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SUMMARY

This paper continues work presented ibHBing et al. (2002b,Annals of the Institute of Satistical
Mathematics 54, 827—839, henceforth BMSRB) where a class of non-iterative estimators of the variance
of the heterogeneity distribution for the standardized mortality ratio was discussed. Here, these estimators
are further investigated by means of a simulation study. In addition, iterative estimators including the
Clayton—Kaldor procedure as well as the pseudo-maximum-likelihood (PML) approach are added in the
comparison. Among all candidates, the PML estimator often has the smallest mean square error, followed
by the non-iterative estimator where the weights are proportional to the external expected counts. This
confirms the theoretical result in BMSRB in which an asymptotic efficiency could be proved for this
estimator (in the class of non-iterative estimators considered). Surprisingly, the Clayton—Kaldor iterative
estimator (often recommended and used by practitioners) performed poorly with respect to the MSE.
Given the widespread use of these estimators in disease mapping, medical surveillance, meta-analysis and
other areas of public health, the results of this study might be of considerable interest.
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1. INTRODUCTION

In a variety of biometric applications, population heterogeneity occurs. In particular, this is the case
if there is good reason to model the variable of inteheshrough a density of parametric forp(y|0)
with a scalar parameté. For a given subpopulation, the densityy|6) might be very suitable, but a
fixed value of6 is not able to cover the whole population of interest. In these situations we speak of
extra heterogeneity, which might be caused by unobserved covariates or clustered observations, such
as herd clustering in estimating animal infection rates. This situation has been discussed in detail in
BMRSB, including a discussion of the background and an illustration of the importance of the problem.
An introductory discussion can also be found in Aitkiral. (1990, p. 213) and the references given there;
see also the review of Pendergeistl. (1996, p. 106) as well as Williams (1982); Lee and Nelder (2000);
Nelder and Lee (1998) and Lachin (2000, p. 147). The current paper is a follow-up to BMSRB. As before,
population heterogeneity means that the parameter of intéregries in the population, but sampling
has not taken this into account, e.g. it has not been observed from which subpopulation (defined by the
values of9) the datum is coming from. To be more precise] i§ itself varying with distributionG and
associated density(0), the (unconditional) marginal density ¥fis f(y) = [, p(y|0)g(0) dd. We are
interested in the separation of variance into two terms:

var(Y) = fo Var(Y|6)g() do + /O (1) — 1v)2g(6) dB )

whereuw(9) = E(Y|0) anduy = [ yf (y) dy is the marginal mean of. Note thatuy = Eg(u()). Note
that we can also write (1) as

Var(Y) = Eg(c%(6)) + Varg (1(8))

In the sequel we will also denote \&(u(0)) by 13. Thus, (1) is a partitioning of the variance into
components due to the variation in the subpopulation with parameter galaesraged ove®, and
due to the variance in the heterogeneity distribut®nOne can also think of (1) as an analysis-of-
variance partition with a latent factor having distributi@h We have to distinguish carefully between
threedistributional schemes when computing moments. For exampl€Y Vegfers to the unconditional or
marginal variance and is computed using the marginal derfigity, Var(Y|6) is theconditional variance
and is computed using the conditional dengity|6), and Vag (1 (9)) refers to the distributios of 6.

In BMSRB a class of estimators fmﬁ were suggested without implying knowledge of, or estimating, the
latent heterogeneity distributid®. The idea behind all the estimators involves re-writing (1) as

Varg (u(9)) = ¢ = Var(Y) — Eg(a2(6)). @)

Replacing VafY) andEgo?(9) on the right-hand side of (2) by their respective sample estimates we can
obtain estimates for2. In the succeeding text, we will ugeas the mean of andz? for its variance.

As a simple example, leY1, Yo, ..., Yy be a random sample of Poisson counts, @@/0) =
exp(—6)0Y/y!. Then,o2(9) = 6, Ego?(9) = Eg(0) = 1 = E(Y) andt = 2. Note that VacY)
can simply be estimated b§? = 11 YL (Yi — Y)2 and i« by Y. Therefore, according to (2), an
estimator ofr2 is provided ag2 = S*—Y. This quantity has also been suggested as a measure of Poisson
overdispersion (Bhning, 1994). Note the (r2) = 2.

In the next section we consider a generalization of this idea to the standardized mortality ratio. In
Section 3 we discuss a more general class of linear unbiased estimators of the heterogeneity variance
which have been suggested in BMSRB. Section 4 discusses an extension to the case whengheisnean
needs to be estimated, including an appropriately adjusted version of the DerSimonian and Laird (1986)
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estimator. Section 5 introduces two iterative estimators. The first one was suggested by Breslow (1984)
and later utilized by Clayton and Kaldor (1987) whereas the second one was suggested byePalcock
(1981) and later discussed by Dean and Lawless (1989). Close connections of these iterative estimators
to the non-iterative estimators used in Section 3 are demonstrated. Section 6 discusses the design and
analysis of a simulation study to compare these six estimators of the heterogeneity variance.

2. THE STANDARDIZED MORTALITY RATIO

We consider a special, but important case. ¥etY», ..., Yy be a sample of counts representing a
sequence of mortality or morbidity cases. Associated with each replicdtisna deterministic quantity
g which represents an expected count and is usually calculated on the basis of an external reference
population.

2.1 Indirect standardization

To be more specific about thisdirect method of standardization (see also Woodward, 1999), lef be

the mortality or morbidity rate (cases divided by the number at risk) in age gyoofpthe reference
population. Furthermore, let;; be the number at risk in age groypin replicationi in the sample. To

think of an example, the replicatiancould represent a certain region or year of interest for a given
country. Theng is simply defined as the expected number of cases in the study population replication
when the mortality rates of the reference population are valid, namelyzle nijAj, whereJ is the

number of age groups. This form of indirect standardization is caltesminal. Sometimes the reference
population is not readily available and needs to be constructed. This can be accomplished as follows. Let
Yij denote the number of cases in age grguand replicationi of the study population. Then, define

A= ZiN:]_Yij/ZiN:]_ nij as the ratio of the averages of observed cases and numbers at risk over all
replications in age group. To compute theg we proceed as above, namey = Zle nijij, where

now estimates of the rates of the reference population are used. This form of indirect standardization is
calledinternal. The major difference between internal and external indirect standardiziation lies in the
fact that in the internal method the mortality rates of the ‘reference’ population are constructed from the
replications in the study population. Although both methods of indirect standardization are quite similar,
there is one pecularity of the internal method which needs to be pointed out. It follows directly from the
construction that the sum of the observed counts is equal to the sum of the constructed, expected counts,
namely

Za =Z;nii [ZW/Z”U} ZJZiZYij =ZYi

whereY; = Zj Yij and, from here}"; Yi/ Y, & = 1. This implies that the marginal mean of the ratios
Yi /g is fixed to 1.

2.2 Définition and properties

With the help of these numbers one can define the standardized mortality ratio as SMRY; /g
and its expected valuE(SMR; |6;) = 6;, fori = 1,..., N. Frequently, this sample is associated with
N geographic regions or areas, as often arisedisease mapping. For an introduction to this field see
Bohning (2000) or Lawsost al. (1999).
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Furthermore, conditional on the value @fa Poisson distribution is assumed f6{9: p(y; |0, §) =
exp(—0¢g)(0g)Y /y;!. For this case, the partition of variance (1) takes the form

Var(Y;) = Eg(c%(9)) + Varg (ui () = &6 Eg(0) + € Varg () = e u + €12 ®)

2.3 Smple estimators of the heterogeneity variance

Wewrite (3) asE(Y; — & 1)? = & + €?t2, which draws our attention to the variaté = %.
Since VarY;) = E(Y; — g n)?, it follows from (3) that

E(W) =12 @)

One estimate of 2 replaces VafY;) by its ‘estimate’(Y; — g 1), solves forr? and then averages ovier
to give

; —%[Z(Y.—am /e - uZ } (5)

For asecond estimate, we first divide byin (3) , then average ovérand solve forr2 to give

2 YL —ew?/e —uN
2= (6)
ZI la
A third possibility is to average overin (3), and then solve for? to give
N 2
22 YLt —ew?—uyll 18
Kl (7)

ZI 1%2

All three estimators coincide if thg coincide, and all three are unbiased.

2.4 The connection to empirical Bayes estimators

A further motivation for studying estimation of the heterogeneity variarfas in the context of Bayes
estimators for the standardized mortality ratio (SMR). Assuming a Gamma distributi§ntfog posterior

distribution of6; is again a Gamma distribution with posterior m@g%? = 21"72/;22, which is called an
Empirical Bayes estimator fa¥ . This is alsothe best linear Bayes estimator (for details see Bhning,

2000, pp. 152-157). Empirical Bayes estimators are considered to be superior to the crude SMR, as they
help to avoid the occurence of artefacts as described by Clayton and Kaldor (1987), in particular when the
number of cases per replication is small. Empirical Bayes estimators allow a direct interpration in terms
of populationheterogeneity in that they coincide with the crude SMR if there is strong heterogeneity (

large) and coincide with the overall mean if there is no heterogenetty=( 0). Thus, one can think of

2 as asmoothing parameter. To use the Empirical Bayes estimators in practice, one needs to replace the
theoretical parameters by estimates, which can be obtained by the methods suggested here.
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3. NON-ITERATIVE ESTIMATORS

3.1 Ageneral class

The estimators given in the previous section are special cases of a more general Icheess ofhbiased
estimators of 72:

N
! W
T(W, ) = 42'11“' | ®)
i=1Yi
for any non-random, non-negative numbegsasy, ..., an. It iseasy to verify thaty, = 1/N, o = g,

ande; = € lead to the estimator?, £7 and £2, respectively. The choice; = 1/N is mentioned in
Bohning (2000), whereag = g is suggested by Marshall (1991) and mentioned in Lachin (2000, p. 325),
ande; = el2 is mentioned in Bautista (1997). Asymptotic properties of these estimators are considered in
Moore (1986) and Gourierouet al. (1984). Asymptotic efficiency ofzz has been established in BMSRB.

The estimatoiT (W, «) requires knowledge of the overall meanThis assumption is often satisfied
since the SMRare indirectly standardized in such a way thatYi/ > "; & = 1. If the overall mean is
unknown, it could be estimated By; Yi/ Y &.

3.2 Example 1: hepatitis B in Berlin

To illustrate the estimators, we consider two examples. Table 1 gives the observed and expected
numbers of hepatitis B cases in the 23 city regions of Berlin for the year 1995. Here, we find
that); Yi/> ;& = 1.019 (external method of indirect standardization). A conventigefatest for
homogeneity is given by 2 = Y — ue)?/(ue). If wereplaceu by i = >uYi/ > e = 1.019,

we getx? = 19352, clearly indicating heterogeneity. Assuming for this illustration jas fixed we
obtain#2 = 0.5205,72 = 0.4810 andz? = 0.4226. This indicates rather high heterogeneity since
Va@R) = ﬁ > i (SMR —SMR)? = 0.6234. Note that using a correct estimate of variance leads

to an increased length for a 95% confidence intervalufaronstructed ag + 1.96,/ Var(i1) where 1
corresponds to the pooled estimator. To see this we look &fiVae u/(3; &) + 72 > eiz/(zi g)2.
Obviously, the conventional textbook variance formula occurs witeis set to 0 andu is estimated

by the pooled mead’; Yi/ > &, namelyVar(i) = Y Yi/(Q_; & )2. For details, see Woodward (1999,

p. 162). Now, if heterogeneity is present the variance will be underestimated and the associated confidence

intervals too small. The length of the correct interval will depend on thewfay estimated, as illustrated
in Table 2. Assessment of the relative merits of different estimator$ isf therefore important.

3.3 Example 2: perinatal mortality in the North-west Thames health region

We consider as a second example the small-area data of Martuzzi and Hills (1995) on perinatal mortality in
the North-west Thames health region in England based on the 5-year period 1986—-90. The region consists
of 515 small areas. The data (provided by Marco Martuzzzi) are listed in Table 1 sfighkeementary

material. In this case)) ; Yj = > ;& = 2051 (internal method of indirect standardization). We find

that 2 = —0.0273, which we replace by zer6 = 0.0168 and?? = 0.0370. There is small

heterogeneity present in the data which is indicated by the f%uva@R) , whereVar(SMR) =
71 i (SMR —SMR)? = 0.6058.
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Table 1.Observed and expected hepatitis B
cases in the 23 city regions of Berlin, 1995

Areai Y g Areai Y] g
1 29 10.7121 13 15 8.3969
2 26 17.9929 14 11  15.6438
3 54 18.1699 15 11 11.8289
4 30 19.2110 16 2 99513
5 16 21.9611 17 2 10.8313
6 15 14.6268 18 9 18.3404
7 6 9.6220 19 2 51758
8 3H 17.2671 20 3 10.9543
9 17 18.8230 21 11 20.0121
10 7 18.2705 22 5 13.8389
11 43 32.1823 23 2 12.7996

12 17 24.5929 -
Source: Berlin Census Bureau

Table 2.Estimators of heterogeneity variance, variance
of pooled mean with 95% confidence interval for w

rjz Var(Z) 95% Confidence interval

j

1 0.5205 0.0286 (0.6875, 1.3505)

2 0.4810 0.0267 (0.6990, 1.3389)

3 0.4226 0.0238 (0.7169, 1.3211)
Conventional 0 0.0028 (0.9149, 1.1231)

3.4 Anestimator of heterogeneity variance according to Der Smonian—Laird

In this section the DerSimonian—Laird estimator is considered in its general form. Suppose that a random
samplexy, Xa, .. ., X Of sizek is available with associated varianags v2, ..., v2. In ameta-analytic

setting this sample would represent a collectiorkahdependent studies for which within studya
statisticx; is measured with standard erngr. Then the following result holds:

K k k
Ex?)=k-1+7° (Zwi —Zw?/Zm) ©)
i=1 i=1 i=1
wherew; = 1/v2, x2 = YK wi(x — 0?2 andjt = YK wixi/ YK, wi. The proof is along the lines
of the proof given in Bhning (2000) where the simpler case= o2 is considered. Equating the expected
value (9) to the empirical observed-value leads to thenoment estimator

2 _ x*— (k=1
DSL — :
Yr g wi — Yy wd/ Y w

Note that the estimator (10) imbiased by construction. This result is unaffected by the distributional
properties of thec2-statistic. It was originally developed by DerSimonian and Laird (1986) for the case
of Normally distributed effect measures withown variances. Because of this tradition we refer to the
estimator (10) as the DerSimonian—Laird (DSL) estimator.

(10)
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3.4.1 Thecaseof SMRs. Suppose that; = Y; /g whereg is known,Y; follows a Poisson distribution
with parameteig ¢ andé follows a distributionG with meany and variancer2. Then the conditional,
population averaged variamngar(SMRi |0) dd = Eg Var(SMR; |9) of X; = SMR; is

v2 = Eg Var(SMR, 0) = u/8. (11)

When estimatinge in (11) one could use either the pooled or simple mean estimate. Details of using the
DSL estimator in the context of SMR data can be found @inBinget al. (2002a).

4. ESTIMATING HETEROGENEITY MEAN AND VARIANCE

In many situations, it is not appropriate to assume thatknown. Therefore, we have to replacén
W by an estimatgt, leading to

Yi —a)? — e
W) = agz) i (12)

Although we might consider only linear unbiased estimatofer ., Wi (1) is not necessarily unbiased
for 2. This will lead to bias inT (W(/1), «). The bias will depend on the form @f{(W (i), o) as well as
on 1 itself. Typically, two mean estimators are considered: the arithmetic fhgan N1 > Yi/e and
the pooled meaji> = ) ; Yi/ Y ; &. In Bohning (2000) the estimators

R R 1 N R 2 2 . 1 N
By = | o —ea?/e | — iy D

i=1 i=1

(13)

D| =

for | = 1,2 were considered. It was shown th%ft(;ll) is unbiased whereasflz(/lz) is biased, hence
22(ju1) may well be preferred.

Let us consider the efficient estimation qofi. Consider the sample of SMR values
Yi/€e1, Yo, €2, ..., Yn/€N- According to Section 2 we have that V8MR) = u/g + 72, Therefore,
the best linear unbiased estimator fois given as

YiLi(/e + 3L SMR
YiLi(u/e + 1)1
which can also be derived from the quasi-likelihood approach. Note that#f 0, (14) coincides with
f2 = > Yi/ > &, whereas as? — oo, (14) approacheg, = % > i SMR. Otherwise, (14) will

depend on the value af. In the following sections we consider other ways to estimate

j= (14)

5. ITERATIVE ESTIMATORS
5.1 Moment estimators for t2

Breslow (1984) suggested a moment estimator fdvased on the chi-square statistic. This was later used

by Clayton and Kaldor (1987). Though they started out with a maximum likelihood approach based upon
aPoisson—Gamma model, they used the moment estimator in the estimation algorithm, probably because
of the numerical complexities involved in the Gamma-function. In the light of DerSimonian and Laird
(1986), define

N 2
2 (Yi —ue)
g ;/xa + 12
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and equate it td\. This leads to an implicit equation far® as given by Clayton and Kaldor (1987);
namely

2
1 Y + p?/t? I
2 i
== _— - 1+ —). 1

' NZ(Q+M/f2 a "% o)

Equation (15) can be given in equivalent form as a linear combination Miheamely
2 _ Zi (&4 (TZ)VVi (16)

Zi Qi (72)

wherea; (t2)~1 = /g + 2. Note that equations (14)—(16) are fixed-point equations and can be used
constructively to findi and 2. In particular, lett o, = > ai (T 0 n_0)W/ X @i (£ n1) for
n=122...,and anyf,\zﬂ 0020 be a sequence generated by (16). Any estimator fulfilling (15) will

be denoted by?,\z,lo, and under regularity conditions as discussed in Section 5.4, a seqff%gpwill
converge to a solution of (16).

5.2 Pseudo-maximum likelihood

Another method was used by Pocogtkal. (1981), Dean and Lawless (1989) and is mentioned also in
Breslow (1984). The idea is to tre# as if it were Normally distributed with meane and variance
ne + 2e?. The associated log-likelihood is proportional to

(Yi — ug)?
L(z?) = =) log(ue +°€)) =y ———=
(T ZI: 10% 8 Zi:,l/«a‘f‘l'z%z

and the associated score-equation leads to

L e (Yi — pug)’e
WZ—Z + =0

— e+ 726 G (ne 122
which again can be written as a weighted sum of\he

2 _ LidiTHW a7
Zi Qi (72)
wherea; (t9)~1 = (u/g + 272 Equation (17) is again a fixed-point equation which can be used
constructively, in the same way as has been described in the previous section. Any estimator fulfilling
(17) will be denoted b)f,?,ML. There are similarites between this procedure and the marginal likelihood
method of Hardy and Thompson (1996), in particular the iterative procedures given by their equations
(8) and (9). However, whereas in Hardy and Thompson the variance of each replication is assumed to
be known, in our case the variance in each study has a specific structure, nam@lywhich avoids
such a crucial assumption. In our contest,is known whilstu is independent of the replication, and
completely specified if internal indirect standardization is used. Otherwigan simply be estimated
using the pooled or simple mean.
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Fig. 1. Pseudo-log-likelihood for hepatitis data of Berlin.

5.3 Non-iterative as one-step-iterative estimators

The connection between the iterative estimators defined by (15)—(17) and the class of non-iterative
estimatorst? = Y aiWi/ Y i is surprisingly close. Consider the moment estimator of Breslow—
Clayton—Kaldor, implicitly defined by? = 3 ai (t)Wi/ 3, @i (t2), wherea; (1) = (u/6 + t2) 7%

If we choose 0 as initial value far?, we have thatf,%,,o’l = i &éW/ Y & which coincides withz2.
Similarly, the first step of the PML procedure (17) leads#g, , = Y W/ Y_; €, which is exactly

2. Finally, one might wonder in which situaticif will occur as a special case 6§, or 73,,, . In fact,

this occurs as a limiting case whefis large relative tqu/g .

5.4 Convergence problems for the iterative estimators

When using procedures which iteratively construct the estimator of interest several issues should be
considered. The first issue is that of an appropmsteing value. In our case, all procedures were started

with 72 = 0. One justification can be seen in the previous section where it was shown that with this
starting value the first step coincides with good estimators from the non-iterative family. The second
issue is more crucial: when should we stop the iteration? Conventionally, the iteration is stopped when
two consecutively generated estimates are close to each other, where closeness is defined by some value
€, inour casec = 0.00001. Typically, both iterative procedures converge very quickly, in most cases
reaching the stopping criterion in less than five steps. An example is given in Figure 1, which shows the
pseudo-log-likelihood for the hepatitis B data of Berlin. However, occasionally the iteration slows down,
especially in cases where the pseudo-log-likelihood is rather flat, as in the top panel of Figure 2. Here,
the iteration process might need several hundred iterations. A more disturbing and frequently occurring
problem isnon-convergence, for which an example is provided in the bottom panel of Figure 2. The
reason is here that in the population used in the simulation the heterogeneity varfaiscemall, the
pseudo-log-likelihood has no point of stationarity and the maximum occurs at the boundary?peifx;

typically the iteration jumps back and forth between two points. This case can be diagnosed easily by
investigating the first derivative of the pseudo-log-likelihood at O; if it is negative the PML estimator



70 D. BOHNING ET AL.

-200 —

-300 —

-400 —

-500 —

-600 —

-700 —

Pseudo-Log-Likelihood

-800 —

[
o
-

o

D

-100 —

-110 —

-120 —

-130 —

-140 -

-150 —

Pseudo-Log-Likelihood

-160 —

2 3 4
D

o
e
[87]

Fig. 2. Pseudo-log-likelihood for simulated data, expected counts from hepatitis data of Berlin; data set 1: unique
mode, but flat likelihood, slow convergence of iteration procedure (top); Data Set 2: maximum occurs at boundary
and and log-likelihood has no stationarity point (bottom).

is taken to be 0. Similiar considerations can be undertaken for the fixed-point iteration of the Clayton—

Kaldor procedure. These simple diagnostic devices help to avoid pitfalls during the iteration process.

Though these diagnostic tools do not ensure convergence of the iterative procedure for every potential
constellation of the data, they provide some protection aggipisgl causes of non-convergence. In fact,

in the simulation study described in Section 6 the iterative procedure has been executed several million
times with no cases of non-convergence.

5.5 Anillustration of all estimators

Here all six estimators, namely the fonon-iterative estimatorst?, £2, t2, 25, and the twoiterative
estimatorsg, andz3, , are illustrated for the hepatitis B data of Berlin.
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Table 3.Sx estimators of heterogeneity variance illustrated for the
hepatitis B data of Berlin

Non-iterative Iterative
: =7 =7 =7 =7 ) =7
m estllmated by 7] 5 T3 THg Mo TEML
simple 0.5219 0.4857 0.4301 0.5118 0.5207 0.5189
pooled 0.5205 0.4810 0.4226 0.5090 0.5187 0.5163

There is considerable variation in the six estimators. The two iterative estimators appear to be close to
the DerSimonian—Laird estimator aﬁﬁ, whereas the two non-iterative estimatﬁfsandfg appear to be
lower in value. Note that estimatingwith the pooled mean (no heterogeneity) or the simple mean (large
heterogeneity) seems to have a minor effect on all of the variance estimators.

6. SMULATION STUDY

Though empirical data are useful in illustrating the behaviour of estimators, they are not helpful
in evaluating their statistical properties. For this purpose a simulation study has been undertaken. The
objective of the simulation study is to compare the faan-iterative estimatorst?, 2, £2, 735, and
the twoiterative estimatorsff—,lo andf,%ML with respect to bias, variance and mean square error (MSE).

All six estimators will depend on the value of, which can be taken to bknown (internal indirect
standardization) or unknown. For the latter, we consideiptiibed mean estimatofio = > ; Yi/ > i &
and thesimple mean estimatofi; = N1 YiYi/a.

6.1 Design
We have considered a mixture of two Poisson distributions. The mixing distributions gives vpetight
and weight 1— p to 82. Consequently, the marginal density is given by
f(yle) = pPo(y|f1,€) + (1 — p)Po(y|f2,€),y=0,1,2,.... (18)

whereeis the number of expected cases associatedyvitie fixed the parameter for the first component,
01 = 1, leading to the mean and variance of the mixing distribution as

w=po1+A—-po2=p+1—-po

2= pB— >+ 1L — p)2 — w)? = (1 - p)p(l — 62)%, (19)

but allowed the meagp of the mixing distribution to take valuessl 2.0, 3.0, 4.0 and 50, and the variance
72 to take values @, 0.2, 0.5, 1.0 and 20. For each pair of values qf andz2, and withd; = 1, the
corresponding values ¢f and6, are

72

R i, (20)

p

02 =(u—p/1L-p). (21)

The SMR is computed by dividing the observed number of cases by the expected number, j.e- SMR
yi/&. The g are treated as fixed quantities and are usually computed based on an external reference
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population. For this study, th& came from three different sources: (1) the expected cases for the hepatitis

B data in 23 city regions of Berlin in 1995 (Table 1), (2) expected numbers set uniformly in steps from
1.05 to 11, giving exactly 20@; and (3) the expected numbers of a data set of perinatal mortality in
the North-west Thames health region, England in the period 1986—90 on the basis of 515 small areas as
discussed by Martuzzi and Hills (1995). For each seg pive generated a corresponding set of observed
frequenciesy; using specific parameter combinationgoéndz? as outlined in the next section.

Given the parameterg;, 6, and p, we then proceeded to obtain a simulation of the observed
frequencies. For ead, wefirst generated a random numbeyfrom the uniform distributiotd (0, 1). If
u < p, then we generated a random numigefirom a Poisson distribution with parametgg ; otherwise,
we generateg; from a Poisson distribution with parameteg . After the sample is completgd andt?
are estimated using the different methods as discussed in the next section.

There are three situations for the mean, namely the simple feanN—1 Zi’\‘zl yi /&, the pooled
meani = YN, vi/ YN, &, and the case of knowp. In combination with the six estimators fof
conditional onu, this leads to 18 estimators of. This process is replicated 10 000 times, and the MSE
and bias are calculated as

1 10000 ) )

10000

Yo @r -2 (23)
i=1

1
Vari -
ariance= 10000

1 10000

MSE= —— 2 12)2, 24
100002“I ™ (24)

6.2 Results

An overall picture is provided in Figure 3 where average rankings are taken over all replications and over
all populations considered. For each of the 25 heterogeneity populations studied the six estimators have
been ranked according to their MSE. Since there are many populations some overall measure needs to be
considered: here, the mean rank was chosen. The best estimator is the moment method of Clayton—Kaldor
for the hepatitis By, the non-iterative estimattfrz2 for the perinatal mortalitg and for the artificiaky .
The worst estimator i§32 for the hepatitis By, flz for the perinatal mortalityy and for the artificialk .
Note that the Clayton—Kaldor estimator (ranked 1 for the hepatitis B set) is ranking only on 4 for the two
other constellations of the. It appears that the PML estimator is doing quite well independent of the
constellations of the;: it isranked 2 in all three constellations. This impression is confirmed to a larger
extent when only populations with large heterogeneity are considered. Here the PML methods ranks 1 in
two constellations, and ranks 2 in the other constellation. More details can be foundupphementary
material.

When only the four non-iterative estimators are compared, we find that the Marshall esﬁﬁﬂﬂor
perfoming well: it is ranked 1 for two constellations, only for the hepatitis B set isfit outperformed by
flz. This is not different for populations with large heterogeneity. Note also that the DerSimonian—Laird
estimatorfEZ,SL ranks directly behind the Marshall estimaﬁﬁrin all three constellations @& . Next, we
consider the dependence of the ranking according to the estimation methedifds d@ther assumed
that i is known, or estimated by the simple mean, or estimated by the pooled mean. The results do not
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Average Ranking w.r. to MSE

for three Sets of Different Data

| Taul @Tau2 CTau3 CIMomentmPseudo-MLEIDSL |

Average Ranking
w
]

Hepatitis B NWTHD Atrtificial

Fig. 3. Average ranking of the six estimators (averaged over all replications and all populatfaréd; £2, 2, .
23\, t3sL (from the left to the right).

change qualitatively. This seems to justify a summary averaged over the methods of estimatipasfor
presented in Figure 3. More details on this point can be found isupgementary material.

If the MSE is classified according to the valuewdt we can see that the relative performancefﬁf
improves with increasing heterogeneity. The reason is that in the case of large heterogeneity the weights
(/& + t2)~1 which combine theé\i become more similar, thus makirig close to the iterative PML
procedure. Again, more details on this point can be found irstpplementary material.

Which procedure should be chosen? Amongst the iterative procedures, there appears to be evidence to
recommend the PML approach. This iteration should be accompanied by diagnostics for a maximum on
the boundary (negative derivative at 0), which could be done on initialization when the starting value of 0
is used. Alternatively, one might consider a non-iterative estimator, even for reasons of choosing a good
initial value. Here, the Marshall estimator appears to have the best performance. The simulation study
also provides evidence that there is not too much loss in efficiency if this non-iterative estimator is used
in comparison to the PML estimator.

ACKNOWLEDGEMENTS

This research was done under support ofGieeman Research Foundation. The authors would like to
express their gratitude to an unknown referee as well as to the editor Peter Diggle.

REFERENCES

AITKIN, M., ANDERSON D., FRANCIS, B. AND HINDE, J. (1990). Satistical Modelling in GLIM. Oxford:
Clarendon.



74 D. BOHNING ET AL.

BAUTISTA, O. M. (1997). Analysis of overdispersed Poisson cobmaictoral Dissertation, UMI, Ann Arbor.
BOHNING, D. (1994). A note on a test for Poisson overdispersiiometrika 81, 418—419.

BOHNING, D. (2000).Computer-Assisted Analysis of Mixtures and Applications. Meta-Analysis, Disease Mapping,
and Others. Boca Raton, FL: Chapman and Hall/CRC.

BOHNING, D., DIETZ, E., SCHLATTMANN, P., VIWATWONKASEM, C. AND BIGGERI, A. (2002a). Some general
points in estimating heterogeneity variance with the DerSimonian—Laird estirBadatatistics 3, 445-457.

BOHNING, D., MALZAHN, U., SAROL, J., RATTANASIRI, S.AND BIGGERI, A. (2002b). Efficient non-iterative and
nonparametric estimation of heterogeneity variance for the standardized mortalityAreits of the Institute of
Satistical Mathematics 54, 827—-839.

BRESLOW, N. E. (1984). Extra-poisson variation in log-linear modeépplied Satistics 33, 38—44.

CLAYTON, D. AND KALDOR, J. (1987). Empirical Bayes estimates of age-standardized relative risks for use in
disease mappindRiometrics 43, 671-681.

COLLET, D. (1991).Modelling Binary Data. Boca Raton, FL: Chapman and Hall/CRC.

DEAN, C.AND LAWLESS, J. F. (1989). Comments 0An extension of quasi-likelihood estimation by Godambe and
ThompsonJournal of Statistical Planning and Inference 22, 155-158.

DERSIMONIAN, R. AND LAIRD, N. (1986). Meta-analysis in clinical trial€ontrolled Clinical Trials 7, 177-188.

GOURIEROUX, C., MONFORT, A. AND TROGNON, A. (1984). Pseudo maximum likelihood methods: theory.
Econometrica 52, 681—-700.

HAIGHT, F. A. (1967).The Handbook of the Poisson Distribution. New York: Wiley.

HARDY, R. J.AND THOMPSON S. G. (1996). A likelihood approach to meta-analysis with random eff@asistics
in Medicine 15, 619-629.

LACHIN, J. M. (2000).Biostatistical Methods. The Assessment of Relative Risks. New York: Wiley.

LEE, Y. G.AND NELDER, J. A. (2000). Two ways of modelling overdispersion in non-normal d&pplied Satistics
49, 591-598.

LAWSON, A., BIGGERI, A., BOHNING, D., LESAFFRE E., VIEL, J.-F. AND BERTOLLINI, R. (1999). Disease
Mapping and Risk Assessment for Public Health. New York: Wiley.

MARSHALL, R. J. (1991). Mapping disease and mortality rates using empirical Bayes estimfgptsed Satistics
40, 283-294.

MARTUZZI, M. AND HILLS, M. (1995). Estimating the degree of heterogeneity between event rates using likelihood.
American Journal of Epidemiology 141, 369-374.

MooRE D. F. (1986). Asymptotic properties of moment estimators for overdispersed counts and proportions.
Biometrika 73, 583-588.

NELDER, J. A.AND LEE, Y. G. (1998). Joint modelling of mean and dispersidechnometrics 40, 168—171.

PENDERGAST, J. F., &NGE, S. J., NWTON, M. A., LINDSTROM, M. J., RALTA, M. AND FISHER, M. R. (1996).
A survey of methods for analyzing clustered binary response laftseanational Satistical Review 64, 89-118.

Pocock, S. J., Cook, D. G. AND BERESFORD S. A. A. (1981). Regression of area mortality rates on
explanatory variables: what weighting is appropriafgplied Satistics 30, 286—295.

WOODWARD, M. (1999).Epidemiology. Sudy Design and Data Analysis. Boca Raton, FL: Chapman and Hall/CRC.
WiLLiamMs , D. A. (1982). Extra-binomial variation in logistic linear modefgplied Statistics 31, 144-148.

[Received June 10, 2002; first revision December 12, 2002; second revision June 5, 2003;
accepted for publication June 23, 2003]



