Lecture 5: Poisson and logistic regression

Dankmar Böhning

Southampton Statistical Sciences Research Institute University of Southampton, UK

 S^3RI , 2 - 4 March 2015

introduction to Poisson regression application to the BELCAP study introduction to logistic regression confounding and effect modification comparing of different generalized regression models meta-analysis of BCG vaccine against tuberculosis

the Poisson distribution

- count data may follow such a distribution, at least approximately
- ► Examples: number of deaths, of diseased cases, of hospital admissions and so on ...
- Y ~ Po(μ):

$$P(Y = y) = \mu^y \exp(-\mu)/y!$$

where $\mu > 0$

but why not use a linear regression model?

- ▶ for a Poisson distribution we have E(Y) = Var(Y). This violates the constancy of variance assumption (for the conventional regression model)
- ▶ a conventional regression model assumes we are dealing with a normal distribution for the response *Y*, but the Poisson distribution may not look very normal
- ► the conventional regression model may give negative predicted means (negative counts are impossible!)

the Poisson regression model

$$\log E(Y_i) = \log \mu_i = \alpha + \beta x_i$$

- ▶ the RHS of the above is called the linear predictor
- $ightharpoonup Y_i \sim Po(\mu_i)$
- this model is the log-linear model

the Poisson regression model

$$\log E(Y_i) = \log \mu_i = \alpha + \beta x_i$$

can be written equivalently as

$$\mu_i = \exp[\alpha + \beta x_i]$$

Hence it is clear that any fitted log-linear model will always give non-negative fitted values!

an interesting interpretation in the Poisson regression model

suppose x represents a binary variable (yes/no, treatment present/not present)

$$x = \begin{cases} 1 & \text{if person is in intervention group} \\ 0 & \text{otherwise} \end{cases}$$

$$\log E(Y) = \log \mu = \alpha + \beta x$$

- x = 0: $\log \mu_{\text{intervention}} = \alpha + \beta x = \alpha$
- x = 1: $\log \mu_{\text{no intervention}} = \alpha + \beta x = \alpha + \beta$
- hence

$$\log \mu_{ ext{intervention}} - \log \mu_{ ext{no intervention}} = eta$$

an interesting interpretation in the Poisson regression model

hence

$$\log \mu_{\text{intervention}} - \log \mu_{\text{no intervention}} = \beta$$

or

$$\frac{\mu_{\text{intervention}}}{\mu_{\text{no intervention}}} = \exp(\beta)$$

▶ the coefficient $\exp(\beta)$ corresponds to the **risk ratio** comparing the mean risk in the treatment group to the mean risk in the control group

Poisson regression model for several covariates

$$\log E(Y_i) = \alpha + \beta_1 x_{1i} + \dots + \beta_p x_{pi}$$

- \blacktriangleright where x_{1i}, \dots, x_{pi} are the **covariates of interest**
- ▶ testing the effect of covariate x_j is done by the size of the estimate $\hat{\beta}_j$ of β_j

$$t_j = \frac{\hat{eta}_j}{s.e.(\hat{eta}_j)}$$

• if $|t_j| > 1.96$ covariate effect is **significant**

estimation of model parameters

consider the likelihood (the probability for the observed data)

$$L = \prod_{i=1}^{n} \mu_i^{y_i} \exp(-\mu_i)/y_i!$$

for model with *p* covariates:

$$\log \mu_i = \alpha + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}$$

- ▶ finding parameter estimates by maximizing the likelihood L (or equivalently the log-likelihood log L)
- guiding principle: choosing the parameters that make the observed data the most likely

The simple regression model for BELCAP

with Y = DMFSe:

$$\log E(DMFSe_i) =$$

$$\alpha + \beta_1 \textit{OHE}_i + \beta_2 \textit{ALL}_{2i} + \beta_4 \textit{ESD}_i + \beta_5 \textit{MW}_i + \beta_6 \textit{OHY}_i + \beta_7 \textit{DMFSb}_i$$

$$ALL_i = \begin{cases} 1 & \text{if child } i \text{ is in intervention ALL} \\ 0 & \text{otherwise} \end{cases}$$

. . .

analysis of BELCAP study using the Poisson regression model including the DMFS at baseline

covariate	\hat{eta}_{j}	$s.e.(\hat{eta}_j)$	tj	P-value
OHE	-0.7043014	0.0366375	-6.74	0.000
ALL	-0.5729402	0.0355591	-8.97	0.000
ESD	-0.8227017	0.0418510	-3.84	0.000
MW	-0.6617572	0.0334654	-8.16	0.000
OHY	-0.7351562	0.0402084	-5.63	0.000
DMFSb	1.082113	0.0027412	31.15	0.000

The Poisson regression model with offset

frequently the problem arises that we are interest not in a **count** but in a rate of the form **number of events per person time**

hence we are interested in analyzing a rate

$$\log E(Y_i/P_i) = \alpha + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}$$

where Y_i are the number of events and P_i is the person-time

energy intake (as surrogate for physical inactivity) and Ischaemic Heart Disease

	E (<2750 kcal)	NE (\geq 2750kcal)	
cases	28	17	45
person-time	1857.5	2768.9	4626.40

$$\log E(Y_i/P_i) = \alpha + \beta x_i$$

where i stands for the two exposure groups and x_i is a binary indicator

how is this dealt with?

note that

$$\log E(Y_i/P_i) = \alpha + \beta x_i$$

can be written as

$$\log E(Y_i) - \log(P_i) = \alpha + \beta x_i$$

or

$$\log E(Y_i) = \log(P_i) + \alpha + \beta x_i$$

 $log(P_i)$ becomes a **special covariate**, one with a known coefficient that is **not** estimated: an **offset**

Lecture 5: Poisson and logistic regression

application to the BELCAP study

Introduction to logistic regression

Binary Outcome *Y*

$$Y = \begin{cases} 1, & \text{Person diseased} \\ 0, & \text{Person healthy} \end{cases}$$

Probability that Outcome Y = 1

$$Pr(Y = 1) = p$$
 is probability for $Y = 1$

Odds

$$odds = \frac{p}{1 - p} \Leftrightarrow p = \frac{odds}{odds + 1}$$

Examples

$$ightharpoonup p = 1/2 \Rightarrow odds = 1$$

$$ightharpoonup p = 1/4 \Rightarrow odds = 1/3$$

▶
$$p = 3/4 \Rightarrow odds = 3/1 = 3$$

Odds Ratio

$$OR = rac{odds(ext{ in exposure })}{odds(ext{ in non-exposure })}$$

$$= rac{p_1/(1-p_1)}{p_0/(1-p_0)}$$

Properties of odds ratio

- $ightharpoonup 0 < OR < \infty$
- ▶ $OR = 1(p_1 = p_0)$ is reference value

Examples

risk =
$$\begin{cases} p_1 = 1/4 \\ p_0 = 1/8 \end{cases}$$
 effect measure =
$$\begin{cases} OR = \frac{p_1/(1-p_1)}{p_0/(1-p_0)} = \frac{1/3}{1/7} = 2.33 \\ RR = \frac{p_1}{p_0} = 2 \end{cases}$$
 risk =
$$\begin{cases} p_1 = 1/100 \\ p_0 = 1/1000 \end{cases}$$
 eff. meas. =
$$\begin{cases} OR = \frac{1/99}{1/999} = 10.09 \\ RR = \frac{p_1}{p_0} = 10 \end{cases}$$

Fundamental Theorem of Epidemiology

$$p_0 \text{ small } \Rightarrow OR \approx RR$$

benefit: OR is interpretable as RR which is easier to deal with

A simple example: Radiation Exposure and Tumor Development

	cases	non-cases	
Е	52	2820	2872
NE	6	5043	5049

odds and OR

odds for disease given exposure (in detail):

$$\frac{52/2872}{2820/2872} = 52/2820$$

odds for disease given non-exposure (in detail):

$$\frac{6/5049}{5043/5049} = 6/5043$$

-introduction to logistic regression

A simple example: Radiation Exposure and Tumor Development

	cases	non-cases	
Е	52	2820	2872
NE	6	5043	5049

OR

odds ratio for disease (in detail):

$$OR = \frac{52/2820}{6/5043} = \frac{52 \times 5043}{6 \times 2820} = 15.49$$

or,
$$\log OR = \log 15.49 = 2.74$$
 for comparison

$$RR = \frac{52/2872}{6/5049} = 15.24$$

Logistic regression model for this simple situation

$$\log \frac{p_{\mathsf{x}}}{1 - p_{\mathsf{x}}} = \alpha + \beta \mathsf{x}$$

where

- $p_x = Pr(Y=1|x)$
- $x = \begin{cases} 1, & \text{if exposure present} \\ 0, & \text{if exposure not present} \end{cases}$
- ▶ $\log \frac{p_x}{1-p_x}$ is called the **logit link** that connects p_x with the linear predictor

benefits of the logistic regression model

$$\log \frac{p_{\mathsf{x}}}{1 - p_{\mathsf{x}}} = \alpha + \beta \mathsf{x}$$

is feasible

since

$$p_{x} = \frac{\exp(\alpha + \beta x)}{1 + \exp(\alpha + \beta x)} \in (0, 1)$$

whereas

$$p_{x} = \alpha + \beta x$$

is not feasible

Interpretation of parameters α and β

$$\log \frac{p_{\mathsf{x}}}{1 - p_{\mathsf{x}}} = \alpha + \beta \mathsf{x}$$

$$x = 0 : \log \frac{\rho_0}{1 - \rho_0} \qquad = \alpha \tag{1}$$

$$x = 1 : \log \frac{p_1}{1 - p_1} = \alpha + \beta$$
 (2)

now

$$(2) - (1) = \underbrace{\log \frac{p_1}{1 - p_1} - \log \frac{p_0}{1 - p_0}}_{\log \frac{p_1}{1 - p_1} = \log OR} = \alpha + \beta - \alpha = \beta$$

$$\log OR = \beta \Leftrightarrow OR = e^{\beta}_{\text{constant}}$$

A simple illustration example

	cases	non-cases	
Ε	60	1100	1160
NE	1501	3100	4601

OR

odds ratio:

$$OR = \frac{60 \times 3100}{1501 \times 1100} = 0.1126$$

stratified:

Stratum 1:

	cases	non-cases	
E	50	100	150
NE	1500	3000	4500

$$OR = \frac{50 \times 3000}{100 \times 1500} = 1$$

Stratum 2:

	cases	non-cases	
Е	10	1000	1010
NE	1	100	101

$$\textit{OR} = \frac{10 \times 100}{1000 \times 1} = 1$$

	+-					+
	1	Y	E	S	freq	1
	-					۱.
1.		1	1	0	50	
2.		0	1	0	100	
3.		1	0	0	1500	
4.		0	0	0	3000	
5.		1	1	1	10	
6.	-	0	1	1	1000	1
7.	-	1	0	1	1	1
8.	-	0	0	1	100	I
	+-					+

The logistic regression model for simple confounding

$$\log \frac{p_{\mathsf{x}}}{1 - p_{\mathsf{x}}} = \alpha + \beta \mathsf{E} + \gamma \mathsf{S}$$

where

$$\mathbf{x} = (E, S)$$

is the covariate combination of exposure E and stratum S

in detail for stratum 1

$$\log \frac{p_{\mathsf{x}}}{1 - p_{\mathsf{x}}} = \alpha + \beta E + \gamma S$$

$$E = 0, S = 0 : \log \frac{p_{0,0}}{1 - p_{0,0}} = \alpha \tag{3}$$

$$E = 1, S = 0 : \log \frac{p_{1,0}}{1 - p_{1,0}} = \alpha + \beta$$
 (4)

now

(4) - (3) = log
$$OR_1 = \alpha + \beta - \alpha = \beta$$

log $OR = \beta \Leftrightarrow OR = e^{\beta}$

the log-odds ratio in the first stratum is β

in detail for stratum 2:

$$\log \frac{p_{\mathsf{x}}}{1 - p_{\mathsf{x}}} = \alpha + \beta E + \gamma S$$

$$E = 0, S = 1 : \log \frac{p_{0,1}}{1 - p_{0,1}} = \alpha + \gamma$$
 (5)

$$E = 1, S = 1 : \log \frac{p_{1,1}}{1 - p_{1,1}} = \alpha + \beta + \gamma$$
 (6)

now:

$$(6) - (5) = \log OR_2 = \alpha + \beta + \gamma - \alpha - \gamma = \beta$$

the log-odds ratio in the second stratum is β

important property of the confounding model: assumes the identical exposure effect in each stratum!

```
(crude analysis) Logistic regression
Log likelihood = -3141.5658
 Y | Odds Ratio Std. Err. [95% Conf. Interval]
 E | .1126522 .0153479 .0862522 .1471326
(adjusted for confounder) Logistic regression
Log likelihood = -3021.5026
Y | Odds Ratio Std. Err. [95% Conf. Interval]
      1 .1736619 .7115062 1.405469
Εl
S \mid
          .02 .0068109
                             .0102603 .0389853
```

A simple illustration example: passive smoking and lung cancer

	cases	non-cases	
Е	52	121	173
NE	54	150	204

OR

odds ratio:

$$OR = \frac{52 \times 150}{54 \times 121} = 1.19$$

stratified:

Stratum 1 (females):

	cases	non-cases	
Е	41	102	143
NE	26	71	97

$$OR = \frac{41 \times 71}{26 \times 102} = 1.10$$

Stratum 2 (males):

	cases	non-cases	
Е	11	19	30
NE	28	79	107

$$OR = \frac{11 \times 79}{19 \times 28} = 1.63$$

interpretation:

effect changes from one stratum to the next stratum!

The logistic regression model for effect modification

$$\log \frac{p_{\mathbf{x}}}{1 - p_{\mathbf{x}}} = \alpha + \beta E + \gamma S + \underbrace{(\beta \gamma)}_{\text{effect modif. par.}} E \times S$$

where

$$\mathbf{x} = (E, S)$$

is the covariate combination of exposure E and stratum S

in detail for stratum 1

$$\log \frac{p_{\mathsf{x}}}{1 - p_{\mathsf{x}}} = \alpha + \beta E + \gamma S + (\beta \gamma) E \times S$$

$$E = 0, S = 0 : \log \frac{p_{0,0}}{1 - p_{0,0}} = \alpha \tag{7}$$

$$E = 1, S = 0 : \log \frac{p_{1,0}}{1 - p_{1,0}} = \alpha + \beta$$
 (8)

now

(8) - (7) = log
$$OR_1 = \alpha + \beta - \alpha = \beta$$

log $OR = \beta \Leftrightarrow OR = e^{\beta}$

the log-odds ratio in the first stratum is β

in detail for stratum 2:

$$\log \frac{p_{\mathsf{x}}}{1 - p_{\mathsf{x}}} = \alpha + \beta E + \gamma S + (\beta \gamma) E \times S$$

$$E = 0, S = 1 : \log \frac{p_{0,1}}{1 - p_{0,1}} = \alpha + \gamma$$
 (9)

$$E = 1, S = 1 : \log \frac{p_{1,1}}{1 - p_{1,1}} = \alpha + \beta + \gamma + (\beta \gamma)$$
 (10)

now:

(10) – (9) = log
$$OR_2 = \alpha + \beta + \gamma + (\beta \gamma) - \alpha - \gamma = \beta + (\beta \gamma)$$

log $OR = \beta \Leftrightarrow OR = e^{\beta + (\beta \gamma)}$

the log-odds ratio in the second stratum is $\beta + (\beta \gamma)$

important property of the effect modification model: effect modification model allows for different effects in the strata!

Data from passive smoking and LC example are as follows:

	+				+
	l Y	E	S	ES	freq
1.	1	1	0	0	41
2.	0	1	0	0	102
3.	1	0	0	0	26
4.	0	0	0	0	71
5.	1	1	1	1	11
6.	0	1	1	1	19
7.	1	0	1	0	28
8.	1 0	0	1	0	79
	+				+

CRUDE EFFECT MODEL

Logistic regression

Log likelihood = -223.66016

Y	Coef.		_		
E	.1771044 -1.021651	.2295221	0.77	0.440	

CONFOUNDING MODEL

Logistic regression

Log likelihood = -223.56934

	•	Coef.			
		.2158667			
S		.1093603	.2563249	0.43	0.670
_cons		-1.079714	.2101705	-5.14	0.000

EFFECT MODIFICATION MODEL

Logistic regression

Log likelihood = -223.2886

Y	•		Std. Err.		P> z
	Ψ-				
E		.0931826	.2945169	0.32	0.752
S		03266	.3176768	-0.10	0.918
ES		.397517	.5278763	0.75	0.451
_cons		-1.004583	.2292292	-4.38	0.000

interpretation of crude effects model:

$$\log OR = 0.1771 \Leftrightarrow OR = e^{0.1771} = 1.19$$

interpretation of confounding model:

$$\log OR = 0.2159 \Leftrightarrow OR = e^{0.2159} = 1.24$$

interpretation of effect modification model:

stratum 1:

$$\log OR_1 = 0.0932 \Leftrightarrow OR_1 = e^{0.0932} = 1.10$$

stratum 2:

$$\log OR_2 = 0.0932 + 0.3975 \Leftrightarrow OR_2 = e^{0.0932 + 0.3975} = 1.63$$

Model evaluation in logistic regression:

the likelihood approach:

$$L = \prod_{i=1}^{n} p_{x_i}^{y_i} (1 - p_{x_i})^{1 - y_i}$$

is called the likelihood for models

$$\log \frac{p_{x_i}}{1 - p_{x_i}} = \begin{cases} \alpha + \beta E_i + \gamma S_i + (\beta \gamma) E_i \times S_i, & (M_1) \\ \alpha + \beta E_i + \gamma S_i, & (M_0) \end{cases}$$

where M_1 is the effect modification model and M_0 is the confounding model

Model evaluation in logistic regression using the likelihood ratio:

let

$$L(M_1)$$
 and $L(M_0)$

be the **likelihood** for models M_1 and M_0 then

$$LRT = 2 \log L(M_1) - 2 \log L(M_0) = 2 \log \frac{L(M_1)}{L(M_0)}$$

is called the **likelihood ratio** for models M_1 and M_0 and has a **chi-square distribution with 1** df under M_0

comparing of different generalized regression models

illustration for passive smoking and LC example:

model	log-likelihood	LRT
crude	-223.66016	-
homogeneity	-223.56934	0.1816
effect		
${\sf modification}$	-223.2886	0.5615

note:

for valid comparison on chi-square scale: models must be nested

comparing of different generalized regression models

Model evaluation in more general:

consider the likelihood

$$L = \prod_{i=1}^{n} p_{x_i}^{y_i} (1 - p_{x_i})^{1 - y_i}$$

for a general model with *p* covariates:

$$\log \frac{p_{x_i}}{1 - p_{x_i}} = \alpha + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} (M_0)$$

example:

$$\log \frac{p_{x_i}}{1 - p_{x_i}} = \alpha + \beta_1 AGE_i + \beta_2 SEX_i + \beta_3 ETS_i$$

Model evaluation in more general: example:

$$\log \frac{p_{x_i}}{1 - p_{x_i}} = \alpha + \beta_1 AGE_i + \beta_2 SEX_i + \beta_3 ETS_i$$

where these covariates can be mixed:

- quantitative, continuous such as AGE
- categorical binary (use 1/0 coding) such as SEX
- non-binary ordered or unordered categorical such as ETS (none, moderate, large)

Model evaluation in more general:

consider the likelihood

$$L = \prod_{i=1}^{n} p_{x_i}^{y_i} (1 - p_{x_i})^{1 - y_i}$$

for model with additional k covariates:

$$\log \frac{p_{x_i}}{1 - p_{x_i}} = \alpha + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}$$
$$+ \beta_{p+1} x_{i,p+1} + \dots + \beta_{k+p} x_{i,k+p} (M_1)$$

comparing of different generalized regression models

Model evaluation in more general for our example:

$$\begin{split} \log \frac{p_{\mathsf{X}_i}}{1-p_{\mathsf{X}_i}} &= \alpha + \beta_1 \mathsf{AGE}_i + \beta_2 \mathsf{SEX}_i + \beta_3 \mathsf{ETS}_i \\ &+ \beta_4 \mathsf{RADON}_i + \beta_5 \mathsf{AGE}\text{-HOUSE}_i \end{split}$$

Model evaluation using the likelihood ratio:

again let

$$L(M_1)$$
 and $L(M_0)$

be the **likelihood** for models M_1 and M_0 then the **likelihood** ratio

$$LRT = 2 \log L(M_1) - 2 \log L(M_0) = 2 \log \frac{L(M_1)}{L(M_0)}$$

has a chi-square distribution with p df under M_0

comparing of different generalized regression models

Model evaluation for our example:

$$\begin{cases} M_0: & \alpha + \beta_1 \mathsf{AGE}_i + \beta_2 \mathsf{SEX}_i + \beta_3 \mathsf{ETS}_i \\ M_1: & \dots M_0 \dots + \beta_4 \mathsf{RADON}_i + \beta_5 \mathsf{AGE-HOUSE}_i \end{cases}$$

then

$$LRT = 2\log\frac{L(M_1)}{L(M_0)}$$

has under model M_0 a chi-square distribution with 2 df

model evaluation

- for model assessment we will use criteria that compromise between model fit and model complexity
- Akaike information criterion

$$AIC = -2\log L + 2k$$

Bayesian Information criterion

$$BIC = -2\log L + k\log n$$

- ▶ where *k* is the number of parameters in the model
- and n is the number of observations
- we seek a model for which AIC and/or BIC are small

meta-analysis of BCG vaccine against tuberculosis

Meta-Analysis

Meta-Analysis is a methodology for investigating the study results from several, independent studies with the purpose of an integrative analysis

Meta-Analysis on BCG vaccine against tuberculosis

Colditz et al. 1974, JAMA provide a meta-analysis to examine the efficacy of BCG vaccine against tuberculosis

Data on the meta-analysis of BCG and TB

the data contain the following details

- ▶ 13 studies
- each study contains:
 - ▶ TB cases for BCG intervention
 - number at risk for BCG intervention
 - ► TB cases for control
 - number at risk for control
- also two covariates are given: year of study and latitude expressed in degrees from equator
- latitude represents the variation in rainfall, humidity and environmental mycobacteria suspected of producing immunity against TB

			interver	ition	contr	ol
study	year	latitude	TB cases	total	TB cases	total
1	1933	55	6	306	29	303
2	1935	52	4	123	11	139
3	1935	52	180	1541	372	1451
4	1937	42	17	1716	65	1665
5	1941	42	3	231	11	220
6	1947	33	5	2498	3	2341
7	1949	18	186	50634	141	27338
8	1950	53	62	13598	248	12867
9	1950	13	33	5069	47	5808
10	1950	33	27	16913	29	17854
11	1965	18	8	2545	10	629
12	1965	27	29	7499	45	7277
13	1968	13	505	88391	499	88391

Data analysis on the meta-analysis of BCG and TB these kind of data can be analyzed by taking

- ▶ *TB case* as disease occurrence response
- intervention as exposure
- study as confounder

Lecture 5: Poisson and logistic regression

meta-analysis of BCG vaccine against tuberculosis

Log likelihood = -15191.497

Pseudo R2

0.0050

TB_Case	Odds Ratio	Std. Err.	z	P> z	[95% Conf.	Interval]
Intervention _cons	.6116562 .0091641	.024562	-12.24 -181.51	0.000	.5653613 .0087114	.6617421 .0096404

. estat ic, n(13)

Model	Obs	11 (null)	ll(model)	df	AIC	віс
	13	-15267.81	-15191.5	2	30386.99	30388.12

Note: N=13 used in calculating BIC

meta-analysis of BCG vaccine against tuberculosis

Logistic regression

Number of obs = 357347 LR chi2(2) = 1239.45 Prob > chi2 = 0.0000

0.0406

Pseudo R2

Log likelihood = -14648.082

TB_Case	Odds Ratio	Std. Err.	z	P> z	[95% Conf.	Interval]
Latitude	1.043716	.00126	35.44	0.000	1.04125	1.046189
Intervention	. 6253014	.0251677	-11.67	0.000	. 577869	.6766271
_cons	.0031643	.0001403	-129.85	0.000	.002901	.0034515

. estat ic, n(13)

Model	Obs	ll (null)	11(model)	df	AIC	віс
	13	-15267.81	-14648.08	3	29302.16	29303.86

Note: N=13 used in calculating BIC

Logistic regression

Number of obs = 357347 LR chi2(3) = 1402.30 Prob > chi2 = 0.0000

0.0459

Pseudo R2

Log likelihood = -14566.659

TB_Case	Odds Ratio	Std. Err.	z	P> z	[95% Conf.	Interval]
Latitude	1.029997	.0016409	18.55	0.000	1.026786	1.033219
Intervention	.6041037	.0243883	-12.48	0.000	.5581456	.6538459
Year	.9666536	.0025419	-12.90	0.000	.9616844	.9716485
_cons	.0300164	.0053119	-19.81	0.000	.021219	.0424611

. estat ic, n(13)

Model	Obs	11 (null)	11 (model)	df	AIC	віс
	13	-15267.81	-14566.66	4	29141.32	29143.58

Note: N=13 used in calculating BIC

meta-analysis of BCG vaccine against tuberculosis

model evaluation

model	log L	AIC	BIC
intervention	-15191.50	30386.99	30388.12
+ latitude	-14648.08	29302.16	29303.86
+ year	-14566.66	29141.32	29143.58