Lecture 2: Direct Standardization of Measures of Disease Occurrence

Dankmar Böhning

Southampton Statistical Sciences Research Institute University of Southampton, UK

March 2 - 4, 2015

Outline

Purpose

The purpose of this material is to provide an introduction to the problems of medical surveillance and associated standardization problems:

- comparing disease (risk factor) occurrence
- standardization methodology
- examples

Outline

Medical Surveillance

Example on problems with comparison of rates

The Directly Standardized Rate

How to execute in STATA?

- Medical Surveillance

Definition

detection of the occurrence of health-related events or exposures in a target population

Goal

to identify changes in the distributions of diseases in order to prevent or control these diseases within a population

potential specific goals

- ▶ identification of pattern of disease occurrence
- detection of disease outbreaks
- development of clues about possible risk factors (ecological study)
- finding of cases for further investigation
- anticipation of health service needs

- Medical Surveillance

traditionally

medical surveillance activities were developed to monitor the spread of infectious disease through a population

today

target are all diseases and health related conditions and exposures such as traffic accident morbidity and mortality, smoking, sexual habits, etc

Data Sources

Surveillance of deaths

mortality statistics

Surveillance of morbidity

- important function of registries such as cancer registries, traffic accident registries, etc.
- legislation on certain transmittable diseases

Surveillance of risk factors

- micro-census
- survey

Example on problems with comparison of rates

to detect change

morbidity or mortality needs frequently be compared

- ▶ in time (weekly, monthly, yearly, ...)
- ▶ in space (county, states, city-areas, ...)

such a comparison - if done without care - can be quite problematic

Comparing Mortality from Lung Cancer in Berlin (West) 1960 and 1989

age-group	deaths 1989	under risk	deaths 1960	under risk
35-39	3	78862	2	44454
40-44	15	74485	5	38932
45-49	49	96516	24	66595
50-54	64	78693	63	83553
55-59	88	48942	145	83353
60-64	83	38789	202	65947
65-69	125	29128	181	50805
70-74	86	19168	160	40282
75-79	126	25109	114	25545
80-84	113	17417	43	12431
85+	54	8821	9	4183
total	806	515930	948	516080

Example on problems with comparison of rates

Example on problems with comparison of rates

Comparing Mortality from Lung Cancer in Berlin (West) 1960 and 1989

- mortality rate $1960 = \frac{948}{516080} \times 1000 = 1.84$
- ▶ mortality rate $1989 = \frac{806}{515930} \times 1000 = 1.56$

coming to the **perplexing conclusion** that mortality has **dropped** from 1960 to 1989!

Comparing Mortality Rates from Lung Cancer in Berlin (West) 1960 and 1989

age-group	mortality rate 1989	mortality rate 1960
35-39	0.04	0.04
40-44	0.20	0.13
45-49	0.51	0.36
50-54	0.81	0.75
55-59	1.89	1.74
60-64	2.14	3.06
65-69	4.29	3.56
70-74	4.49	3.97
75-79	5.02	4.46
80-84	6.49	3.46
85+	6.12	2.15
total	1.56	1.84

Example on problems with comparison of rates

Example on problems with comparison of rates

Explanation

- age distributions 1960 and 1989 are quite different
- ▶ 1989 age distribution puts more weight on younger ages
- ▶ 1960 age distribution puts more weight on older ages
- hence crude rates are not comparable

Solution

use identical age distribution

- World (Segi's Standard)
- Europe
- national

Two Reference Populations

age-group	World	Europe
35-39	6000	7000
40-44	6000	7000
45-49	6000	7000
50-54	5000	7000
55-59	4000	6000
60-64	4000	5000
65-69	3000	4000
70-74	2000	3000
75-79	1000	2000
80-84	500	1000
85+	500	1000
total	100000	100000

The Directly Standardized Rate

Construction of Directly Standardized Rate

	study population			reference population
age-group	deaths	at risk	rate	at risk
1	d_1	n_1	$p_1 = \frac{d_1}{n_1}$	N_1
2	d_2	n_2	$p_2=\frac{d_2^2}{n_2}$	N_2
•••				
k	d_k	n_k	$p_k = \frac{d_k}{n_k}$	N_k
total	d	n	$p = \frac{d}{n}$	Ν

crude rate:

$$p = \sum_{i=1}^{k} \frac{d_i}{n_i} \times \frac{n_i}{n}$$

standardized rate:

$$p_{\text{DS}} = \sum_{i=1}^{k} \frac{d_i}{n_i} \times \frac{N_i}{N}$$

The Directly Standardized Rate

Computing the Standardized Mortality Rate for Lung Cancer in Berlin (West) 1989

age	deaths	under risk	rate	World	Expect.
35-39	3	78862	3/78862 = 0.00004	6000	0.23
40-44	15	74485	15/74485 = 0.00020	6000	1.21
45-49	49	96516	49/96516=0.00051	6000	3.05
50-54	64	78693	64/78693 = 0.00081	5000	4.07
			•••		
85+	54	8821	54/8821 = 0.00612	500	3.06
total	806	515930		38000	57.47

standardized rate (1989):

$$p_{\text{DS}} = \frac{57.47}{38000} \times 1000 = 1.51$$

and, similarly, (1960): $p_{DS} = \frac{52.08}{38000} \times 1000 = 1.37$

- How to execute in STATA?

how to execute in STATA?

organization of data

first a data file needs to be constructed containing

- ▶ the stratums variable (age)
- the event variable (cases or deaths)
- the population size variable (population)
- the group variable containing information on the groups to be compared (year)

an example is given as follows:

Lecture 2: Direct Standardization of Measures of Disease Occurrence

How to execute in STATA?

	 age 	death	population	Year	 -
1.	35-39	3	78862	1989	
2.	40-44	15	74485	1989	
3.	45-49	49	96516	1989	
4.	50-54	64	78693	1989	1
5.	55-59	88	48942	1989	١
					-
6.	60-64	83	38789	1989	1
7.	65-69	125	29128	1989	1
8.	70-74	86	19168	1989	١
9.	75-79	126	25109	1989	١
10.	80-84	113	17417	1989	١
					-

How to execute in STATA?

					
	' age 	death	population	Year	 -
11.	85+	54	8821	1989	
12.	35-39	2	44454	1960	١
13.	40-44	5	38932	1960	
14.	45-49	24	66595	1960	
15.	50-54	63	83553	1960	
					-
16.	55-59	145	83353	1960	
17.	60-64	202	65947	1960	
18.	65-69	181	50805	1960	١
19.	70-74	160	40282	1960	
20.	75-79	114	25545	1960	
					-
21.	80-84	43	12431	1960	١
22.	85+	9	4183	1960	١
	+				+

how to execute in STATA?

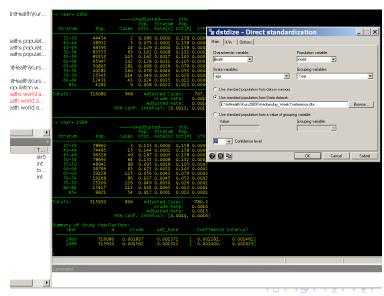
organization of data

- a second data file needs to be constructed containing
 - the stratums variable (age) matching with exactly the same name
 - the population size variable containing the reference population carrying the same name as the study population variable

an example is given as follows in which population contains now the distribution of the world standard How to execute in STATA?

	+			
		age	world	europe
1.	İ	35-39	6000	7000
2.		40-44	6000	7000
3.	-	45-49	6000	7000
4.	-	50-54	5000	7000
5.	-	55-59	4000	6000
	1			
6.	-	60-64	4000	5000
7.	-	65-69	3000	4000
8.	-	70-74	2000	3000
9.	-	75-79	1000	2000
10.	-	80-84	500	1000
	1			·
11.	-	85+	500	1000
	+			+

- How to execute in STATA?


how to execute in STATA?

execution of standardization

a very practical way to accomplish this is to choose in the first file the population name as the name of the reference standard, in this example world

Lecture 2: Direct Standardization of Measures of Disease Occurrence

- How to execute in STATA?

= 23/23