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SUMMARY

This paper continues work presented in Böhning et al. (2002b,Annals of the Institute of Statistical
Mathematics 54, 827–839, henceforth BMSRB) where a class of non-iterative estimators of the variance
of the heterogeneity distribution for the standardized mortality ratio was discussed. Here, these estimators
are further investigated by means of a simulation study. In addition, iterative estimators including the
Clayton–Kaldor procedure as well as the pseudo-maximum-likelihood (PML) approach are added in the
comparison. Among all candidates, the PML estimator often has the smallest mean square error, followed
by the non-iterative estimator where the weights are proportional to the external expected counts. This
confirms the theoretical result in BMSRB in which an asymptotic efficiency could be proved for this
estimator (in the class of non-iterative estimators considered). Surprisingly, the Clayton–Kaldor iterative
estimator (often recommended and used by practitioners) performed poorly with respect to the MSE.
Given the widespread use of these estimators in disease mapping, medical surveillance, meta-analysis and
other areas of public health, the results of this study might be of considerable interest.
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1. INTRODUCTION

In a variety of biometric applications, population heterogeneity occurs. In particular, this is the case
if there is good reason to model the variable of interestY through a density of parametric formp(y|θ)

with a scalar parameterθ . For a given subpopulation, the densityp(y|θ) might be very suitable, but a
fixed value ofθ is not able to cover the whole population of interest. In these situations we speak of
extra heterogeneity, which might be caused by unobserved covariates or clustered observations, such
as herd clustering in estimating animal infection rates. This situation has been discussed in detail in
BMRSB, including a discussion of the background and an illustration of the importance of the problem.
An introductory discussion can also be found in Aitkinet al. (1990, p. 213) and the references given there;
see also the review of Pendergastet al. (1996, p. 106) as well as Williams (1982); Lee and Nelder (2000);
Nelder and Lee (1998) and Lachin (2000, p. 147). The current paper is a follow-up to BMSRB. As before,
population heterogeneity means that the parameter of interest,θ , varies in the population, but sampling
has not taken this into account, e.g. it has not been observed from which subpopulation (defined by the
values ofθ ) the datum is coming from. To be more precise, ifθ is itself varying with distributionG and
associated densityg(θ ), the (unconditional) marginal density ofY is f (y) = ∫

�
p(y|θ)g(θ) dθ . We are

interested in the separation of variance into two terms:

Var(Y ) =
∫

�

Var(Y |θ)g(θ) dθ +
∫

�

(µ(θ) − µY )2g(θ) dθ (1)

whereµ(θ) = E(Y |θ) andµY = ∫
y f (y) dy is the marginal mean ofY . Note thatµY = EG(µ(θ)). Note

that we can also write (1) as

Var(Y ) = EG(σ 2(θ)) + VarG(µ(θ))

In the sequel we will also denote VarG(µ(θ)) by τ2
Y . Thus, (1) is a partitioning of the variance into

components due to the variation in the subpopulation with parameter valueθ , averaged overθ , and
due to the variance in the heterogeneity distributionG. One can also think of (1) as an analysis-of-
variance partition with a latent factor having distributionG. We have to distinguish carefully between
three distributional schemes when computing moments. For example, Var(Y ) refers to the unconditional or
marginal variance and is computed using the marginal densityf (y), Var(Y |θ) is theconditional variance
and is computed using the conditional densityp(y|θ), and VarG(µ(θ)) refers to the distributionG of θ .
In BMSRB a class of estimators forτ2

Y were suggested without implying knowledge of, or estimating, the
latent heterogeneity distributionG. The idea behind all the estimators involves re-writing (1) as

VarG(µ(θ)) = τ2
Y = Var(Y ) − EG(σ 2(θ)). (2)

Replacing Var(Y ) andEGσ 2(θ) on the right-hand side of (2) by their respective sample estimates we can
obtain estimates forτ2

Y . In the succeeding text, we will useµ as the mean ofθ andτ2 for its variance.
As a simple example, letY1, Y2, . . . , YN be a random sample of Poisson counts, e.g.p(y|θ) =

exp(−θ)θ y/y!. Then,σ 2(θ) = θ , EGσ 2(θ) = EG(θ) = µ = E(Y ) andτ2
Y = τ2. Note that Var(Y )

can simply be estimated byS2 = 1
N−1

∑N
i=1(Yi − Y )2 and µ by Y . Therefore, according to (2), an

estimator ofτ2 is provided asτ̂2 = S2−Y . This quantity has also been suggested as a measure of Poisson

overdispersion (B̈ohning, 1994). Note thatE(τ̂2) = τ2.
In the next section we consider a generalization of this idea to the standardized mortality ratio. In

Section 3 we discuss a more general class of linear unbiased estimators of the heterogeneity variance
which have been suggested in BMSRB. Section 4 discusses an extension to the case when the meanµ also
needs to be estimated, including an appropriately adjusted version of the DerSimonian and Laird (1986)
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estimator. Section 5 introduces two iterative estimators. The first one was suggested by Breslow (1984)
and later utilized by Clayton and Kaldor (1987) whereas the second one was suggested by Pococket al.
(1981) and later discussed by Dean and Lawless (1989). Close connections of these iterative estimators
to the non-iterative estimators used in Section 3 are demonstrated. Section 6 discusses the design and
analysis of a simulation study to compare these six estimators of the heterogeneity variance.

2. THE STANDARDIZED MORTALITY RATIO

We consider a special, but important case. LetY1, Y2, . . . , YN be a sample of counts representing a
sequence of mortality or morbidity cases. Associated with each replicationYi is a deterministic quantity
ei which represents an expected count and is usually calculated on the basis of an external reference
population.

2.1 Indirect standardization

To be more specific about thisindirect method of standardization (see also Woodward, 1999), letλ j be
the mortality or morbidity rate (cases divided by the number at risk) in age groupj of the reference
population. Furthermore, letni j be the number at risk in age groupj in replicationi in the sample. To
think of an example, the replicationi could represent a certain region or year of interest for a given
country. Then,ei is simply defined as the expected number of cases in the study population replicationi ,
when the mortality rates of the reference population are valid, namelyei = ∑J

j=1 ni jλ j , whereJ is the
number of age groups. This form of indirect standardization is calledexternal. Sometimes the reference
population is not readily available and needs to be constructed. This can be accomplished as follows. Let
Yi j denote the number of cases in age groupj and replicationi of the study population. Then, define
λ̂ j = ∑N

i=1 Yi j/
∑N

i=1 ni j as the ratio of the averages of observed cases and numbers at risk over all
replications in age groupj . To compute theei we proceed as above, namelyei = ∑J

j=1 ni j λ̂ j , where
now estimates of the rates of the reference population are used. This form of indirect standardization is
called internal. The major difference between internal and external indirect standardiziation lies in the
fact that in the internal method the mortality rates of the ‘reference’ population are constructed from the
replications in the study population. Although both methods of indirect standardization are quite similar,
there is one pecularity of the internal method which needs to be pointed out. It follows directly from the
construction that the sum of the observed counts is equal to the sum of the constructed, expected counts,
namely

∑
i

ei =
∑

i

∑
j

ni j

[∑
i

Yi j/
∑

i

ni j

]
=

∑
j

∑
i

Yi j =
∑

i

Yi

whereYi = ∑
j Yi j and, from here,

∑
i Yi/

∑
i ei = 1. This implies that the marginal mean of the ratios

Yi/ei is fixed to 1.

2.2 Definition and properties

With the help of these numbersei one can define the standardized mortality ratio as SMRi = Yi/ei

and its expected valueE(SMRi |θi ) = θi , for i = 1, . . . , N . Frequently, this sample is associated with
N geographic regions or areas, as often arises indisease mapping. For an introduction to this field see
Böhning (2000) or Lawsonet al. (1999).
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Furthermore, conditional on the value ofθ a Poisson distribution is assumed forY |θ : p(yi |θ, ei ) =
exp(−θei )(θei )

yi /yi !. For this case, the partition of variance (1) takes the form

Var(Yi ) = EG(σ 2
i (θ)) + VarG(µi (θ)) = ei EG(θ) + e2

i VarG(θ) = eiµ + e2
i τ

2. (3)

2.3 Simple estimators of the heterogeneity variance

Wewrite (3) asE(Yi − eiµ)2 = eiµ+ e2
i τ

2, which draws our attention to the variateWi = (Yi −ei µ)2−ei µ

e2
i

.

Since Var(Yi ) = E(Yi − eiµ)2, it follows from (3) that

E(Wi ) = τ2 (4)

One estimate ofτ2 replaces Var(Yi ) by its ‘estimate’(Yi − eiµ)2, solves forτ2 and then averages overi
to give

τ̂2
1 = 1

N

[
N∑

i=1

(Yi − eiµ)2/e2
i − µ

N∑
i=1

1

ei

]
. (5)

For asecond estimate, we first divide byei in (3) , then average overi and solve forτ2 to give

τ̂2
2 =

∑N
i=1(Yi − eiµ)2/ei − µN∑N

i=1 ei
. (6)

A third possibility is to average overi in (3), and then solve forτ2 to give

τ̂2
3 =

∑N
i=1(Yi − eiµ)2 − µ

∑N
i=1 ei∑N

i=1 e2
i

. (7)

All three estimators coincide if theei coincide, and all three are unbiased.

2.4 The connection to empirical Bayes estimators

A further motivation for studying estimation of the heterogeneity varianceτ2 is in the context of Bayes
estimators for the standardized mortality ratio (SMR). Assuming a Gamma distribution forθi , the posterior

distribution ofθi is again a Gamma distribution with posterior meanθ E B
i = Yi +µ2/τ2

ei +µ/τ2 , which is called an
Empirical Bayes estimator forθi . This is alsothe best linear Bayes estimator (for details see B̈ohning,
2000, pp. 152–157). Empirical Bayes estimators are considered to be superior to the crude SMR, as they
help to avoid the occurence of artefacts as described by Clayton and Kaldor (1987), in particular when the
number of cases per replication is small. Empirical Bayes estimators allow a direct interpration in terms
of populationheterogeneity in that they coincide with the crude SMR if there is strong heterogeneity (τ2

large) and coincide with the overall mean if there is no heterogeneity (τ2 = 0). Thus, one can think of
τ2 as asmoothing parameter. To use the Empirical Bayes estimators in practice, one needs to replace the
theoretical parameters by estimates, which can be obtained by the methods suggested here.
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3. NON-ITERATIVE ESTIMATORS

3.1 A general class

The estimators given in the previous section are special cases of a more general class oflinear unbiased
estimators of τ2:

T (W, α) =
∑N

i=1 αi Wi∑N
i=1 αi

(8)

for any non-random, non-negative numbersα1, α2, . . . , αN . It is easy to verify thatαi = 1/N , αi = ei ,
andαi = e2

i lead to the estimatorŝτ2
1 , τ̂2

2 and τ̂2
3 , respectively. The choiceαi = 1/N is mentioned in

Böhning (2000), whereasαi = ei is suggested by Marshall (1991) and mentioned in Lachin (2000, p. 325),
andαi = e2

i is mentioned in Bautista (1997). Asymptotic properties of these estimators are considered in
Moore (1986) and Gourierouxet al. (1984). Asymptotic efficiency of̂τ2

2 has been established in BMSRB.
The estimatorT (W, α) requires knowledge of the overall meanµ. This assumption is often satisfied

since the SMRi are indirectly standardized in such a way that
∑

i Yi/
∑

i ei = 1. If the overall meanµ is
unknown, it could be estimated by

∑
i Yi/

∑
i ei .

3.2 Example 1: hepatitis B in Berlin

To illustrate the estimators, we consider two examples. Table 1 gives the observed and expected
numbers of hepatitis B cases in the 23 city regions of Berlin for the year 1995. Here, we find
that

∑
i Yi/

∑
i ei = 1.019 (external method of indirect standardization). A conventionalχ2-test for

homogeneity is given byχ2 = ∑
i (Yi − µei )

2/(µei ). If we replaceµ by µ̂ = ∑
i Yi/

∑
i ei = 1.019,

we getχ2 = 193.52, clearly indicating heterogeneity. Assuming for this illustration thatµ is fixed we
obtain τ̂2

1 = 0.5205, τ̂2
2 = 0.4810 andτ̂2

3 = 0.4226. This indicates rather high heterogeneity since
̂Var(SMR) = 1

N−1

∑
i (SMRi −SMR)2 = 0.6234. Note that using a correct estimate of variance leads

to an increased length for a 95% confidence interval forµ constructed aŝµ ± 1.96
√

Var(µ̂) whereµ̂

corresponds to the pooled estimator. To see this we look at Var(µ̂) = µ/(
∑

i ei ) + τ2 ∑
i e2

i /(
∑

i ei )
2.

Obviously, the conventional textbook variance formula occurs whenτ2 is set to 0 andµ is estimated

by the pooled mean
∑

i Yi/
∑

i ei , namelyV̂ar(µ̂) = ∑
i Yi/(

∑
i ei )

2. For details, see Woodward (1999,
p. 162). Now, if heterogeneity is present the variance will be underestimated and the associated confidence
intervals too small. The length of the correct interval will depend on the wayτ2 is estimated, as illustrated
in Table 2. Assessment of the relative merits of different estimators ofτ2 is therefore important.

3.3 Example 2: perinatal mortality in the North-west Thames health region

Weconsider as a second example the small-area data of Martuzzi and Hills (1995) on perinatal mortality in
the North-west Thames health region in England based on the 5-year period 1986–90. The region consists
of 515 small areas. The data (provided by Marco Martuzzzi) are listed in Table 1 of thesupplementary
material. In this case,

∑
i Yi = ∑

i ei = 2051 (internal method of indirect standardization). We find
that τ̂2

1 = −0.0273, which we replace by zero,τ̂2
2 = 0.0168 andτ̂2

3 = 0.0370. There is small

heterogeneity present in the data which is indicated by the ratioτ̂2
j /

̂Var(SMR) , where ̂Var(SMR) =
1

N−1

∑
i (SMRi −SMR)2 = 0.6058.
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Table 1.Observed and expected hepatitis B
cases in the 23 city regions of Berlin, 1995

Areai Yi ei Areai Yi ei
1 29 10.7121 13 15 8.3969
2 26 17.9929 14 11 15.6438
3 54 18.1699 15 11 11.8289
4 30 19.2110 16 2 9.9513
5 16 21.9611 17 2 10.8313
6 15 14.6268 18 9 18.3404
7 6 9.6220 19 2 5.1758
8 35 17.2671 20 3 10.9543
9 17 18.8230 21 11 20.0121
10 7 18.2705 22 5 13.8389
11 43 32.1823 23 2 12.7996
12 17 24.5929 - - -
Source: Berlin Census Bureau

Table 2.Estimators of heterogeneity variance, variance
of pooled mean with 95% confidence interval for µ

j τ̂2
j V̂ar(µ̂) 95% Confidence interval

1 0.5205 0.0286 (0.6875, 1.3505)
2 0.4810 0.0267 (0.6990, 1.3389)
3 0.4226 0.0238 (0.7169, 1.3211)

Conventional 0 0.0028 (0.9149, 1.1231)

3.4 An estimator of heterogeneity variance according to DerSimonian–Laird

In this section the DerSimonian–Laird estimator is considered in its general form. Suppose that a random
samplex1, x2, . . . , xk of sizek is available with associated variancesν2

1, ν2
2, . . . , ν2

k . In a meta-analytic
setting this sample would represent a collection ofk independent studies for which within studyj a
statisticx j is measured with standard errorν j . Then the following result holds:

E(χ2) = (k − 1) + τ2

(
k∑

i=1

wi −
k∑

i=1

w2
i /

k∑
i=1

wi

)
(9)

wherewi = 1/ν2
i , χ2 = ∑k

i=1 wi (xi − µ̂)2, andµ̂ = ∑k
i=1 wi xi/

∑k
i=1 wi . The proof is along the lines

of the proof given in B̈ohning (2000) where the simpler caseν2 = σ 2 is considered. Equating the expected
value (9) to the empirical observedχ2-value leads to themoment estimator

τ̂2
DSL = χ2 − (k − 1)∑k

i=1 wi − ∑k
i=1 w2

i /
∑k

i=1 wi
. (10)

Note that the estimator (10) isunbiased by construction. This result is unaffected by the distributional
properties of theχ2-statistic. It was originally developed by DerSimonian and Laird (1986) for the case
of Normally distributed effect measures withknown variances. Because of this tradition we refer to the
estimator (10) as the DerSimonian–Laird (DSL) estimator.
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3.4.1 The case of SMRs. Suppose thatxi = Yi/ei whereei is known,Yi follows a Poisson distribution
with parametereiθ andθ follows a distributionG with meanµ and varianceτ2. Then the conditional,
population averaged variance

∫
θ

Var(SMRi |θ) dθ = EG Var(SMRi |θ) of xi = SMRi is

ν2
i = EG Var(SMRi |θ) = µ/ei . (11)

When estimatingµ in (11) one could use either the pooled or simple mean estimate. Details of using the
DSL estimator in the context of SMR data can be found in Böhninget al. (2002a).

4. ESTIMATING HETEROGENEITY MEAN AND VARIANCE

In many situations, it is not appropriate to assume thatµ is known. Therefore, we have to replaceµ in
Wi by an estimatêµ, leading to

Wi (µ̂) = (Yi − ei µ̂)2 − ei µ̂

e2
i

. (12)

Although we might consider only linear unbiased estimatorsµ̂ for µ, Wi (µ̂) is not necessarily unbiased
for τ2. This will lead to bias inT (W (µ̂), α). The bias will depend on the form ofT (W (µ̂), α) as well as
on µ̂ itself. Typically, two mean estimators are considered: the arithmetic meanµ̂1 = N−1 ∑

i Yi/ei and
the pooled mean̂µ2 = ∑

i Yi/
∑

i ei . In Böhning (2000) the estimators

τ̂2
1 (µ̂ j ) = 1

N − 1

[
N∑

i=1

(Yi − ei µ̂ j )
2/e2

i

]
− µ̂ j

1

N

N∑
i=1

1

ei
(13)

for j = 1, 2 were considered. It was shown thatτ̂2
1 (µ̂1) is unbiased whereasτ̂2

1 (µ̂2) is biased, hence
τ̂2

1 (µ̂1) may well be preferred.
Let us consider the efficient estimation ofµ. Consider the sample of SMR values

Y1/e1, Y2, e2, . . . , YN /eN . According to Section 2 we have that Var(SMRi ) = µ/ei + τ2. Therefore,
the best linear unbiased estimator forµ is given as

µ̂ =
∑N

i=1(µ/ei + τ2)−1 SMRi∑N
i=1(µ/ei + τ2)−1

(14)

which can also be derived from the quasi-likelihood approach. Note that ifτ2 = 0, (14) coincides with
µ̂2 = ∑

i Yi/
∑

i ei , whereas asτ2 → ∞, (14) approacheŝµ1 = 1
N

∑
i SMRi . Otherwise, (14) will

depend on the value ofτ2. In the following sections we consider other ways to estimateτ2.

5. ITERATIVE ESTIMATORS

5.1 Moment estimators for τ2

Breslow (1984) suggested a moment estimator forτ2 based on the chi-square statistic. This was later used
by Clayton and Kaldor (1987). Though they started out with a maximum likelihood approach based upon
aPoisson–Gamma model, they used the moment estimator in the estimation algorithm, probably because
of the numerical complexities involved in the Gamma-function. In the light of DerSimonian and Laird
(1986), define

χ2 =
N∑

i=1

(Yi − µei )
2

µei + τ2e2
i
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and equate it toN . This leads to an implicit equation forτ2 as given by Clayton and Kaldor (1987);
namely

τ2 = 1

N

∑
i

(
Yi + µ2/τ2

ei + µ/τ2
− µ

)2 (
1 + µ

τ2ei

)
. (15)

Equation (15) can be given in equivalent form as a linear combination of theWi , namely

τ2 =
∑

i αi (τ
2)Wi∑

i αi (τ2)
(16)

whereαi (τ
2)−1 = µ/ei + τ2. Note that equations (14)–(16) are fixed-point equations and can be used

constructively to findµ̂ and τ̂2. In particular, letτ̂2
M O,n = ∑

i αi (τ̂
2
M O,n−1)Wi/

∑
i αi (τ̂

2
M O,n−1) for

n = 1, 2, . . . , and anyτ̂2
M O,0 � 0, be a sequence generated by (16). Any estimator fulfilling (15) will

be denoted bŷτ2
M O , and under regularity conditions as discussed in Section 5.4, a sequenceτ̂2

M O,n will
converge to a solution of (16).

5.2 Pseudo-maximum likelihood

Another method was used by Pococket al. (1981), Dean and Lawless (1989) and is mentioned also in
Breslow (1984). The idea is to treatYi as if it were Normally distributed with meanµei and variance
µei + τ2e2

i . The associated log-likelihood is proportional to

L(τ2) = −
∑

i

log(µei + τ2e2
i ) −

∑
i

(Yi − µei )
2

µei + τ2e2
i

and the associated score-equation leads to

∂L

∂τ2
= −

∑
i

e2
i

µei + τ2e2
i

+
∑

i

(Yi − µei )
2e2

i

(µei + τ2e2
i )

2
= 0

which again can be written as a weighted sum of theWi :

τ2 =
∑

i αi (τ
2)Wi∑

i αi (τ2)
(17)

whereαi (τ
2)−1 = (µ/ei + τ2)2. Equation (17) is again a fixed-point equation which can be used

constructively, in the same way as has been described in the previous section. Any estimator fulfilling
(17) will be denoted bŷτ2

P M L . There are similarites between this procedure and the marginal likelihood
method of Hardy and Thompson (1996), in particular the iterative procedures given by their equations
(8) and (9). However, whereas in Hardy and Thompson the variance of each replication is assumed to
be known, in our case the variance in each study has a specific structure, namelyµ/ei , which avoids
such a crucial assumption. In our context,ei is known whilstµ is independent of the replication, and
completely specified if internal indirect standardization is used. Otherwise,µ can simply be estimated
using the pooled or simple mean.
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Fig. 1. Pseudo-log-likelihood for hepatitis data of Berlin.

5.3 Non-iterative as one-step-iterative estimators

The connection between the iterative estimators defined by (15)–(17) and the class of non-iterative
estimatorsτ2 = ∑

i αi Wi/
∑

i αi is surprisingly close. Consider the moment estimator of Breslow–
Clayton–Kaldor, implicitly defined byτ2 = ∑

i αi (τ
2)Wi/

∑
i αi (τ

2), whereαi (τ
2) = (µ/ei + τ2)−1.

If we choose 0 as initial value forτ2, we have that τ̂2
M O,1 = ∑

i ei Wi/
∑

i ei which coincides withτ̂2
2 .

Similarly, the first step of the PML procedure (17) leads toτ̂2
P M L ,1 = ∑

i e2
i Wi/

∑
i e2

i , which is exactly

τ̂2
3 . Finally, one might wonder in which situation̂τ2

1 will occur as a special case ofτ̂2
M O or τ̂2

P M L . In fact,
this occurs as a limiting case whenτ2 is large relative toµ/ei .

5.4 Convergence problems for the iterative estimators

When using procedures which iteratively construct the estimator of interest several issues should be
considered. The first issue is that of an appropriatestarting value. In our case, all procedures were started
with τ2 = 0. One justification can be seen in the previous section where it was shown that with this
starting value the first step coincides with good estimators from the non-iterative family. The second
issue is more crucial: when should we stop the iteration? Conventionally, the iteration is stopped when
two consecutively generated estimates are close to each other, where closeness is defined by some value
ε, in our caseε = 0.000 01. Typically, both iterative procedures converge very quickly, in most cases
reaching the stopping criterion in less than five steps. An example is given in Figure 1, which shows the
pseudo-log-likelihood for the hepatitis B data of Berlin. However, occasionally the iteration slows down,
especially in cases where the pseudo-log-likelihood is rather flat, as in the top panel of Figure 2. Here,
the iteration process might need several hundred iterations. A more disturbing and frequently occurring
problem isnon-convergence, for which an example is provided in the bottom panel of Figure 2. The
reason is here that in the population used in the simulation the heterogeneity varianceτ2 is small, the
pseudo-log-likelihood has no point of stationarity and the maximum occurs at the boundary pointτ2 = 0;
typically the iteration jumps back and forth between two points. This case can be diagnosed easily by
investigating the first derivative of the pseudo-log-likelihood at 0; if it is negative the PML estimator
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Fig. 2. Pseudo-log-likelihood for simulated data, expected counts from hepatitis data of Berlin; data set 1: unique
mode, but flat likelihood, slow convergence of iteration procedure (top); Data Set 2: maximum occurs at boundary
and and log-likelihood has no stationarity point (bottom).

is taken to be 0. Similiar considerations can be undertaken for the fixed-point iteration of the Clayton–
Kaldor procedure. These simple diagnostic devices help to avoid pitfalls during the iteration process.
Though these diagnostic tools do not ensure convergence of the iterative procedure for every potential
constellation of the data, they provide some protection againsttypical causes of non-convergence. In fact,
in the simulation study described in Section 6 the iterative procedure has been executed several million
times with no cases of non-convergence.

5.5 An illustration of all estimators

Here all six estimators, namely the fournon-iterative estimatorsτ̂2
1 , τ̂2

2 , τ̂2
3 , τ̂2

DSL and the twoiterative
estimatorŝτ2

MO andτ̂2
PML, are illustrated for the hepatitis B data of Berlin.
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Table 3.Six estimators of heterogeneity variance illustrated for the
hepatitis B data of Berlin

Non-iterative Iterative
µ estimated by τ̂2

1 τ̂2
2 τ̂2

3 τ̂2
DSL τ̂2

M O τ̂2
P M L

simple 0.5219 0.4857 0.4301 0.5118 0.5207 0.5189
pooled 0.5205 0.4810 0.4226 0.5090 0.5187 0.5163

There is considerable variation in the six estimators. The two iterative estimators appear to be close to
the DerSimonian–Laird estimator andτ̂2

1 , whereas the two non-iterative estimatorsτ̂2
2 andτ̂2

3 appear to be
lower in value. Note that estimatingµ with the pooled mean (no heterogeneity) or the simple mean (large
heterogeneity) seems to have a minor effect on all of the variance estimators.

6. SIMULATION STUDY

Though empirical data are useful in illustrating the behaviour of estimators, they are not helpful
in evaluating their statistical properties. For this purpose a simulation study has been undertaken. The
objective of the simulation study is to compare the fournon-iterative estimatorsτ̂2

1 , τ̂2
2 , τ̂2

3 , τ̂2
DSL and

the twoiterative estimatorŝτ2
M O andτ̂2

P M L with respect to bias, variance and mean square error (MSE).
All six estimators will depend on the value ofµ, which can be taken to beknown (internal indirect
standardization) or unknown. For the latter, we consider thepooled mean estimator̂µ2 = ∑

i Yi/
∑

i ei

and thesimple mean estimator̂µ1 = N−1 ∑
i Yi/ei .

6.1 Design

Wehave considered a mixture of two Poisson distributions. The mixing distributions gives weightp to θ1
and weight 1− p to θ2. Consequently, the marginal density is given by

f (y|e) = pPo(y|θ1, e) + (1 − p)Po(y|θ2, e), y = 0, 1, 2, . . . . (18)

wheree is the number of expected cases associated withy. We fixed the parameter for the first component,
θ1 = 1, leading to the mean and variance of the mixing distribution as

µ = pθ1 + (1 − p)θ2 = p + (1 − p)θ2

τ2 = p(θ1 − µ)2 + (1 − p)(θ2 − µ)2 = (1 − p)p(1 − θ2)
2, (19)

but allowed the meanµ of the mixing distribution to take values 1.5, 2.0, 3.0, 4.0 and 5.0, and the variance
τ2 to take values 0.1, 0.2, 0.5, 1.0 and 2.0. For each pair of values ofµ andτ2, and withθ1 = 1, the
corresponding values ofp andθ2 are

p = τ2

(µ − 1)2 + τ2
(20)

θ2 = (µ − p)/(1 − p). (21)

The SMR is computed by dividing the observed number of cases by the expected number, i.e. SMRi =
yi/ei . The ei are treated as fixed quantities and are usually computed based on an external reference
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population. For this study, theei came from three different sources: (1) the expected cases for the hepatitis
B data in 23 city regions of Berlin in 1995 (Table 1), (2) expected numbers set uniformly in steps from
1.05 to 11, giving exactly 200ei ; and (3) the expected numbers of a data set of perinatal mortality in
the North-west Thames health region, England in the period 1986–90 on the basis of 515 small areas as
discussed by Martuzzi and Hills (1995). For each set ofei , we generated a corresponding set of observed
frequenciesyi using specific parameter combinations ofµ andτ2 as outlined in the next section.

Given the parametersθ1, θ2 and p, we then proceeded to obtain a simulation of the observed
frequencies. For eachei , wefirst generated a random number,u, from the uniform distributionU (0, 1). If
u < p, then we generated a random numberyi from a Poisson distribution with parameterθ1ei ; otherwise,
we generatedyi from a Poisson distribution with parameterθ2ei . After the sample is completedµ andτ2

are estimated using the different methods as discussed in the next section.
There are three situations for the mean, namely the simple meanµ̂ = N−1 ∑N

i=1 yi/ei , the pooled
meanµ̂ = ∑N

i=1 yi/
∑N

i=1 ei , and the case of knownµ. In combination with the six estimators forτ2

conditional onµ, this leads to 18 estimators ofτ2. This process is replicated 10 000 times, and the MSE
and bias are calculated as

Bias= 1

10 000

10 000∑
i=1

τ̂2
i − τ2 (22)

Variance= 1

10 000

10 000∑
i=1

(τ̂2
i − τ̄2)2 (23)

MSE = 1

10 000

10 000∑
i=1

(τ̂2
i − τ2)2. (24)

6.2 Results

An overall picture is provided in Figure 3 where average rankings are taken over all replications and over
all populations considered. For each of the 25 heterogeneity populations studied the six estimators have
been ranked according to their MSE. Since there are many populations some overall measure needs to be
considered: here, the mean rank was chosen. The best estimator is the moment method of Clayton–Kaldor
for the hepatitis Bei , the non-iterative estimator̂τ2

2 for the perinatal mortalityei and for the artificialei .
The worst estimator iŝτ2

3 for the hepatitis Bei , τ̂2
1 for the perinatal mortalityei and for the artificialei .

Note that the Clayton–Kaldor estimator (ranked 1 for the hepatitis B set) is ranking only on 4 for the two
other constellations of theei . It appears that the PML estimator is doing quite well independent of the
constellations of theei : it is ranked 2 in all three constellations. This impression is confirmed to a larger
extent when only populations with large heterogeneity are considered. Here the PML methods ranks 1 in
two constellations, and ranks 2 in the other constellation. More details can be found in thesupplementary
material.

When only the four non-iterative estimators are compared, we find that the Marshall estimatorτ̂2
2 is

perfoming well: it is ranked 1 for two constellations, only for the hepatitis B set ofei is it outperformed by
τ̂2

1 . This is not different for populations with large heterogeneity. Note also that the DerSimonian–Laird
estimatorτ̂2

DSL ranks directly behind the Marshall estimatorτ̂2
2 in all three constellations ofei . Next, we

consider the dependence of the ranking according to the estimation method forµ: it is either assumed
thatµ is known, or estimated by the simple mean, or estimated by the pooled mean. The results do not
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Average Ranking w.r. to MSE
for three Sets of Different Data
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Fig. 3. Average ranking of the six estimators (averaged over all replications and all populations):τ̂2
1 , τ̂2

2 , τ̂2
3 , τ̂2

M O ,

τ̂2
P M L , τ̂2

DSL (from the left to the right).

change qualitatively. This seems to justify a summary averaged over the methods of estimation forµ, as
presented in Figure 3. More details on this point can be found in thesupplementary material.

If the MSE is classified according to the value ofτ2, we can see that the relative performance ofτ̂2
1

improves with increasing heterogeneity. The reason is that in the case of large heterogeneity the weights
(µ/ei + τ2)−1 which combine theWi become more similar, thus makingτ̂2

1 close to the iterative PML
procedure. Again, more details on this point can be found in thesupplementary material.

Which procedure should be chosen? Amongst the iterative procedures, there appears to be evidence to
recommend the PML approach. This iteration should be accompanied by diagnostics for a maximum on
the boundary (negative derivative at 0), which could be done on initialization when the starting value of 0
is used. Alternatively, one might consider a non-iterative estimator, even for reasons of choosing a good
initial value. Here, the Marshall estimator appears to have the best performance. The simulation study
also provides evidence that there is not too much loss in efficiency if this non-iterative estimator is used
in comparison to the PML estimator.
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