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SUMMARY

In this paper we consider estimating heterogeneity variance with the DerSimonian–Laird (DSL)
estimator as typically used in meta-analysis. In its general form the DSL estimator requires inverse
population-averaged study-specific variances as weights, in which case the estimator is unbiased. It
has become common practice, however, to use estimates of the study-specific variances instead of their
population-averaged versions. This can lead to considerable bias. Simulations illustrate these findings.
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1. INTRODUCTION

Weare interested in the following simple two-level model. Letf (x, θ, σ 2) denote a parametric density
for some random quantityX whereθ is a parameter of interest andσ 2 is a nuisance parameter which might
or might not be present in the model. Typically,f could be a normal density in which case a nuisance
parameter (variance) is present orf could be the binomial in which case the conditional variance would
be specified by the parameter of interest Var(X|θ, n) = θ(1−θ)/n. Note that is important to emphasize at
this stage that moments are computed with respect to theconditionaldistribution given the parametersθ
andσ 2, typically E(X|θ) = θ and Var(X|θ, σ 2) = σ 2v(θ), wherev(θ) is a known function depending
on θ only.

In the second step, it is assumed thatθ is not constant, but is varying itself according to some not
further specified distributionP for which only the momentsEP(θ) = µ and VarP(θ) = τ2 are assumed to
exist. Consequently, we are led to amarginalor unconditionaldistribution f (x, P) = ∫

f (x, θ)P(dθ). It
is easy to show that the unconditional mean, e.g. the mean with respect tof (x, P), is E(X) = EP(θ) = µ
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446 D. BÖHNING ET AL.

and also the unconditional variance

Var(X) =
∫

Var(X|θ, σ 2)P(dθ) + VarP(θ) = σ 2
∫

v(θ)P(dθ) + VarP(θ) (1)

or simply

Var(X) = ν2 + τ2. (2)

Equation (1) is called thelatent decomposition of varianceconsisting of two terms. The first one,
ν2 = σ 2

∫
v(θ)P(dθ), represents the variation conditional on the value ofθ , and then averaged overθ .

The second term,τ2 = VarP(θ), represents the variation ofθ itself. The decomposition is calledlatent,
because outcomes from the (latent) distributionP are not observed directly. A classical example consists
of assuming the conditional distribution ofX to be normal with meanθ and varianceσ 2, the latter assumed
to be known. In this case, we have thatv(θ) = 1, and consequently,ν2 = ∫

Var(X|θ, σ 2)P(dθ) = σ 2 =
Var(X|θ, σ 2), and the latent variance decomposition is simply Var(X) = σ 2 + τ2. Note that in this
important butspecialcase population-averaged and conditional variance coincide. It is usually this setting
for which the DerSimonian–Laird (DSL) estimator is considered (see Brockwell and Gordon, 2001).
Suppose that a random samplex1, x2, . . . , xk of sizek is available with associated (known) variances
σ 2

1 , σ 2
2 , . . . , σ 2

k . In a meta-analytic setting this sample would represent a collection ofk independent
studies, and in each study a statisticxj is measured with (known) standard errorσ j , j = 1, . . . , k. Then
the DSL estimator is given as (DerSimonian and Laird, 1986)

τ̂2 = χ2 − (k − 1)∑k
i =1 wi − ∑k

i =1 w2
i

/∑k
i =1 wi

(3)

wherewi = 1/σ 2
i , χ2 = ∑k

i =1 wi (xi − µ̂)2, andµ̂ = ∑k
i =1 wi xi

/∑k
i =1 wi . Note that the estimator (3)

is unbiasedby construction. Since (3) can attain negative values atruncatedversion is considered,̂τ2+ =
max{0, τ̂2}, which is no longer unbiased. However, bias will only occur in situations close to homogeneity
for which the estimator of heterogeneity variance is of diminished interest. In fact, Brockwell and Gordon
(2001) suggest a ‘Q-based method’ in which the DSL estimator is considered only when theχ2-statistic
is significant at the 5% level of theχ2-distribution with(k − 1) degrees of freedom. In this case,χ2 is
necessarily larger than its theoretical expected value(k − 1), and (3) is positive.

However,two issues are of more concern.

• The first issue has to do with the frequently occurring fact that the variances are not known, but rather
estimateŝσ 2

i , i = 1, . . . , k are used in the construction and (3) becomes

τ̂2 = χ2 − (k − 1)∑k
i =1 ŵi − ∑k

i =1 ŵ2
i

/∑k
i =1 ŵi

(4)

whereŵi = 1/σ̂ 2
i , χ2 = ∑k

i =1 ŵi (xi − µ̂)2, and µ̂ = ∑k
i =1 ŵi xi

/∑k
i =1 ŵi . The estimator given

in (4) (untruncated) is no longer unbiased. Brockwell and Gordon (2001, p. 837) write

For both the fixed and random effects methods, inference is carried out ignoring the
sampling errors in the individual study variances. Estimated valuesσ̂ 2

i are used without
modification to the form of̂µ, its variance or distribution.

In fact, the inferential problem of replacing variance parameters by their estimates has been observed
by several authors. Senn (2000) writes
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Consider the case where there are many small, equally sized centers and homoscedasticity
applies. The optimal approach is to weight the centers equally. Fixed-effects meta-analysis
will weight inversely proportional to the observed variance. In so doing it will produce an
estimator whose true variance is higher than that produced by equal weighting, but which
will appear to be lower [x . . . ]. As a consequence the associated significance tests and
confidence intervals will be anticonservative.

Similarly, Böhning and Sarol (2000) show that for the multicentre study the optimally weighted
estimate of risk difference loses its optimality when the weights are replaced by their centre estimates
and other (non-random) weights outperform the former one.

• The second issue is concerned with the fact that frequently outcome measures of interest have
conditional variances that are functions of the parameter of interest. Consider as a simple example
the standardized mortality ratio SMR= X/e, wheree is the number of expected cases computed
from an external reference population. It is not unusual to assume a conditional Poisson distribution
for X with parametereθ , so thatE(X|θ, e) = eθ equals the conditional variance Var(X|θ, e) = eθ , or
E(SMR|θ, e) = θ and Var(SMR|θ, e) = θ/e. Now, incontrast to the normal case, we yield a different
result when taking the population averaged valueν2 = σ 2

∫
v(θ)P(dθ) = µ/e. To demonstrate the

different consequences, suppose that in a meta-analysis, in occupational medicine say,k SMR-values
are available:x1/e1, x2/e2, . . . , xk/ek. Conventional practice in meta-analysis of SMR-studies would
useŵi = smri /ei , whereas one should useµ̂/ei for i = 1, . . . , k, whereµ̂ is a suitable estimate ofµ
such as

∑
i xi

/∑
i ei .

The first issue of the two mentioned above is specifically a problem for small sample sizes in which the
variances are estimated with low precision. Kennward and Roger (1997) discuss the effect of replacing
the true variance–covariance matrix for small-sample inference by its estimate for the fixed-effect model.
However, if sample sizes increase the problem diminishes. This is in contrast to the second issue,
for which the bias persists with increasing sample sizes unless the correct forms of the study-specific
variances are used.

The paper is organized as follows. In Section 2 the problem of the correct forms of the study-specific
variances is exemplified for various situations. Section 3 presents as an example a meta-analysis in
which each study contributes a binomial rate as outcome measure. Conventional study-specific variance
estimates are contrasted with their (correct) population-averaged forms. Section 4 provides the DSL
estimator in its general form and covers its application for several examples. In Section 5 a simulation
study illustrates the amount of bias that can occur if incorrect variance estimates are used.

2. THE OCCURRENCE OF HETEROGENEITY

Suppose that a quantity of interest is measured ink independent studies such that for each study
an estimate for the measure of interest with its standard error is available (Petitti, 1994; Normand,
1999). This situation is outlined in Figure 1 withk = 4 studies. One might imagine that each study
represents only a certain part of the population for which it might be representative. Considering the
variation ofθ in addition, might lead to a model which is adequate for a more general population. The
variation of the study-specific means might be continuous or discrete, leading to a continuous or discrete
heterogeneity distributionP. In the following we demonstrate the latent variance decomposition (2) with
some examples.

X normal with meanθ and varianceσ 2. This case has been mentioned already, so we touch upon it
only briefly. We have thatv(θ) = 1, and consequentlyν2 = ∫

Var(X|θ, σ 2)P(dθ) = σ 2, and the latent
variance decomposition is simply Var(X) = σ 2 + τ2.
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Fig. 1. Conditional distribution of measure of interest in four studies.

X binomial with parametersθ and n. Here, the conditional variance ofX/n is v(θ) = θ(1−θ)
n and

σ 2 = 1. Thus,ν2 = ∫
θ(1−θ)

n P(dθ) = µ/n − ∫
θ2/nP(dθ) = µ/n − τ2/n − µ2/n = µ(1−µ)

n − τ2/n,

and Var(X/n) = µ(1−µ)
n + (

1 − 1
n

)
τ2.

X Poisson with parameterθe. In the case of the Poisson with parameterθe, wheree is assumed to
be known, we find that Var(X/e|θ, e) = θ/e. Frequently, epidemiologists consider the SMR= X/e,
whereX is the observed number of deaths in a study population ande is the expected number of deaths
computed from a reference population.E(X/e) = θ is one form of relative risk (risk of death in study
population relative to risk of death in the reference population) and represents one important outcome
measure for many disciplines. The SMR is not only used in epidemiology, occupational medicine, or other
medical disciplines, it is also prominent in demography, sociology and population studies. Keiding (1987)
and Hoem (1987) provide excellent reviews of the SMR from its roots to its modern applications and
theoretical developments. Here, we findν2 = ∫

θ/eP(dθ) = µ/e, and the latent variance decomposition
is Var(SMR) = µ/e+ τ2.

Standardized mean difference.Suppose a treatment is studied and some quantitative mean outcome is
compared beween a treatment group and a control group on the basis of thestandardized mean difference
X = (xT − xC)/s, which estimatesθ = (θT − θC)/σ , whereσ is the common standard deviation
in treatment and control groups, andθT (θC) is the population mean in the treatment (control) group.
Here,s2 is defined in a pooled fashion,s2 = {(nT − 1)s2

T + (nC − 1)s2
C}/(n − 2), as conventionally

suggested (Cooper and Hedges, 1994; Shadish and Haddock, 1994). Here,s2
T (s2

C) are the sample variances
in treatment (control) group,nT (nC) are the sample sizes in the two groups, andn = nT + nC. The
variance ofθ̂ = (xT − xC)/s is readily provided as (Hedges and Olkin, 1985)

Var(θ̂ |θ, nT , nC) ≈ 1

nT
+ 1

nC
+ θ2

2n
.
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Table 1. Meta-analysis of hyperdynamic therapy
on the basis of k= 14studies(Zhouet al., 1999)

Study number xi ni Study number xi ni
1 16 17 2 10 12
3 4 8 4 43 58
5 10 10 6 25 42
7 13 14 8 12 12
9 22 41 10 4 5

11 5 6 12 18 23
13 58 68 14 6 10

Therefore, the population-averaged variance is found as∫
Var(θ̂ |θ, nT , nC)P(dθ) ≈ 1

nT
+ 1

nC
+

∫
θ2

2n
P(dθ) = 1

nT
+ 1

nC
+ µ2 + τ2

2n
(5)

so that the unconditional variance ofX = θ̂ is Var(X) ≈ 1
nT

+ 1
nC

+ µ2

2n + (
1+ 1

2n

)
τ2, because of the fact

that E(θ̂ |θ) ≈ θ .

3. AN EXAMPLE FROM META-ANALYSIS

To illustrate the issues discussed above we look at a meta-analysis by Pritzet al. (1996) which is
also used by Zhouet al. (1999) in their discussion on methods for combining rates. This meta-analysis
investigates the effectiveness of hyperdynamic therapy in treating cerebral vasospasm. According to Zhou
et al.(1999) there are 14 studies and Table 1 provides their data. Suppose we write thek = 14 proportions
or success rates given in Table 1 asθ̂i = xi

ni
, i = 1, . . . , k. Then, it has become common practice to use

the estimatêθi (1− θ̂i )/ni as an estimate of the study-specific variance. This is wrong with respect totwo
aspects. Firstly,̂θi (1 − θ̂i )/ni estimates theconditionalstudy-specific varianceθi (1 − θi )/ni , instead of
the population-averaged varianceν2

i = ∫
θi (1−θi )

ni
P(dθi ). Note thatν2

i andv(θi ) = θi (1 − θi )/ni will
only be close if the variance of the heterogeneity distributionP is small. In this example, as we will see
further below, there is strong evidence of heterogeneity, and both types of variances differ considerably.
Secondly, the replacement of the unknown study-specific success rateθi adds instability. As an extreme
form of variation we note that intwo studies this variance is estimated to bezero. It was mentioned by
one of the referees that in this case the estimated study-specific variances need to be corrected whereas
this correction is not required by the population-averaged study-specific variance, which adds to their
advantage. We have seen in Section 2 that the population-averaged study-specific variance is given asν2

i =∫
θ(1−θ)

ni
P(dθ) = µ(1−µ)

ni
− τ2/ni . Unfortunately, this population-averaged variance involvesτ2 itself.

Because Var(Xi /ni ) = µ(1−µ)
ni

+ (
1 − 1

ni

)
τ2 it appears justified to use the approximationν2

i ≈ µ(1−µ)
ni

,

which can easily be estimated bŷµ(1 − µ̂)/ni with µ̂ being the pooled estimator
∑k

i =1 xi
/ ∑k

i =1 ni

which is in our casêµ = 0.7546. Note that the pooled estimator
∑k

i =1 xi
/ ∑k

i =1 ni can be written as∑
i wi

xi
ni

/ ∑
i wi , wherewi = ni

µ(1−µ)−τ2 = 1/ν2
i which shows that this pooled estimator is the right

choice for estimatingµ. Figure 2 compares the two variance estimatesµ̂(1 − µ̂)/ni and θ̂i (1 − θ̂i )/ni .
Evidently, the variances differ unless the sample size is large as is the case for studies 4, 6, 9, 13.

It might be interesting at this stage to relate the issue under discussion to the area ofheterogeneity
tests. In this case, theχ2-test of heterogeneity can be given in several versions. We mention two of these.
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Fig. 2. Two different types of variance from a meta-analysis with 14 studies on the success rate of hyperdynamic
therapy in treating cerebral vasospasm: study-specific variance (circle) and population-averaged variance (+).

Let χ2 = ∑k
i =1 ŵi (xi /ni −µ̂)2, with µ̂ = ∑k

i =1 xi
/ ∑k

i =1 ni . Then, withŵi = 1/ν̂2
i = [µ̂(1−µ̂)/ni ]−1

one version of this test is given which is approximatelyχ2-distributed withk−1 degrees of freedom under
homogeneity (P is a one-point distribution) as discussed in Collett (1999). This is even true for smallni ,
but large number of studiesk (Potthoff and Whittinghill, 1966). This property breaks down completely if a
different version of this test is used, namely one using theχ2-statistic with weightsŵi = [θ̂i (1−θ̂i )/ni ]−1,
whereθ̂i = xi /ni . (Here, the additional problem arises that the variance is estimated to be 0 ifxi = 0
or xi = ni . If this occurs 0 is replaced by 0.5 andxi = ni by ni − 0.5, respectively, as conventionally
recommended.) This statistic is onlyχ2-distributed withk − 1d f if k is fixed and theni become large,
but not if ni is small andk becomes large. For the data of Table 1 we find a value ofχ2 = 37.375 with
p-value= 0.000 36, using the first version, and a value ofχ2 = 59.193 with p-value= 0.000 00, using
the second version. This indicates that the results of the two tests can be quite different, and only using
the first version will avoid the occurrence of artefacts (Potthoff and Whittinghill, 1966; Böhning, (2000,
The flaw inχ2-heterogeneity tests: a revisit of the Neyman–Scott problem? Technical Report)).

4. THE DERSIMONIAN –LAIRD ESTIMATOR

In this section the DSL estimator is considered in its general form. Suppose that a random sample
x1, x2, . . . , xk of sizek is available with associated variancesν2

1, ν2
2, . . . , ν2

k . In a meta-analytic setting
this sample would represent a collection ofk independent studies, and in each study a statisticxj is
measured with standard errorν j , j = 1, . . . , k. Then the following result holds:

E(χ2) = (k − 1) + τ2

(
k∑

i =1

wi −
∑k

i =1 w2
i∑k

i =1 wi

)
(6)
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wherewi = 1/ν2
i , χ2 = ∑k

i =1 wi (xi − µ̂)2, andµ̂ = ∑k
i =1 wi xi

/ ∑k
i =1 wi . The proof is along the lines

of the proof given in B̈ohning (1999) where the simpler caseν2 = σ 2 is reviewed. Equating the expected
value (6) to the empirical observedχ2-value leads to themoment estimator

τ̂2 = χ2 − (k − 1)∑k
i =1 wi − ∑k

i =1 w2
i

/∑k
i =1 wi

. (7)

Similarly to Section 1, where the simple case of a normal withknownvariances for the conditional
study-specific distribution was considered, the more general estimator (7) isunbiasedby construction
as well. This result is unaffected by the distributional properties of theχ2-statistic. Since (7) is a direct
generalization of (3) we still refer to the estimator (7) as the DSL estimator. In practice, it might occur

that τ̂2 < 0, in which case the truncated version̂τ2+ = max{0, τ̂2} is used instead, as before. Note that
the result requirespopulation-averagedstudy-specific variancesν2

i (or, at least, estimates for them). This
is fulfilled in the case of the normal distribution, sinceν2

i = σ 2
i , for all i = 1, . . . , k. However, it should

be kept in mind that bias will occur if study-specific variances are estimated with error. This problem
vanishes if the study-specific sample sizes are large enough. More importantly, however, it has become a
common practice to use also the conditional study-specific variances instead of their population-averaged
versions in situations other than the normal. This can lead to considerable bias which will not disappear
even with large study sizes. This kind of bias will be demonstrated in the next section. First, we want to
exemplify the difference betweenconditional study-specificvariances andpopulation-averaged study-
specificvariances.

X binomial with parametersθ and n. Suppose a sample ofk proportionsθ̂i = xi
ni

, i = 1, . . . , k

is available. Then, it has become common practice to use the inverse ofθ̂i (1 − θ̂i )/ni as weights
when computing the estimator (7). We have seen in Section 2, however, thatν2

i = ∫
θ(1−θ)

ni
P(dθ) =

µ(1 − µ)/ni −τ2/ni , which is the one to be used in the computation of (7). Unfortunately, this population-
averaged variance involvesτ2 itself. Because Var(Xi /ni ) = µ(1−µ)

ni
+ (

1 − 1
ni

)
τ2 it appears justified to

use the approximationν2
i ≈ µ(1 − µ)/ni , which can easily be estimated byµ̂(1 − µ̂)/ni with µ̂ being

the pooled estimator
∑k

i =1 wi
xi
ni

/∑k
i =1 wi = ∑k

i =1 xi
/∑k

i =1 ni , wherewi = 1
ν2

i
≈ µ(1 − µ)/ni .

Standardized mean difference.Suppose a sample ofk studies is available comparing a treatment group
and a control group on the basis of thestandardized mean difference: for example, there arek independent
study resultsXi = θ̂i = (xT,i − xC,i )/si , for i = 1, . . . , k. Since

Var(θ̂i |θi , nT,i , nC,i ) ≈ 1

nT,i
+ 1

nC,i
+ θ2

i

2ni
,

it has become common practice to use

V̂ar(θ̂i |θi , nT,i , nC,i ) ≈ 1

nT,i
+ 1

nC,i
+ θ̂2

i

2ni

when computing the weights in the DSL estimator. However, the population-averaged variance was found
in (5) as ∫

Var(θ̂i |θi , nT,i , nC,i )P(dθi ) ≈ 1

nT,i
+ 1

nC,i
+ µ2 + τ2

2ni

which could be estimated by1nT,i
+ 1

nC,i
+ µ̂2

2ni
with µ̂ = θ .
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Table 2. Bias and SD for DSL estimator using weights

w−1
i = µ̂(1 − µ̂)/ni w−1

i = θ̂i (1 − θ̂i )/ni
τ2 Biasa SD Bias SD

0.0025 −0.190 0.172 −0.182 0.132
0.0625 0.160 0.809 −3.852 0.652
0.0625 −0.180 0.906 −5.563 0.277
0.1600 −0.350 0.995 −15.224 0.317
aAll entries for bias and SD are multiplied by 100.

5. AN ILLUSTRATION BY MEANS OF SIMULATION

In this section we will show some of the consequences when these facts are ignored, for example,
if estimated conditional study-specific variances are used, instead of population-averaged study-specific
variances. We do not want to provide a complete simulation study at this stage, but instead provide some
illustrative examples. The DSL estimator has been recommended for various reasons (Biggerstaff and
Tweedie, 1997; NRC Committe on Applied and Theoretical Statistics, 1992) including itsunbiasedness.

Therefore, we will concentrate the evaluation of the simulation study on thebias = τ̂2 − τ2. Wewill first
consider the binomial distribution.

Binomial distribution Let Xi be binomially distributed with parameterθi and ni = 20, andi =
1, . . . , 40; in other words, it is assumed thatk = 40 studies are available. It is assumed further in this
example thatθi follows a discrete distribution with two masspointsθ1 andθ2 receiving equal weights 1/2.
Four populations are studied:

• θ1 = 0.1, θ2 = 0.2 with associatedτ2 = 0.0025

• θ1 = 0.25,θ2 = 0.75 with associatedτ2 = 0.0625

• θ1 = 0.1, θ2 = 0.6 with associatedτ2 = 0.0625 and

• θ1 = 0.1, θ2 = 0.9 with associatedτ2 = 0.16.

The results are provided in Table 2. (All simulation results refer to a replication size of 1000.) The bias
for estimated conditional study-specific weights is clearly visible in column 4 of Table 2.

Standardized mean difference.Finally, we consider again the standardized mean difference which has
already been discussed in Sections 2 and 3. A design of sample sizes was used as given in Table 3 (which
was taken from a published meta-analysis on standardized mean differences). It was further assumed that
the mean of the heterogeneity distribution was fixed to beµ = 0.5, whereasτ2 varied between 1 and 10.
On the one hand, we considered the conditional study-specific variance estimate of the standardized mean

difference 1
nT,i

+ 1
nC,i

+ θ̂2
i

2ni
, commonly used when computing the weights in the DSL estimator. On the

other hand the population-averaged study-specific variance was found in (2) as1
nT,i

+ 1
nC,i

+ µ2+τ2

2ni
. This

could be estimated by1
nT,i

+ 1
nC,i

+ µ̂2

2ni
with µ̂ = θ , which was used alternatively, when computing the

weight in the DSL estimator. The results are shown in Figure 3, which clearly indicates the considerable
amount of bias occurring when using estimated conditional study-specific weights.

In both cases, it can be seen that there appears considerable bias when the study-specific variances are
replaced by their estimates.



Estimating heterogeneity variance with the DerSimonian–Laird estimator 453

Fig. 3. Comparison of bias for DSL estimator with estimated population-averaged weights (circle) with bias for DSL
estimator with estimated conditional study specific weights (asterisk) in the case of the standardized mean difference.

Table 3. Layout of sample sizes for k= 15studies

Study number nT,i nC,i Study number nT,i nC,i
1 7 13 2 18 32
3 35 13 4 8 16
5 19 10 6 13 7
7 8 15 8 13 7
9 4 9 10 15 8

11 31 20 12 24 37
13 27 39 14 11 29
15 32 18

6. EXAMPLE FROM META-ANALYSIS (CONTINUED)

We have seen in Section 3 thatµ̂ = ∑k
i =1 xi

/ ∑k
i =1 ni = 0.7546. It might be of interest and

importance to have the variance ofµ̂ available. According to Section 3, we have that Var(Xi /ni ) =
µ(1−µ)

ni
+ (

1 − 1
ni

)
τ2 or, Var(Xi ) = ni µ(1 − µ) + ni (ni − 1)τ2. This leads to

Var

(∑k
i =1 Xi∑k
i =1 ni

)
= 1∑k

i =1 ni
µ(1 − µ) +

∑k
i =1 ni (ni − 1)[ ∑k

i =1 ni
]2

τ2. (8)

Note that conventional textbook formulas for the variance ofµ̂ use only the first term in (8), e.g.
µ(1 − µ)/N with N = n1 + n2 + · · · + nk. Replacingµ andτ2 in (8) by their estimates leads to

V̂ar

(∑k
i =1 xi∑k
i =1 ni

)
= 1∑k

i =1 ni
µ̂(1 − µ̂) +

∑k
i =1 ni (ni − 1)[ ∑k

i =1 ni
]2

τ̂2 (9)
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whereτ̂2 is the DSL estimator, with valuêτ2 = 0.015 79 in our case. Note that̂τ2 has been computed

on the basis ofν̂2
i = µ̂(1 − µ̂)/ni , for i = 1, . . . , k. We find a value ofV̂ar

( ∑k
i =1 xi

/ ∑k
i =1 ni

) =
0.002 459 which is at least four times higher than the one based on the conventional variance formula
µ̂(1− µ̂)/N = 0.000 57. This leads to 95% confidence intervals based on (9) as(0.657 40, 0.851 80) and
(0.707 89, 0.801 32) using the conventional variance. It might be also interesting to look at the variance

using thewrongχ2, e.g. the one using the weightŝwi
−1 = xi

ni

(
1 − xi

ni

)/
ni , and thus thewrong τ̂2. If χ2

is based on the estimated weightsθ̂i (1 − θ̂i )/ni we find thatτ̂2 = 0.020 14, considerably larger than the

result based upon the unbiased estimate. Using this value ofτ̂2 in (9) we are led to a confidence interval
of (0.647 58, 0.861 63) for µ.

7. DISCUSSION

Generality of the approach.We have seen that the DSL estimator in its general form requires inverse
population-averaged study-specific variances as weights, in which case the estimator is unbiased. It has
become common practice, however, to use estimates of the study-specific variances instead of their
population-averaged versions. This can lead to considerable bias. It has been also demonstrated for several
examples such as the example of a normally distributed measure of interest, a binomial proportion, a
Poisson distributed SMR and the effect measure of the standardized difference, how to construct the
population-averaged study-specific variances which lead to the unbiased version of the DSL estimator.
Indeed, for practical applications this is the most important issue. It is often possible to construct
estimates of the population-averaged study-specific variances, and thus avoid the occurrence of severe
bias. However, there are also several important examples for which it is more difficult to do so, such as
the situation of the effect measure of relative risk or risk difference. Here, the difficulty lies in the fact
that the exact, conditional study-specific distribution is not so easy to determine. To be more precise let
us consider as the parameter of interest the risk differenceθ = pT − pC wherepT (pC) is the event risk
in the treatment (control) group. Similarly, letnT (nC) be the number under risk in the treatment (control)
group. Then, the conditional variance is given as Var(θ̂ |nT , nC, pT , pC) = pT (1−pT )

nT
+ pC(1−pC)

nC
=

Var(θ̂ |nT , nC, θ, pC) = (θ+pC)(1−θ−pC)
nT

+ pC(1−pC)
nC

which clearly shows that the conditional variance
is not only a function ofθ but also of a further nuisance parameter. This is rather typical for two-sample
problems such as risk difference, relative risk, or odds ratio (the standardized difference is exceptional in
this respect). These areas will require future research.

Interpretation of meta-analysis under heterogeneity.We have mentioned and demonstrated previously
(for example, see Section 6) that the random effects approach by DSL will lead to the most different result
from the fixed-effect model if there is strong heterogeneity. If there is small heterogeneity both approaches
will provide similar results. This should be kept in mind, especially in the following context. Sometimes
critical voices of meta-analysis raise the point that the computation of a summary measure is inappropriate
in the presence of heterogeneity. The core of the objection argues that if there is heterogeneity there is
no common ground for computing a summary measure and it is unclear what this summary measure is
estimating. We think, however, that such a summary statistic may be computed though its interpretation
is different. In a homogeneous population the summary measure will provide an estimate for all parts of
the population, in the same way that in a meta-analysis it would provide an estimate of the measure of
interest for all possible studies. In a heterogenous population this summary statistic will also provide an
estimate for the overall mean in the population, knowing that this measure of interest will have different
mean values in certain parts of the population. More precisely, when we reconsider the two-level model,
the summary statistic will estimate the mean of the heterogeneity distributionP. In other words, if we
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have a sample of studies the overall measure will provide an estimate of the mean of the study means
though there might be variation between study means.

Truncation of DSL estimator. In the simulation study the estimator̂τ2 was used andnot ˆτ2+. The

reason was simply that we had alwaysτ̂2 � 0 which is typically the case if one simulates under
heterogeneity, and consequently both estimators agree. Recall that the denominator of (7) can be written
as

{ ∑k
i =1 wi

}{
1−∑k

i =1 w2
i

/( ∑k
i =1 wi

)2} which shows that the denominator is always positive if allwi

are positive. Therefore,̂τ2 can only be negative ifχ2 is smaller thank − 1, which typically occurs under
homogeneity. In consequence, simulation studies underhomogeneitywill show distributional deviations

betweenτ̂2 and ˆτ2+, though this is less the case under heterogeneity and not at all in our simulation study.
It was speculated that the observed bias in the DSL estimator stems from using thetruncatedversion
(Hartung, 1999). Though this idea is intuitively reasonable, it is quite clear from the above that the genesis
of the observed bias is from a different source. In fact, the analysis has shown that it is not the question of
using a differentDSL estimator, but rather of using it in a way which is appropriate for a two-level model.

Alternative estimators. Occasionly, different estimators are proposed as alternatives to the DSL
estimator. Hardy and Thompson (1996) suggest a marginal maximum likelihood estimator. In this
approachf (xj , θ, σ 2

j ) is assumed to be the normal density (for available measuresxj , j = 1, . . . , k), and

P is assumed to be normal as well with parametersµ andτ2. Then, the marginal distribution is normal

as well with parametersµ andσ 2
j + τ2 and the maximum likleihood estimator̂τ2

M L of τ2 is determined
by iteratively maximizing the marginal likelihood function. For details see Brockwell and Gordon (2001).
The question arises to that extent the problems descibed here are also inherent in the Hardy and Thompson
(1996) approach. This is certainly the case for the first issue mentioned in Section 1, namely replacing
known variances by their estimates, since

it still assumes that the individual study variances are known, when in practice they too must
be estimated. (Hardy and Thompson, 1996, p. 627)

Hardy and Thompson argue, however,

Except when all the trials are small, the additional uncertainty would not therefore be
expected to have a great impact on the results. . .

With respect to the second issue, the problem of using the right variances is inherently taken care of when
using the marginal (population averaged) likelihood. Here, however, another problem arises. It might be
doubted that for measures such as the binomial proportion or the standardized mortality ratio the normal
is an appropiate conditional distribution. In addition, the assumption of normality for the heterogeneity
distribution is critical. Hardy and Thompson (1998) suggest a number of techniques including normal plots
and departure tests such as Anderson–Darling and Shapiro–Francia to check the distributional assumption
of the normal–normal model. Brockwell and Gordon (2001, p. 829) comment

The assumption of normality poses problems, first in its validity, and secondly in our ability
to check that validity for meta-analyses based on a small number of studies. In particular, the
assumption of normally distributed random effects. . . is not easily verified or justified.

When using a parametric marginal model the crucial part consists in choosing the right parametric
forms. Frequently, for binomial proportions the beta-binomial is used (Collett, 1999), whereas for the
standardized mortality ratio the Gamma-Poisson is employed. These models seem to be more appropriate
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for the mentioned outcome measures than the normal–normal model. However, it should be pointed out
that their preferred choice might be influenced by the fact that they form conjugate families and are
thus particularly suitable for Bayesian procedures. In addition, as Brockwell and Gordon (2001) have
commented, it is difficult (if not impossible) to check whether the associated random effects distribution
follows the specific distribution of a beta or gamma. In conclusion, nonparametric procedures, to which
the DSL estimator belongs, retain their importance.
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