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ABSTRACT
Standard meta-analysis requires the quantity of interest and its esti-
mated variance to be reported for each study. Datasets that lack such
variance information pose important challenges to meta-analytic
inference. In a study with continuous outcomes, only sample means
and sample sizes may be reported in the treatment arm. Classical
meta-analytical technique is unable to apply statistical inference to
such datasets. In this paper, we propose a statistical tool for test-
ing equal means between two groups in meta-analysis when the
variances of the constituent studies are unreported, usingpivot infer-
ence based on the exact t-distribution and the generalized likelihood
ratio. These are consideredunder a fixed-effectmodel. In simulations,
the type I errors and power probabilities of the proposed tests are
investigated as metrics of their performance. The t-test statistic pro-
vides type I errors very close to the nominal significance level in all
cases andhas largepower. Thegeneralized likelihood ratio test statis-
tic performs well when the number of studies is moderate-to-large.
The performance of our tests surpasses that of the conventional test,
which is basedon thenormal distribution. Thedifference is especially
pronounced when the number of studies is small. The distribution
given by our tests is also shown to closely follow the theoretical
distribution.
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1. Background

Meta-analysis is an important statistical tool used to summarize the results from individ-
ual, independent studies on the same topic. It is applied in many fields including health
science, medicine, psychology, and social science. In particular, meta-analysis of clinical
trial results is considered the highest level of evidence and provides a readily accessible
synthesis of the evidence on the effectiveness of a given treatment [1]. Both count and con-
tinuous outcomes are of interest inmeta-analysis. For valid analysis, meta-analysis requires
both the quantity of interest or effect size estimate in each study and its estimated standard
error. In traditionalmeta-analysis, the overall estimate of effect size is then computed by the
weighted average method [2] . More precisely, suppose that θ̂i denotes the effect measure
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Table 1. Meta-analytic data on the length of hospital stay
(days) for thoracoscopic and open surgeries.

Thoracoscopic surgery Open surgery

Author, year n X̄ n X̄

Vu, 2008 12 2 24 5
Diamond, 2007 12 3.5 24 4
Kunisaki, 2014 49 3 13 3
Lau, 2013 39 6.95 28 11.96
Rahman, 2009 14 2.95 14 2.6
Cho, 2012 7 6.1 27 8.1
Tolg, 2005 5 6 4 12
Fascetti-Leon, 2013 26 5.3 28 9.6
Sundararajan, 2007 20 2 9 6
Laje, 2015 100 3 188 3.1
Kulaylat, 2015 112 3 146 4

Note that n is the sample size and X̄ is the sample mean.

estimate of the true parameter θi from study i, for i = 1, 2, . . . , k, where k is the number of
studies. The overall effect size estimate is computed by

θ̂ =
∑k

i=1 wiθ̂i∑k
i=1 wi

, (1)

where wi is the weight of the effect size of study i obtained from the inverse of variance of
the effect estimate. The weight is computed by wi = 1/s2i , depending on whether the fixed
or random effects model is used, and s2i denotes the estimated variance of study i.

Although many studies report the basic statistics of mean, range, standard deviation,
and coefficient of variation, others omit one or more of these. Published trial results
are sometimes statistically incomplete, as the standard errors of the means are missing
[3,4]. The present work uses meta-analytic data on the management of antenatally diag-
nosed congenital lung malformations in young children through two alternative surgical
approaches: thoracoscopy and open resection. The key question is whether thoracoscopy
is as safe as the traditional method of open surgery. A systematic review from 2007 to
2015 reported that complications arose in 63/404 (16%) of thoracoscopic operations and in
87/483 (18%) of open surgical operations [5].We emphasize that these studies are not clin-
ical trials, but reports which were found in the literature. Other outcomes used to compare
the performance of the two surgeries were length of operation (mins), number of patient
days in hospital, number of chest tube days, and weight and age of the child. An example of
the length of stay data is shown in Table 1. These data contain only sample means and sam-
ple sizes in the two treatment arms, and no sample variance is reported in the published
evidence. Statistics such as coefficient of variation, standard error, or confidence interval,
which could be used to compute the estimated study-specific variance, are also missing.

Traditionalmeta-analysis cannot satisfactorily derive the quantitative outcomes, as vari-
ability measures are unreported and overall effect estimates cannot be calculated. Under
these circumstances, imputation methods have been introduced to estimate the variance.
Examples include Philbrook et al., Idris and Robertson, and Chowdhry et al. [6–8]. How-
ever, imputation can be applied only in the case that variance is unreported in some of
the individual studies. Sangnawakij et al. [9] introduced an approach to the estimation of



JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 3

the parameter when no estimated variance is available. They proposed the estimators for
the overall mean difference and the within-study variance using maximum likelihood esti-
mation and studied the performance of the estimators by simulations. However, the study
investigated only parameter estimation for the mean difference. Sidik and Jonkman [10]
proposed amethod for constructing confidence intervals for the populationmean inmeta-
analysis, based on the normal and t distributions. Two statistics were derived under the
assumption that the effect size estimate from study i, denoted as X̄i, had an N(μ, σ 2

i + τ 2)

for i = 1, 2, . . . , k, where μ is the true mean, σ 2
i is the true variance of X̄i, and τ 2 is the

heterogeneity variance between studies. For this, if τ 2 = 0, homogeneity arises. The fixed
effect model is then given by X̄i = μ + εi, where εi ∼ N(0, σ 2

i ) is the sampling error of X̄i.
To estimate the parameter, σ 2

i was replaced by the sample variance s2i , which was known
from individual, independent studies. Then, pivotal quantities based on the normal and t
distributions used to construct the (1 − α)100% confidence intervals for μ were derived,
and given by

μ̂ − μ

1/
√∑n

i=1 1/s
2
i

∼ N(0, 1)

and √∑n
i=1 1/s

2
i (μ̂ − μ)√(∑n

i=1(X̄i − μ̂
)2

/s2i )/(k − 1)
∼ tdf=k−1,

where μ̂ is the weighted estimate of μ computed using the same method as shown in
Equation (1) [10]. Hypothesis testing is an important aspect of statistical inference in
many applications, and should therefore be incorporated in a comprehensive method.
Park [11] proposed statistics for testing the equality of normal population means when
the population size is large related to the sample sizes. However, those papers focused on
meta-analysis with the common situation, where the sample variances were assumed to be
known. No research has been done on the problem of testing the equality of means when
the variances are unreported for all studies inmeta-analysis. It is therefore addressed in the
current study.

The main objective is to propose an approach to test the difference of means in meta-
analysis without study-specific variance information. For clarity, we note that we do not
propose to ignore study-specific variance information, but suggest the solutions to use
the available information. In this paper, the test statistics are derived using pivot inference
based on the t-distribution and the likelihood ratio. We investigate the performance of the
test using type I error and power probability and compare the performance of our test with
that of a test based on the normal distribution. We apply all methods to meta-analysis of a
dataset on open and thoracoscopic operations.

2. Methods

We consider k independent studies in a meta-analysis in which only sample means X̄T
i and

X̄C
i , and sample sizes nTi and nCi , are available in the treatment (T) and comparison (C)

arms, for i = 1, 2, . . . , k. Suppose that the random variable X̄T
i has N(μT , σ 2/nTi ) and X̄C

i
hasN(μC, σ 2/nCi ), where X̄T

i and X̄C
i are independent. The study-specificmean difference,
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which is also the effect size of interest for study i, is given by Di = X̄T
i − X̄C

i . It follows
that Di has N(μ, σ 2wi), where μ = μT − μC is the true mean difference, which is also
the parameter of interest, σ 2 is the within-study population variance (assumed to be equal
across all studies), andwi = 1/nTi + 1/nCi is the constant. In this case, Sangnawakij et al. [9]
proposed maximum likelihood (ML) estimators for μ and σ 2. These are given by

μ̂ML =
∑k

i=1 Di/wi∑k
i=1 1/wi

and

σ̂ 2
ML = 1

k

k∑
i=1

(Di − μ̂ML)
2

wi
.

The variances of the estimators are given as Var(μ̂ML) = σ 2/
∑k

i=1 1/wi and Var(σ̂ 2
ML) =

(2(k − 1)σ 4)/k2. Note that μ̂ and σ̂ 2 are unbiased and consistent estimators for μ and σ 2,
respectively.

Next, the test statistics for the mean difference are constructed. The hypotheses are

H0 : μ = μ0 and H1 : μ �= μ0,

where μ0 is a specified value of the mean difference. A basic approach to deriving the test
statistic uses the pivotal quantity, which has a normal distribution. This is given by

Z = μ̂ML − E(μ̂ML)√
V̂ar(μ̂ML)

= μ̂ML − μ√
σ̂ 2
ML/

∑k
i=1 1/wi

. (2)

Under H0, the test statistic Z is an approximate standard normal distribution. In practice,
the null hypothesis will be rejected if the observed value of |Z| is greater than Zα/2, or the
(α/2)100th percentile of the standard normal distribution. However, several methods can
be used to derive the statistic for test of the mean difference. This study applies the t-test
and likelihood ratio test, which we introduce in the following two subsections.

2.1. The proposed t-test

Equation (2) is based on the central limit theorem. This is known to be appropriate when
the meta-analysis comprises a large number of studies. In practice, however, the num-
ber of studies may be small. In this case, an approach based on a normal approximation
may be unreasonable, because the data do not have a normal distribution. To identify an
appropriate method for such cases, we investigate inference based on the t-distribution.
For meta-analysis of k independent studies, we obtain the following function of the mean
difference:

k∑
i=1

(Di − μ)2

σ 2wi
=

k∑
i=1

(Di − μ̂ML + μ̂ML − μ)2

σ 2wi

=
k∑

i=1

[(Di − μ̂ML) + (μ̂ML − μ)]2

σ 2wi
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=
k∑

i=1

(
Di − μ̂ML

σ
√
wi

)2
+ (μ̂ML − μ)2

σ 2/
∑k

i=1 1/wi
. (3)

Since Di has N(μ, σ 2wi), the term on the left of Equation (3) has a chi-square distri-
bution with k degrees of freedom. Furthermore, since μ̂ML has N(μ, σ 2/

∑k
i=1 1/wi)

and V = μ̂ML − μ/σ/

√∑k
i=1 1/wi has N(0, 1), the second term on the right-hand

side has a chi-square distribution with one degree of freedom. Therefore, U =∑k
i=1((Di − μ̂ML)/σ

√
wi)

2 is a chi-square distribution with k−1 degrees of freedom.
Pivot inference based on the t-distribution is next considered. This is obtained from

two variables with normal and chi-square distributions. As we have shown that V and U
are random variables whose distributions do not depend on the parameter μ, the pivotal
quantity based on the t-distribution can be constructed. It is given by

Tpr = V√
U/(k − 1)

=
√∑k

i=1 1/wi(μ̂ML − μ)√
kσ̂ 2

ML/(k − 1)
. (4)

Under H0 : μ = μ0, Tpr follows a t-distribution with k−1 degrees of freedom. The deci-
sion rule states that H0 will be rejected if the observed value of |Tpr| is larger than
tα/2,df=k−1, where tα/2,df=k−1 denotes the (α/2)100th percentile of the t-distribution with
k−1 degrees of freedom. It is important to note that Tpr differs from the statistic based
on t-distribution presented by Sidik and Jonkman [10], which addressed meta-analyses in
which the variance estimates are reported.

2.2. The proposed likelihood ratio test

The likelihood ratio (LR) is a statisticalmethod that uses the ratio ofmaximized likelihoods
under the parameter space and null hypothesis. In our study, it is used to construct a test
of the mean difference. The procedure is as follows.

Let Di for i = 1, 2, . . . , k be a random sample of size k from a population with distri-
bution N(μ, σ 2wi). Again, Di denotes the mean difference of the study i. The probability
density function of Di is then given by

f (di;μ, σ 2) = 1√
2πσ 2wi

exp
(

− (di − μ)2

2σ 2wi

)
with the likelihood function L(μ, σ 2; di) = ∏k

i=1 f (di;μ, σ
2). We wish to test H0 : θ in ω

against H1 : θ in 	 − ω, where 	 is the parameter space and ω is the set of unknown
parameter values underH0. Here, we let θ = (μ, σ 2), so that

	 = {θ ;−∞ < μ < ∞, σ 2 > 0} and ω = {θ ;μ = μ0, σ 2 > 0}.
The likelihood function of μ and σ 2 under ω is then given by

L(μ, σ 2; di) = 1

(2πσ 2)k/2
∏k

i=1 w
1/2
i

exp

(
− 1
2σ 2

k∑
i=1

(di − μ0)
2

wi

)
. (5)
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This yields the ML estimator σ̂ 2
0 = 1/k

∑k
i=1

(di−μ0)
2

wi
for σ 2. The likelihood function

under 	 is given as

L(μ, σ 2; di) = 1

(2πσ 2)k/2
∏k

i=1 w
1/2
i

exp

(
− 1
2σ 2

k∑
i=1

(di − μ)2

wi

)
. (6)

The ML estimators for μ and σ 2 derived from this function are denoted μ̂ML and σ̂ 2
ML,

respectively. The likelihoods from Equations (5) and (6) are maximized by taking the ML
estimators for obtaining the second proposed statistic.

In general, the ratio of the likelihoods, which yields the LR test for H0 : μ = μ0, is
given as


 = supθ∈ω L(θ ; di)
supθ∈	 L(θ ; di)

.

The test procedure rejects the null hypothesis if the value of 
 is small, or 
 < c. Usually,
a constant c is chosen to specify a value for the type I error associated with the distribution
of the test. However, if the ratio is in complex form, identifying the distribution is chal-
lenging. The LR statistic can be simplified by applying asymptotic approximation, given by
−2 log
. This is the generalized likelihood ratio test statistic. It is straightforward to ver-
ify that −2 log
 converges to a chi-square distribution with one degree of freedom. Two
likelihood functions derived above yield the generalized LR test:

−2 log
 = −2 log

(∑k
i=1(di − μ̂ML)

2/wi∑k
i=1(di − μ0)2/wi

)k/2

= −2 log
(

σ̂ 2
ML
σ̂ 2
0

)k/2

. (7)

We therefore rejectH0 : μ = μ0 in favour ofH1 : μ �= μ0 if LRpr = −2 log
 is larger than
χ2

α,df=1, where χ2
α,df=1 denotes the (α)100th percentile of the chi-square distribution with

one degree of freedom.

3. Simulation study

The performance of the proposed tests using Tpr and LRpr was evaluated by type I error
and power probability in simulations run under R (https://www.r-project.org/). The Z
test statistic shown in Equation (2) provided the benchmark. The two-sided test for H0 :
μ = μ0 and H1 : μ �= μ0, and the one-sided test for H0 : μ ≤ μ0 and H1 : μ > μ0 were
considered. The meta-analysis was assumed to have one true mean difference across all
studies (fixed-effect meta-analysis).

3.1. Simulation settings

The mean difference Di was generated from N(μ, σ 2wi). The values of the true mean dif-
ference (μ) were set at 0, 2, and 5 and those of the within-study variance (σ 2) at 2, 4, and 9,
and the weightwi was sampled from the uniform distribution on (0.02,0.20). The numbers

https://www.r-project.org/


JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 7

Table 2. Average values of the test statistics, type I error, and power rates for the two-sided tests of the
mean difference when α = 0.01.

Test statistic Type I error Power test (a = 3) Power test (a = 6)

k μ σ 2 Z Test Tpr LRpr Z Test Tpr LRpr Z Test Tpr LRpr Z Test Tpr LRpr

5 0 2 −0.0078 −0.0070 1.3803 0.0778 0.0085 0.0252 0.9668 0.8079 0.0020 0.9960 0.9743 0.0272
4 0.0037 0.0033 1.4035 0.0839 0.0116 0.0312 0.9630 0.7955 0.0018 0.9969 0.9740 0.0309
9 0.0125 0.0112 1.3917 0.0800 0.0108 0.0303 0.9679 0.8098 0.0020 0.9970 0.9741 0.0241

2 2 0.0156 0.0139 1.4222 0.0842 0.0115 0.0314 0.9630 0.7949 0.0023 0.9969 0.9745 0.0265
4 −0.0212 −0.0189 1.4060 0.0836 0.0102 0.0301 0.9644 0.7995 0.0028 0.9969 0.9714 0.0261
9 −0.0022 −0.0020 1.3904 0.0826 0.0105 0.0290 0.9667 0.8050 0.0016 0.9970 0.9763 0.0288

5 2 −0.0155 −0.0139 1.4029 0.0835 0.0097 0.0300 0.9663 0.7949 0.0028 0.9966 0.9743 0.0241
4 0.0013 0.0012 1.3836 0.0770 0.0093 0.0274 0.9625 0.7981 0.0021 0.9966 0.9755 0.0277
9 −0.0059 −0.0053 1.4335 0.0887 0.0104 0.0295 0.9658 0.7991 0.0022 0.9971 0.9766 0.0257

10 0 2 -0.0081 −0.0077 1.1511 0.0355 0.0096 0.0172 0.9998 0.9982 0.2278 1 1 0.8686
4 −0.0028 −0.0026 1.1838 0.0375 0.0085 0.0160 0.9991 0.9974 0.2417 1 1 0.8713
9 −0.0052 −0.0049 1.1672 0.0353 0.0087 0.0158 0.9991 0.9974 0.2270 1 1 0.8669

2 2 −0.0003 −0.0002 1.1696 0.0376 0.0109 0.0185 0.9994 0.9978 0.2278 1 1 0.8643
4 0.0052 0.0050 1.1751 0.0360 0.0096 0.0169 0.9994 0.9974 0.2286 1 1 0.8672
9 0.0158 0.0150 1.1569 0.0355 0.0099 0.0163 0.9995 0.9972 0.2319 1 1 0.8774

5 2 −0.0114 −0.0108 1.1856 0.0383 0.0086 0.0156 0.9993 0.9984 0.2319 1 1 0.8715
4 0.0144 0.0137 1.1710 0.0364 0.0107 0.0177 0.9996 0.9979 0.2331 1 1 0.8710
9 0.0181 0.0172 1.1836 0.0379 0.0099 0.0187 0.9992 0.9979 0.2232 1 1 0.8690

30 0 2 −0.0013 −0.0013 1.0457 0.0174 0.0098 0.0114 1 1 1 1 1 1
4 0.0049 0.0049 1.0243 0.0161 0.0093 0.0111 1 1 1 1 1 1
9 0.0245 0.0241 1.0483 0.0181 0.0113 0.0135 1 1 1 1 1 1

2 2 0.0153 0.0150 1.0529 0.0172 0.0113 0.0134 1 1 1 1 1 1
4 −0.0011 −0.0011 1.0392 0.0151 0.0088 0.0109 1 1 1 1 1 1
9 0.0068 0.0067 1.0275 0.0145 0.0079 0.0101 1 1 1 1 1 1

5 2 0.0064 0.0063 1.0704 0.0161 0.0096 0.0118 1 1 1 1 1 1
4 −0.0008 −0.0007 1.0694 0.0172 0.0100 0.0118 1 1 1 1 1 1
9 −0.0079 −0.0078 1.0326 0.0159 0.0088 0.0111 1 1 1 1 1 1

50 0 2 −0.0282 −0.0279 1.0296 0.0139 0.0100 0.0111 1 1 1 1 1 1
4 0.0046 0.0045 1.0158 0.0137 0.0090 0.0107 1 1 1 1 1 1
9 0.0034 0.0033 1.0282 0.0145 0.0105 0.0118 1 1 1 1 1 1

2 2 0.0095 0.0094 1.0191 0.0141 0.0105 0.0118 1 1 1 1 1 1
4 0.01700 0.0169 1.0266 0.0135 0.0100 0.0108 1 1 1 1 1 1
9 −0.0029 −0.0029 1.0367 0.0144 0.0103 0.0116 1 1 1 1 1 1

5 2 −0.0012 −0.0012 1.0193 0.0137 0.0108 0.0112 1 1 1 1 1 1
4 0 0 1.0172 0.0120 0.0082 0.0095 1 1 1 1 1 1
9 −0.0177 −0.0175 1.0278 0.0148 0.0090 0.0104 1 1 1 1 1 1

of studies (k) were set at 5, 10, 30, and 50, reflecting a range from small trials to large. Sig-
nificance levels (α) of 0.01 and 0.05 were used. Each simulation was run B = 10,000 times.
The average type I error for the test was computed by

α̂ = number of reject H0|H0 is true
B

.

To estimate the power of the test, we generated Di from N(μ + aS, σ 2wi) with constants
(a) of 3 and 6, reflecting the small-to-large deviation of the mean. Here, S is the standard
deviation ofDi sampled fromN(μ, σ 2wi). The mean of power of the test was estimated by

̂1 − β = number of reject H0|H1 is true
B

.

A preferred test that would have a type I error rate close to the nominal significance level
and a large power. The main simulation results were as follows.
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Figure 1. Type I error for the two-sided tests of the mean difference.

3.2. Simulation results

Table 2 compares the proposed and conventional Z statistics for a two-sided test with
α = 0.01. Type I errors in the three tests decreased to the significant level as k increased.
However, they did not depend onμ or σ 2. The type I error of Z test was very much greater
than 0.01 when k ≤ 10 or the number of studies was small. The type I error of Tpr was
very close to the nominal significance level of 0.01 in all cases in the study. The LRpr also
satisfied the type I error criterion, especially when k ≥ 10. Ranking by closeness of the
type I error to the nominal significance level gave Tpr, LRpr, and Z. The table also shows
the power of the two-sided test. At α = 0.01, Z and Tpr had high probabilities. LRpr was
satisfactory when k ≥ 30 for small deviations of the mean (a = 3), and when k ≥ 10 for
large deviations (a = 6). The results of type I error and power of the test for α = 0.01 and
α = 0.05 are shown graphically in Figures 1 and 2. As α = 0.05, type I errors of Tpr and
LRpr were also closer to the nominal significant level than that of Z test. From 2, all tests
had powers greater than 0.9.

We investigated the performance of the right-tailed test of the mean difference at
α = 0.01. Tables 3 shows the results. In this case, only the Z and Tpr tests were conducted.
The type I errors decreased in both tests as k increased, but did not depend on μ or σ 2.
This matched the results from the two-tailed test. As shown in Figures 3 and 4, both tests
had high power probabilities, but in Tpr the type I errors were closer to 0.01 or 0.05.

4. Application to real data

We applied the three statistics for test of equal means, using data from a meta-analysis in
which the study-specific variance was unreported. As noted in the introduction, the studies
compared the outcomes from open surgery and thoracoscopy when treating asymptomatic
congenital lung malformation. The variables used in this empirical analysis were length
of patient stay in hospital (days) included 11 studies, and number of drains left in the
chest (days) included 9 studies. In both arms, only the sample mean and sample size were
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Figure 2. Power of the two-sided tests of the mean difference.

Figure 3. Type I error for the one-sided tests of the mean difference.
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Figure 4. Power of the one-sided tests of the mean difference.

reported for each variable and no sample variance was available. Note that these studies are
not clinical trials, but reports which were found in the literature. The analysis used studies
which had complete information in both arms.

We computed the overall mean difference and the within-variance estimates. The point
estimators for μ = μT − μC and σ 2 were estimated using ML estimation: μ̂ML and σ̂ 2

ML.
The mean differences for length of stay and number of chest tube days between thoraco-
scopic (T) and open (C) surgeries were−1.4 and−0.9, with standard deviations 7.420 and
4.793, respectively. The outcomes from thoracoscopy had greater means, but it was not clear
that the difference was significant. Therefore, this was investigated using hypothesis testing.
Firstly, the distribution of the data was analysed using the Anderson-Darling test. It was
found that the datasets followed normal distributions with p-values of 0.288 for the mean
difference in length of hospital stay and 0.103 for the mean difference in number of chest
tube days. The meta-analytic data were there suitable for our approach.

A test of equal means was then conducted using themethods introduced in the previous
section. The observed values for testing the hypotheses H0 : μT = μC and H1 : μT �= μC

are given in Table 4. For length of stay, the Z test identified a significant difference between
the means of the two surgeries at α = 0.05. Also, the proposed t-test and LR test showed
a significant difference between the means of two surgeries, although their p-values were
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Table 3. Average values of the test statistics, type I error, and power rates for the right-tailed tests of the
mean difference when α = 0.01.

Test statistic Type I error Power test (a = 3) Power test (a = 6)

k μ σ 2 Z Tpr Z Tpr Z Tpr Z Tpr

5 0 2 −0.0078 −0.007 0.0512 0.0078 0.9740 0.8784 0.9985 0.9869
4 0.0037 0.0033 0.0538 0.0111 0.9737 0.8789 0.9971 0.9850
9 0.0125 0.0112 0.0517 0.0113 0.9738 0.8742 0.9986 0.9884

2 2 0.0156 0.0139 0.0556 0.0108 0.9722 0.8782 0.9975 0.9867
4 −0.0212 −0.0189 0.0518 0.0099 0.9735 0.8787 0.9977 0.9888
9 −0.0022 −0.0020 0.0501 0.0087 0.9731 0.8795 0.9981 0.9855

5 2 −0.0155 −0.0139 0.0504 0.0105 0.9725 0.8820 0.9971 0.9853
4 0.0013 0.0012 0.0492 0.0100 0.9745 0.8800 0.9983 0.9878
9 −0.0059 −0.0053 0.0561 0.0102 0.9708 0.8728 0.9975 0.9862

10 0 2 −0.0081 −0.0077 0.0256 0.0098 0.9992 0.9984 1 1
4 −0.0028 −0.0026 0.0293 0.0098 0.9996 0.9987 1 1
9 −0.0052 −0.0049 0.0255 0.0092 0.9995 0.9983 1 1

2 2 −0.0003 −0.0002 0.0283 0.0099 0.9997 0.9988 1 1
4 0.0052 0.0050 0.0289 0.0095 0.9998 0.9985 1 1
9 0.0158 0.0150 0.0263 0.0093 0.9999 0.9986 1 1

5 2 −0.0114 −0.0108 0.0275 0.0091 0.9998 0.9988 1 1
4 0.0144 0.0137 0.0275 0.0101 0.9995 0.9986 1 1
9 0.0181 0.0172 0.0295 0.0106 0.9995 0.9986 1 1

30 0 2 −0.0013 −0.0013 0.0142 0.0103 1 1 1 1
4 0.0049 0.0049 0.0152 0.0103 1 1 1 1
9 0.0245 0.0241 0.0165 0.0113 1 1 1 1

2 2 0.0153 0.0150 0.0153 0.0109 1 1 1 1
4 −0.0011 −0.0011 0.0147 0.0086 1 1 1 1
9 0.0068 0.0067 0.0124 0.0087 1 1 1 1

5 2 0.0064 0.0063 0.0150 0.0097 1 1 1 1
4 −0.0008 −0.0007 0.0167 0.0114 1 1 1 1
9 −0.0079 −0.0078 0.0128 0.0085 1 1 1 1

50 0 2 −0.0282 -0.0279 0.0121 0.0095 1 1 1 1
4 0.0046 0.0045 0.0129 0.0097 1 1 1 1
9 0.0034 0.0033 0.0119 0.0099 1 1 1 1

2 2 0.0095 0.0094 0.0139 0.0115 1 1 1 1
4 0.0170 0.0169 0.0119 0.0094 1 1 1 1
9 −0.0029 −0.0029 0.0118 0.0092 1 1 1 1

5 2 −0.0012 −0.0012 0.0106 0.0083 1 1 1 1
4 0 0 0.0127 0.0103 1 1 1 1
9 −0.0177 −0.0175 0.0119 0.0086 1 1 1 1

Table 4. The results for test of the mean difference using meta-analytic
data on key-hole and open surgeries (α = 0.05).

Variable (k) Method Observed statistic p-value

Length of stay (11) Z test −2.672 0.008
Tpr −2.548 0.029
LRpr 5.502 0.019
μ̂ML −1.382
σ̂ 2
ML 55.063

Number of chest tube days (9) Z test −1.917 0.055
Tpr −1.808 0.108
LRpr 3.082 0.079
μ̂ML −0.788
σ̂ 2
ML 22.971

higher. This was concluded using the forest plot for length of stay in hospital presented
in Adams et al. [5], where the confidence limits of the overall difference in means did not
covered zero. On the second variable, we found no significant difference in chest tube days
between the two groups.
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Figure 5. QQ plots for the test statistics whenμ = 0, σ 2 = 2, k = 5, 10, 30, and 50.

5. Conclusions

One of the main objectives of meta-analysis is to determine the parametric effect size
by hypothesis testing. When the effect size estimates and standard errors of the individ-
ual studies are available, classical meta-analysis can be used to construct the statistic for
hypothesis testing. However, when the variance or standard error of the effect size is unre-
ported, the conventional approach is inappropriate in a study with continuous outcomes,
as the weight of the effect size cannot be computed.

We introduce two test statistics to use the available information for test of the difference
in means in meta-analysis without study-specific variance information. This is because
only the quantity of interest and sample size of the study are reported in the published
evidence. Moreover, no other information on uncertainty quantification is available from
which the estimated variance can be obtained. In this paper, the test statistics were derived
using pivot inference based on the exact t-distribution and generalized LR, assuming a
fixed-effect meta-analysis. The performances were compared in terms of type I error and
power of the test, using as baseline the Z test statistic based on the normal distribution.
This was done through simulation in many situations. The proposed tests were shown to
have a good performance. In particular, the t-test provided type I errors very close to the
nominal significance level and high power probability. On both criteria, it outperformed
the Z test in all cases. The LR test demonstrated high power when the sample sizes were
greater than 10, with type I error very close to the nominal significance level.

Finally, we investigated whether the actual distribution given by our tests followed the
theoretical distribution. QQ plots were used to explore the behaviour of the tests. The
results are shown in Figure 5, which plots the empirical cumulative distribution function
(CDF) of the test against the theoretical CDF. The empirical CDFs of the t-test followed
the theoretical distribution (t-distribution) in all cases. The empirical CDF of the general-
ized LR test tracked the theoretical distribution (chi-square distribution) when k>10. This
confirms that the exact t-distribution may be used. The t-test is therefore recommended
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for test of the mean difference in meta-analyses that do not report the variance of the con-
stituent studies. This method works well for meta-analyses with small numbers of studies.
As noted in Seide et al. [12], meta-analyses of small studies are common in practice. A
review of the Cochrane Library presented that half of the meta-analyses reported in the
Cochrane Library are conducted with two or three studies. Our proposed t-test is therefore
importance. For larger studies, the proposed LR test offers as an alternative approach.
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