:
Stratum 1 (females):

cases | non-cases
E| 41 102 143
NE | 26 71 97
41 x 71
OR = 26 <102 1.10
Stratum 2 (males):
cases | non-cases
E| 11 19 30
NE | 28 79 107

op — WLxT79 _

- 19x28 1.63

DA
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|—u:onfounding and effect modification

interpretation:

effect changes from one stratum to the

next stratum!

NP NG
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Lconfounding and effect modification

:

The logistic regression model for effect modification

Iogll_)xp =a+ BE+~S+ (B7)
where

ExS
~—~—
effect modif. par.
x = (E,S)

is the covariate combination of exposure E and stratum S
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Lconfounding and effect modification

in detail for stratum 1

|og1”Xp —a+BE++S+(BY)ExS
- Mx
Po,0
E=0,5=0:log——— =« 7
g1—Po,0 @
E=1,5S=0:log P10 =a+( (8)
1-p1o

now
(8) = (7)=logORi=a+f3—-a=0

logOR = 3 < OR = €’

the log-odds ratio in the first stratum is 3

207/ AR
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Lconfounding and effect modification

in detail for stratum 2:

- Mx
. po,1
E=0,S=1:log =a+7y (9)
1 —pos
E:l,S:l:loglpl})l =a+B+y+(B)  (10)
— P11

now:

(10) = (9) =log ORy =+ B+ v+ (BY) —a—7 =B+ (B)
log OR = 3 < OR = ?+(%)
the log-odds ratio in the second stratum is 3+ ((37)

an’/ 65
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|—t:onfounding and effect modification

important property of the effect modification model:

effect modification model allows for different effects in the stratal
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Lconfounding and effect modification

Data from passive smoking and LC example are as follows:

oD W N

~N o
= O

(=Y
= o

(=%
N =
o ©
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[

confounding and effect modification
CRUDE EFFECT MODEL
Logistic regression

Log likelihood = -223.66016

Y | Coef. Std. Err. z P>|z]|
_____________ e

E | .1771044 .2295221 0.77 0.440

_cons | -1.021651 .1586984 -6.44 0.000

A7/ AR
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[

confounding and effect modification
CONFOUNDING MODEL
Logistic regression

Log likelihood = -223.56934

Y | Coef Std. Err z
_____________ e
E | .2158667 .2472221 0.87
S | .1093603 .2563249 0.43

cons | -1.079714 .2101705 -5.14

a4’/ ax
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confounding and effect modification

EFFECT MODIFICATION MODEL
Logistic regression

Log likelihood = -223.2886

Y | Coef. Std. Err z P>|z|
_____________ e
E | .0931826 .2945169 0.32 0.752

S | -.03266 .3176768 -0.10 0.918

ES | .397517 .b278763 0.75 0.451

cons | -1.004583 .2292292 -4.38 0.000

AR/ AR
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|—t:onfounding and effect modification

interpretation of crude effects model:

log OR = 0.1771 < OR = %171 = 1.19

interpretation of confounding model:

log OR = 0.2159 < OR = %2159 = 1.24
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I—confounding and effect modification

interpretation of effect modification model:
stratum 1:

log OR; = 0.0932 < OR; = €%9%32 = 1.10
stratum 2:

log OR, = 0.0932 + 0.3975 < OR, = 00932403975 _ 1 63

RV e
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Lcomparing of different generalized regression models

Model evaluation in logistic regression:
the likelihood approach:

n
L= Hp){;(l — )Y
i=1

is called the likelihood for models

Px, a+ BE +~5i+ (Bv)Ei x Si, (M)
1—py a+ BE;i +vSi, (Mo)

log

where Mj is the effect modification model and My is the
confounding model

A%/ AR
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Lcomparing of different generalized regression models

Model evaluation in logistic regression using the
likelihood ratio:
let

L(Ml) and L(Mo)

be the likelihood for models M; and M

then
L(My)

L(Mo)
is called the likelihood ratio for models M; and Mgy and has a
chi-square distribution with 1 df under My

LRT = 2log L(M;) — 2log L(Mp) = 2log

40/ AR
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comparing of different generalized regression models

illustration for passive smoking and LC example:

model log-likelihood | LRT

crude -223.66016 -
homogeneity | -223.56934 0.1816
effect

modification -223.2886 0.5615

note:
for valid comparison on chi-square scale: models must be nested

5/ AR
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[

comparing of different generalized regression models

Model evaluation in more general:
consider the likelihood

L_HP Px,ly'

for a general model with p covariates:

Px;

1-p. o+ Pixiy + Boxiz + .. + Bpxip (M)
~

log

example:

log % = o+ B1AGE; + 32SEX; + B3ETS;

51/ AR
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[

comparing of different generalized regression models

Model evaluation in more general:
example:

log ].L = a+ P1AGE; + GoSEX; + B3ETS;
_ pX,‘

where these covariates can be mixed:
> quantitative, continuous such as AGE
» categorical binary (use 1/0 coding) such as SEX

» non-binary ordered or unordered categorical such as ETS
(none, moderate, large)

RY /AR
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comparing of different generalized regression models

Model evaluation in more general
consider the likelihood

L_HP lely,

for model with additional k covariates

Px;

= o+ Pixi1 + Baxio + ... + BpXip

+Bpt1Xipr1 + oo + BrgpXiktp (M1)
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|—comparing of different generalized regression models

Model evaluation in more general for our example

Px;
| 1
og 1_

pX,‘

= o+ (1AGE; + B,SEX; + G3ETS;
+34RADON; + B5sAGE-HOUSE;
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Lcomparing of different generalized regression models

Model evaluation using the likelihood ratio:
again let
L(My) and L(Mp)
be the likelihood for models M; and My
then the likelihood ratio

L(M
LRT = 2log L(My) — 2log L(Mo) = 2log LEM1;
0

has a chi-square distribution with p df under My

EE /AR
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comparing of different generalized regression models

Model evaluation for our example:

Mo : o+ B1AGE; + B.SEX; + B3ETS;
My ...My... + B4RADON; + BsAGE-HOUSE;

then

L(M
LRT = 2log LEM1;
0

has under model My a chi-square distribution with 2 df

R/ AR
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comparing of different generalized regression models

model evaluation

» for model assessment we will use criteria that compromise
between model fit and model complexity

» Akaike information criterion
AIC = —2log L + 2k
» Bayesian Information criterion
BIC = —2log L+ klogn
» where k is the number of parameters in the model
» and n is the number of observations
» we seek a model for which AIC and/or BIC are small

R7 /AR
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Lmeta-analysis of BCG vaccine against tuberculosis

Meta-Analysis

Meta-Analysis is a methodology for investigating the study results
from several, independent studies with the purpose of an
integrative analysis

Meta-Analysis on BCG vaccine against tuberculosis

Colditz et al. 1974, JAMA provide a meta-analysis to examine the
efficacy of BCG vaccine against tuberculosis

KRR/ AR
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[

meta-analysis of BCG vaccine against tuberculosis

Data on the meta-analysis of BCG and TB
the data contain the following details

» 13 studies
» each study contains:
» TB cases for BCG intervention
» number at risk for BCG intervention
» TB cases for control
» number at risk for control
» also two covariates are given: year of study and latitude
expressed in degrees from equator

> latitude represents the variation in rainfall, humidity and
environmental mycobacteria suspected of producing immunity
against TB

RO /AR
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[

meta-analysis of BCG vaccine against tuberculosis

intervention control
study year latitude | TB cases total | TB cases total
1 1933 55 6 306 29 303
2 1935 52 4 123 11 139
3 1935 52 180 1541 372 1451
4 1937 42 17 1716 65 1665
5 1941 42 3 231 11 220
6 1947 33 5 2498 3 2341
7 1949 18 186 50634 141 27338
8 1950 53 62 13598 248 12867
9 1950 13 33 5069 47 5808
10 1950 33 27 16913 29 17854
11 1965 18 8 2545 10 629
12 1965 27 29 7499 45 7277
13 1968 13 505 88391 499 88391

AN/ R
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Lmeta—analysis of BCG vaccine against tuberculosis

Data analysis on the meta-analysis of BCG and TB
these kind of data can be analyzed by taking

» TB case as disease occurrence response
» intervention as exposure

» study as confounder




R

Lecture 5: Poisson and logistic regression

Lmeta-analysis of BCG vaccine against tuberculosis

Log likelihood = -15191.497 Pseudo R2 = 0.0050
TB_Case Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
Intervention .6116562 .024562 -12.24 0.000 .5653613 .6617421
_cons .0091641 .0002369 -181.51 0.000 .0087114 .0096404

estat ic, n(13)
Model Obs 11 (null) 11 (model) df AIC BIC
13 -15267.81 -15191.5 2 30386.99 30388.12

Note: N=13 used in calculating BIC

R/ ARG
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Lmeta-analysis of BCG vaccine against tuberculosis

Logistic regression Number of obs = 357347
LR chi2(2) = 1239.45
Prob > chi2 = 0.0000
Log likelihood = -14648.082 Pseudo R2 = 0.0406
TB_Case Odds Ratio Std. Err. z P>|z]| [95% Conf. Interval]
Latitude 1.043716 .00126 35.44 0.000 1.04125 1.046189
Intervention . 6253014 .0251677 -11.67 0.000 .577869 .6766271
_cons .0031643 .0001403 -129.85 0.000 .002901 .0034515
estat ic, n(13)

Model Obs 11 (null) 11 (model) daf AIC BIC

13 -15267.81 -14648.08 3 29302.16 29303.86

Note: N=13 used in calculating BIC

AT/ AR
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Lmeta-analysis of BCG vaccine against tuberculosis

Logistic regression Number of obs = 357347
LR chi2(3) = 1402.30
Prob > chi2 = 0.0000
Log likelihood = -14566.659 Pseudo R2 = 0.0459
TB_Case Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
Latitude 1.029997 .0016409 18.55 0.000 1.026786 1.033219
Intervention .6041037 .0243883 -12.48 0.000 .5581456 .6538459
Year .9666536 .0025419 -12.90 0.000 .9616844 .9716485
_cons .0300164 .0053119 -19.81 0.000 .021219 .0424611

estat ic, n(13)
Model Obs 11 (null) 11 (model) df AIC BIC
13 -15267.81 -14566.66 4 29141.32 29143.58

Note: N=13 used in calculating BIC

6A/ BB
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Lmeta—analysis of BCG vaccine against tuberculosis

model evaluation

model log L AlIC BIC

intervention | -15191.50 | 30386.99 | 30388.12

+ latitude | -14648.08 | 29302.16 | 29303.86
+ year -14566.66 | 29141.32 | 29143.58

Dac
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