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Abstract: Meta-analysis of diagnostic studies experiences the common problem that different stud-
ies might not be comparable since they have been using a different cut-off value for the continuous
or ordered categorical diagnostic test value defining different regions for which the diagnostic test is
defined to be positive. Hence specificities and sensitivities arising from different studies might vary
just because the underlying cut-off value had been different. To cope with the cut-off value problem,
interest is usually directed towards the receiver operating characteristic (ROC) curve which consists of
pairs of sensitivities and false positive rate (1–specificity). In the context of meta-analysis, one pair rep-
resents one study and the associated diagram is called SROC curve where the S stands for ‘summary’.
The paper will consider—as a novel approach—modelling SROC curves with the Lehmann family that
assumes log-sensitivity is proportional to the log-false positive rate across studies. The approach allows
for study-specific false positive rates which are treated as (infinitely many) nuisance parameters and
eliminated by means of the profile likelihood. The adjusted profile likelihood turns out to have a simple
univariate Gaussian structure which is ultimately used for building inference for the parameter of the
Lehmann family. The Lehmann model is further extended by allowing the constant of proportionality
to vary across studies to cope with unobserved heterogeneity. The simple Gaussian form of the adjusted
profile likelihood allows this extension easily as a form of a mixed model in which unobserved het-
erogeneity is incorporated by means of a normal random effect. Some meta-analytic applications on
diagnostic studies including brain natriuretic peptides for heart failure, alcohol use disorder identifica-
tion test (AUDIT) and the consumption part of AUDIT for detection of unhealthy alcohol use as well as
the mini-mental state examination for cognitive disorders are discussed to illustrate the methodology.
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1 Introduction and Notation

We are interested in the following situation in the field of meta-analysis of diag-
nostic studies (Hedges and Olkin, 1985; Cooper and Hedges, 1994; Hasselblad and
Hedges, 1995; Irwing et al., 1995; Sutton et al., 2000; Egger et al., 2001; Schulze
et al., 2003): a variety of diagnostic studies are available providing estimates of the
diagnostic measures of specificity (1 − u) = P(T = 0|D = 0) as ûi = xi/ni (esti-
mate of false positive rate) and of sensitivity p = P(T = 1|D = 1) as p̂i = yi/mi
(estimate of sensitivity), where D = 1 and D = 0 denotes presence or absence of
disease, respectively, and T = 1 or T = 0 denotes positivity or negativity of the diag-
nostic test, respectively. Also, xi are the number of false positives out of ni healthy
individuals, yi are the number of true positives out of mi diseased individuals, for
i = 1, . . . , k, k being the number of studies. For more details on the statistical mod-
elling of the diagnostic situation on the basis of a single study see Pepe (2000, 2003).
In the following we will look at several examples from medicine and psychology for
this special meta-analytic situation. In principle, however, applications could occur
from all areas. Swets (1996) considers mainly psychological applications, but also
mentions cases from engineering (quality control), manufacturing (failing parts in
planes), meteorology (correctness of weather predictions), information science (cor-
rectness of information retrieval) or criminology (correctness of lie detection test).
Likewise Krzanowski and Hand (2009), without having specifically the meta-analytic
aspect in mind, mention applications from machine learning, atmospheric sciences,
geosciences, biosciences, finances, experimental psychology and sociology. We illus-
trate the special meta-analytic situation mentioned above with a meta-analysis on a
diagnostic test on heart failure.

Example 1: Meta-Analysis of Diagnostic Accuracy of Brain Natriuretic Peptides
(BNP) for Heart Failure. Doust et al. (2004) provide a meta-analysis on the diagnos-
tic accuracy of the BNP as diagnostic test for heart failure. Details are provided in
Table 1. According to the authors, diagnosis of heart failure is difficult with both,
overdiagnosis and underdiagnosis, occurring. The BNP has been suggested as diag-
nostic test and the authors provide data from various studies using different reference
standards (a reference standard defines the presence or absence of disease). Here we
only use the eight studies using the left ventricular ejection fraction of 40% or less as
reference standard.

The cut-off value problem. A separate meta-analysis of sensitivity and specificity
using the meta-analytic tools for independent binomial samples is problematic when
the underlying diagnostic test is continuous or ordered categorical and different cut-
off values have been used in different diagnostic studies. A simple variation of the
cut-off value from study to study might lead to quite different values of sensitivity
and specificity without any actual change in the diagnostic accuracy of the underlying
continuous test. This situation is illustrated in Figure 1 for a continuous outcome T
which is normally distributed in the two populations.

SROC curve. Because of this comparability problem for sensitivity and specificity,
interest is usually focused on the summary receiver operating characteristic (SROC)
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Table 1 Meta-analysis of diagnostic accuracy of BNP for heart failure using
the left ventricular ejection fraction of 40% or less as reference standard

Diseased Healthy

Study i* yi (TP) mi − yi (FN) ni − xi (TN) xi (FP) ni + mi

Bettencourt (2000) 29 7 46 19 101
Choy (1994) 34 6 22 13 75
Valli (2001) 49 9 78 17 153
Vasan (2002a) 4 6 1612 85 1707
Vasan (2002b) 20 40 1339 71 1470
Hutcheon (2002) 29 2 102 166 299
Landray (2000) 26 14 75 11 126
Smith (2000) 11 1 93 50 155

Note: *Details on these studies are found in Doust et al. (2004).

curve consisting of the pairs (u(t), p(t)), where u(t) = P(T ≥ t|D = 0) and p(t) =
P(T ≥ t|D = 1) for a continuous test T with potential value t. Consider k possible
unknown cut-off values t1, . . . , tk, then the pairs (u(ti ), p(ti )) can be estimated by

(ûi , p̂i ) = (xi/ni , yi/mi ),

for i = 1, . . . , k. The SROC curve copes with the cut-off value problem. Different
pairs could have quite different values of specificity and sensitivity, but still reflect
identical diagnostic accuracy. The SROC diagram for the meta-analysis on BNP and
heart failure is provided in Figure 2. Clearly, there is a wide range of values for
specificity and sensitivity. Nevertheless, as Figure 2 shows, it cannot be excluded
that the pairs might stem from a common SROC curve (symbolized by the solid
line in Figure 2). Since the SROC approach copes with the cut-off value problem,
it is commonly preferred to summary measures like the Youden index (Youden,
1950) or the diagnostic odds ratio (Glas et al., 2003), although these measures can
be considerably stable under certain conditions as pointed out in Edwards (1966),
Hasselblad and Hedges (1995) or Böhning et al. (2008). In the following we focus
our analysis on the SROC curve.

Background of SROC modelling. SROC modelling has received considerable
attention in the field. A first model has been suggested by Littenberg and Moses
(Moses et al., 1993; Littenberg and Moses, 1993; Midgette et al., 1993) and has been
used in practice frequently. Deeks (2007) discusses its prominent role in modelling
meta-analytic diagnostic study accuracy. Jones and Athanasiou (2005) state that the
Littenberg-Moses model is one of the most commonly used regression models. Indeed,
a simple med-line search reveals that the Littenberg-Moses model has numerous
entries in published literature. Littenberg and Moses (1993) suggest to fit D = α +βS,
where D = log DOR = log p

1−p − log u
1−u is the log-diagnostic odds ratio and

S = log p
1−p + log u

1−u is a measure for a potential threshold effect. After α and β have
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Figure 1 Diagnostic situation illustrated with two normal distributions: one has mean 0 and variance 1 (healthy
population), the other has mean 2 and variance 4 (diseased population)
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Figure 2 SROC diagram for meta-analysis of BNP and heart failure with LOWESS smoother (solid line)
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been fitted from the data, the SROC curve (p vs. u) is reconstructed from the fitted val-
ues of α and β. α is interpreted as the summary log-DOR, which is adjusted by means
of S for potential cut-off value effect. A two-level approach has been suggested by
Rutter and Gatsonis (2001) which is typically given in the following notational form
(Walter and Macaskill, 2004). Let Yi j ∼ Bi(ni j , πi j ), where Yi j is the number of test
positives in study i for arm j ( j = 1 is diseased, j = 2 is non-diseased), ni j is the size of
arm j in study i and πi1 is the sensitivity, πi2 is the false positive rate. Then the model is

log
πi j

1 − πi j
= (θi + αi DSi j ) exp(−βDSi j ),

where θi is an implicit threshold parameter for study i and αi is the diagnostic accuracy
parameter in study i . DSi j represents a binary variable for the disease status. The
parameter β allows for an association between test accuracy and test threshold. When
β = 0, αi is estimated by Di and θi is estimated by Si/2, where Di and Si are as in
the Littenberg-Moses model. Furthermore, to account for between-study variation,
a random effect is assumed for θi ∼ N(�, τ 2

θ ) and αi ∼ N(�, τ 2
α ). Yet, in another

approach, a bivariate normal random effects meta-analysis has been suggested by
van Houwelingen et al. (1993, 2002). See also Reitsma et al. (2005) and Arends et al.
(2008). Harbourd et al. (2006) show that these models are closely related.

Paper overview. In the following, we will suggest a specific model, called Lehmann
model, which we believe is very suitable for the analysis of SROC curves. The model
involves study-specific sensitivities and specificities and a diagnostic accuracy para-
meter which connects the two. Specificities are treated as nuisance parameters and
eliminated by means of the profile likelihood. It is shown that this profile likeli-
hood, if correctly adjusted, leads to a proper Gaussian likelihood. The Lehmann
model receives flexibility by allowing the diagnostic accuracy parameter to become
a random effect. Maximum likelihood inference is developed including a fixed point
algorithm for providing maximum likelihood estimates as well as finding vari-
ance estimators. Section 3 applies the method to a number of meta-analyses and
Section 4 provides comparisons to existing methods. The paper ends with a brief
discussion.

2 The Lehmann Model

Le (2006) suggests to model the relationship between sensitivity and false positive
rate using the Lehmann family

p = uθ . (2.1)

The Lehmann model has a number of nice properties including that p ∈ [0, 1] if
u ∈ [0, 1] for θ > 0. Hence it represents a feasible reparameterization of the SROC
curve. In addition, the parameter θ is easily interpreted as representing diagnos-
tic accuracy. The smaller the value of θ , the higher the diagnostic accuracy. Some
Lehmann models are shown in Figure 3 for different values of θ . Also, two diagnostic
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Figure 3 Lehmann model for different values of θ

tests represented by two different θ values can easily be compared. In addition, other
measures of interest, such as the area under the curve (AUC) can easily be derived
as AUC =

∫ 1
0 uθdu = 1/(1 + θ ). The model (2.1) has also the property that the ratio

of log-true positive rate and log-false positive rate is constant: log p(t)/ log u(t) = θ .
This is very similar to the proportional hazards model (PHM) used in failure time
analysis. Here, for failure time t, the hazard h(t) is proportional to a baseline hazard
h0(t), so that the final PHM is h(t) = h0(t) exp(α) which might be extended to allow
for covariates. This analogy leads Le (2006) to call the model (2.1) also PHM. Fur-
thermore, Gönen and Heller (2010) point out the proportional hazards property of
the Lehmann family. We might occasionally use this name as well without abstract-
ing from the substantial difference to the failure time scenario. In the following, we
are interested in inference for θ .

There are various reasons why model (2.1) is appealing. Recall that we only have
one pair ( p̂i , ûi ) of sensitivity and false positive rate available from each study. In
the SROC space, this pair is represented by one point. Clearly, infinitely many lines
pass through this point, in other words, a straight line model (allowing for intercept
and slope to be unconstrained) is not identifiable within study i . For this point, see
also Rücker and Schumacher (2009, 2010) who also provide an illustrative example
of a form of ecological fallacy, a situation where all studies show positive slopes
in the logit-transformed ROC space, but if only one point per study is selected, the
corresponding SROC has negative slope. Hamza et al. (2009) also point out:

We conclude that in the situation where we have only one pair of sensi-
tivity and specificity per study a calculated SROC can only be interpreted
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as a real overall ROC under an untestable assumption. The assumption
is especially sensitive when the differences among the estimated between-
studies variances and covariance of sensitivity and specificity are large.
This issue seems to have been overlooked in the literature.

However, a straight line that passes through the origin is uniquely characterized
by the pair of observations we have from the study. Hence, the model log p = θ log u
is identifiable within each study. This is an important property which makes the
model preferable to other models, in particular those, which are not identifiable. It is
also clear that in this case, the ecological fallacy described in Rücker and Schumacher
(2010) cannot occur to the expense that an untestable assumption (line through the
origin) is made. However, it is also clear that it is not the only identifiable model in
this situation. These issues are further discussed in the final section of this paper.

2.1 Profile Likelihood

In the following, we consider the profile likelihood method. For one, it is a widely used
method to eliminate a nuisance parameter. For two, it has an invariance property that
we illuminate further below after we have developed profile likelihood for the case
here. Consider the product-binomial likelihood

(m
y

)
py(1− p)m−y×

(n
x

)
ux(1−u)n−x as

the joint distribution of Yi and Xi for the ith study (index is suppressed for notational
convenience), which we replace by the normal approximation for log Yi and log Xi

1√
2πs2

exp

{
−1

2
(log y − log(mp))2

s2

}
× 1√

2π t2
exp

{
−1

2
(log x − log(nu))2

t2

}
,

with the Taylor-series variance estimates s2 = 1
y−

1
m and t2 = 1

x−
1
n . We have used that

the associated, estimated variances for the log-proportions log(yi/mi ) and log(xi/ni )
are provided as

V̂ar (log p̂i ) = V̂ar (log(yi/mi )) = s2
i = 1

yi
− 1

mi
, (2.2)

V̂ar (log ûi ) = V̂ar (log(xi/ni )) = t2
i = 1

xi
− 1

ni
, (2.3)

assuming that yi > 0 and xi > 0 for i = 1, . . . , k. Furthermore, let zi = log yi − log mi
and wi = log xi − log ni , so that zi is the log-true positive rate and wi is the log-false
positive rate.

The normal approximation is justified if the sizes per study are not small (which is
typically the case in diagnostic studies) and matches well with the Lehmann family.
Consider now the relevant part of the log-likelihood for study i

− 1
2s2

(log y − log m︸ ︷︷ ︸
z

− log p)2 − 1
2t2

(log x − log n︸ ︷︷ ︸
w

− log u)2,
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which can be further written as

	(θ, u′) = − 1
2s2

(z −
log p︷︸︸︷
θu′ )2 − 1

2t2
(w − u′)2,

with u′ = log u. Maximizing 	(θ, u′) in u′ for fixed θ leads to

û′
θ =

θ t2z + s2w

t2θ2 + s2

and plugging in û′
θ provides the profile log-likelihood

	(θ ) = 	(θ, û′
θ ) = − 1

2s2
(z − θ û′

θ )2 − 1
2t2

(w − û′
θ )2 = −1

2
(z − wθ)2

t2θ2 + s2

resulting in a profile log-likelihood of remarkable simplicity.
In addition, the profile log-likelihood has the following invariance property. Note

that there are two forms of the ROC model:

log p = θ log u or log u =
1
θ

log p.

In the first model, we can think of regressing the log-sensitivity on the log-false
positive rate, whereas in the second model, the log-false positive rate is regressed on
the log-sensitivity. It is well known in classical regression inference that both problems
can have different solutions. Now, the profile maximum likelihood is invariant to
the choice of the nuisance parameter, e.g., if u or p is chosen to be the nuisance
parameter: 	(θ, û′

θ ) = 	(θ, p̂′
θ ). Since it is arbitrary in the ROC diagram which axis

is labelled as sensitivity and which one as false positive rate, in other words, which
model of the two is chosen for the analysis, the profile likelihood is suitable for the
inference since the choice of the nuisance parameter (sensitivity or false positive rate)
will ultimately not affect the inference on the parameter of interest.

We have noticed already that 	(θ ) is almost a Gaussian log-likelihood:

	(θ ) = 	(θ, û′
θ ) = −1

2
(z − wθ)2

t2θ2 + s2︸ ︷︷ ︸
σ 2(θ )

.

It differs from L(θ ) = −1
2 log σ 2(θ )− 1

2
(z−wθ)2

σ 2(θ ) only by 1
2 log σ 2(θ ). The main problem

of the conventional profile likelihood 	(θ ) is that it is not a proper likelihood. In
particular, first- and second-order properties are not necessarily valid. In addition,
it is thought that the curvature of the profile likelihood is not correct to give a
valid variance estimate. Since the profile likelihood takes the estimated nuisance
parameter as a true parameter value, it is thought of underestimating the variance of
the parameter of interest (Patefield, 1977; Aitkin, 1998; Murphy and Van der Vaart,
2000). In addition, the conventional profile log-likelihood 	(θ ) breaks down if further
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variance components are incorporated as this would be necessary if unobserved
heterogeneity occurs (see Section 2.2). However, it was shown by Barndorff-Nielsen
(1983) that an approximate marginal or conditional likelihood could be found by
adjusting the ordinary profile likelihood. Furthermore, it was pointed out by Cox and

Reid (1987) that the adjustment term could be simplified to Î(ûθ )
−1/2

if parameters
are orthogonal (or close to orthogonality). Lee et al. (2006, pp. 32–34) provide a
discussion on the modified ordinary profile likelihood and call this modified profile
likelihood the adjusted profile likelihood which turns out in our case to be

Î(ûθ ) = − ∂2

∂u′2 	(θ, u′) =
∂2

∂u′2

(
1

2s2
(z − θ û′)2 +

1
2t2

(w − û′)2

)
, (2.4)

where, for fixed θ , Î(ûθ ) is the observed Fisher information Î(u) evaluated at ûθ . As
can be seen directly from (2.4)

Î(ûθ ) =
∂2

∂u′2

(
1

2s2
(z − θ û′)2 +

1
2t2

(w − û′)2

)
=

t2θ2 + s2

s2t2
,

so that

−1
2

log[ Î(θ )] + 	(θ ) + const. = L(θ ),

where the constant is independent of θ , providing an excellent justification of the
adjusted profile likelihood for our case.

For a sample of k studies, we have the full-sample adjusted profile log-likelihood
as

−
∑

i

1
2

log σ 2
i (θ ) −

∑
i

1
2

(zi − wiθ )2

σ 2
i (θ )

,

where σ 2
i (θ ) = t2

i θ2 + s2
i . Note that [σ 2

i (θ )]
′
= 2t2

i θ . The likelihood above implies that
Zi ∼ N(θwi , σ 2

i (θ )). However, it is more appealing to formulate the mean structure
model without wi , so that we equivalently formulate the model, conditionally on wi ,
as

�i = Zi/wi = θ + εi , (2.5)

where εi ∼ N(θ, σ 2
i (θ )/w2

i ). The associated log-likelihood is

L(θ ) = −
∑

i

1
2

log σ 2
i (θ )/w2

i −
∑

i

1
2

(zi/wi − θ )2

σ 2
i (θ )/w2

i

.
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We find the following score for the adjusted profile log-likelihood. Using vi = 1
σ 2

i (θ ) ,

the adjusted profile log-likelihood is

∂L
∂θ

=
∑

i

{
(zi − wiθ )wi

σ 2
i (θ )

+
(zi − wiθ )2t2

i θ

(σ 2
i (θ ))2

− t2
i θ

σ 2
i (θ )

}

=
∑

i

{
(zi − wiθ )wivi + (zi − wiθ )2v2

i t2
i θ − t2

i viθ
}
. (2.6)

Note that the expected value of the score U = ∂L
∂θ

of the adjusted profile log-likelihood
meets the conventional first-order property E(U) = 0:

E

(
∂L
∂θ

)
=

∑
i

{
E(zi − wiθ )wivi + [E(zi − wiθ )2]v2

i t2
i θ − t2

i viθ
}

=
∑

i

[0 + σi (θ )2v2
i t2

i θ − t2
i viθ ] = 0,

whereas this is not the case for the score of the ordinary profile likelihood.
To solve the score equation for the adjusted profile likelihood, we note that (2.6)

can be written in the form

θ =

∑
i ziwivi∑

i

(
w2

i vi − (zi − wiθ )2v2
i t2

i + t2
i vi

) . (2.7)

Note that the right-hand side of (2.7) depends on θ , so that a solution needs
to be found using the following iterative scheme: given θ j , compute σ 2

i (θ j ) and
vi = 1/σ 2

i (θ j ). Then use (2.7) to compute a new θ j+1 and repeat this process until
convergence. This will provide the maximum likelihood estimate for the adjusted
profile likelihood at convergence—the adjusted profile maximum likelihood estimate
(APMLE). There is no theoretical convergence result of this algorithm. However, the
algorithm was used in all simulation studies without any failure.

We are easily able to construct a goodness-of-fit statistic. Since E(Zi ) = θ log ui

and E(Wi ) = log ui , it follows that E(Zi − θWi ) = 0. We have also that Var (Zi ) = s2
i

and Var (θWi ) = θ2t2
i , so that Var (Zi − θWi ) = s2

i + θ2t2
i . Hence we have that

Zi − θWi√
s2
i + θ2t2

i

=
Zi/Wi − θ√
s2
i + θ2t2

i /Wi

is approximately a standard normal variate. Furthermore,

χ2
k−1 =

k∑
i=1

(θ̂i − θ̂ )2

(s2
i + θ̂2t2

i )/W2
i
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Figure 4 Residual plot for the eight studies in the BNP heart failure meta-analysis

will have an approximate χ2-distribution with k − 1 df if the Lehmann model is
correct.

Example 1 (continued): Meta-Analysis of Diagnostic Accuracy of BNP for Heart
Failure. We come back to the previously introduced meta-analysis of Doust et al.
(2004) on the diagnostic accuracy of the BNP as diagnostic test for heart failure. The
APMLE is given as θ̂ = 0.1774 with 95% CI of 0.1494−0.2054. This corresponds to
an AUC of 0.85, a value of moderate diagnostic accuracy although the interpretation
will depend on the diagnostic accuracy of alternative diagnostic tests. Furthermore,
we find a χ2-statistic which shows borderline significance with χ2 = 16.23 (7 df)
and a p-value of 0.0231. Note that this test statistics investigates the hypothesis
of homogeneity that all eight θ -parameters share the same value. We contemplate
this example as a case of homogeneity despite the borderline significance for the
following reason. If we consider Figure 4 which represents an index–plot of the
residuals Zi−θWi√

s2
i +θ2t2

i

, we study that 5 is causing the major contribution to the χ2.

Indeed, if this study is removed, the observed significance disappears.
Example 2: Meta-Analysis of Diagnostic Accuracy of the Alcohol Use Disorder

Identification Test (AUDIT) for Alcohol Disorder. One of the most frequently rec-
ommended instruments (including a recommendation from the WHO) for screening
all forms of unhealthy alcohol use (risky drinking, alcohol abuse, alcohol depen-
dence) is the AUDIT. The full AUDIT consists of 10 items and has been extensively
investigated in several settings and countries (Reinert and Allen, 2002). Here we look
at a meta-analysis provided by Kriston et al. (2008). The data are provided in Table 2
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Table 2 Meta-analysis of diagnostic accuracy of the AUDIT for
alcohol disorder

Alcohol disorder No disorder

Study i yi (TP) mi − yi (FN) ni − x i (TN) x i (FP) ni + mi

1 48 7 738 101 894
2 138 39 1506 309 1992
3 24 5 173 31 233
4 37 2 227 127 393
5 137 12 936 234 1319
6 73 13 127 30 243
7 53 14 508 27 602
8 571 180 5707 496 6954
9 54 10 172 19 255
10 148 44 2687 672 3551
11 143 18 334 130 625
12 47 13 464 76 600
13 34 1 65 12 112
14 154 49 261 92 555

and the associated SROC curve in Figure 5. The analysis of the meta-analysis on
AUDIT and alcohol disorders provides an APMLE of θ̂ = 0.0980 with 95% CI of
0.0922−0.1038. This corresponds to an AUC of 0.91, a value of good diagnostic
accuracy. However, there is strong evidence of heterogeneity as indicated by a highly
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Figure 5 SROC diagram for meta-analysis of AUDIT and alcohol disorder with LOWESS smoother (solid line)
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significant χ2 statistic of 54.60 (13 df). This becomes also evident from Figure 5.
Hence, it is concluded that additional heterogeneity is present in this meta-analysis
and must be incorporated into the inference to achieve, for example, valid confidence
intervals.

Unfortunately, heterogeneity is prevalent in many of these forms of meta-analysis
and needs to be incorporated appropriately. This is the topic of the next
section.

2.2 Heterogeneity

Previously, we have assumed that the Lehmann model p = uθ holds across studies
allowing study-specific false positive rates, but an identical proportionality parameter
θ . This is now generalized in the sense that heterogeneity is allowed for θ which may
vary from study to study. If heterogeneity with respect to the diagnostic accuracy
parameter θ occurs, it seems appropriate to include a further random effect variance
component parameter τ 2, so that σ 2

i (θ )/w2
i is replaced by σ 2

i (θ )/w2
i + τ 2. This is

accomplished by extending the fixed effect model by a further random effect δi ,
independent of εi , with E(δi ) = 0 and Var (δi ) = τ 2

�i = Zi/wi = θ + δi + εi , (2.8)

so that �i |wi ∼ N(θ, σ 2
i (θ )/w2

i + τ 2). The full-sample adjusted profile log-likelihood
with random effect is then

L(θ, τ 2) = −
k∑

i=1

1
2

log[σ 2
i (θ )/w2

i + τ 2] −
k∑

i=1

1
2

(θ̂i − θ )2

σ 2
i (θ )/w2

i + τ 2
, (2.9)

where σ 2
i (θ ) = t2

i θ2 + s2
i . We will base all inference in the following on this adjusted

profile log-likelihood (2.9) which clearly is a true log-likelihood.
We find the following scores for the full-sample adjusted profile log-likelihood

(2.9):

∂L
∂θ

=
∑

i

{
(θ̂i − θ )

σ 2
i (θ )/w2

i + τ 2
+

(θ̂i − θ )2(t2
i /w2

i )θ
(σ 2

i (θ )/w2
i + τ 2)2

− (t2
i /w2

i )θ
σ 2

i (θ )/w2
i + τ 2

}

=
∑

i

{
(θ̂i − θ )vi + (θ̂i − θ )2v2

i (t2
i /w2

i )θ − (t2
i /w2

i )viθ
}

, (2.10)
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where vi = 1
σ 2

i (θ )/w2
i +τ 2 , and

∂L
∂τ 2

=
∑

i

{
1
2

(θ̂i − θ )2

(σ 2
i (θ )/w2

i + τ 2)2
− 1

2
1

σ 2
i (θ )/w2

i + τ 2

}

=
∑

i

{
1
2

(θ̂i − θ )2v2
i − 1

2
vi

}
, (2.11)

for the partial derivative with respect to τ 2. Note again that the score U = ( ∂L
∂θ

, ∂L
∂τ 2 )

has the the first-order property E(U) = 0. We write the score equations stemming
from (2.10) as∑

i

{
(θ̂i − θ )vi + (θ̂i − θ )2v2

i (t2
i /w2

i )θ − (t2
i /w2

i )viθ
}

= 0,

or equivalently as

θ =

∑
i θ̂ivi∑

i vi − (θ̂i − θ )2v2
i (t2

i /w2
i ) + (t2

i /w2
i )vi

(2.12)

and (2.11) as ∑
i

{
(θ̂i − θ )2v2

i − (σ 2
i (θ )/w2

i + τ 2)v2
i

}
= 0

or, equivalently

τ 2 =

∑
i [(θ̂i − θ )2 − σ 2

i (θ )/w2
i ]v2

i∑
i v2

i

. (2.13)

The fixed point equation (2.13) is also of the form of an iterative weighted least
squares solution and needs to be solved simultaneously with (2.12). Hence, we have
the following algorithm for the case of heterogeneity.

Algorithm for APMLE

1. (Initialization). Choose initial values for θ1 and τ 2
1 such as θ1 = 0.5 and τ 2

1 = 0.
Set j = 1.

2. Compute vi = 1/[σ 2
i (θ j )/w2

j + τ 2
j ] for i = 1, . . . , k.

3. Compute

θ j+1 =

∑
i θ̂ivi∑

i vi − (θ̂i − θ j )2v2
i (t2

i /w2
i ) + (t2

i /w2
i )vi

.
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4. Compute

τ 2
j+1 =

∑
i [(θ̂i − θ j )2 − σ 2

i (θ j )/w2
i ]v2

i∑
i v2

i

.

5. Set j = j + 1 and go to step 2.

Some appropriate stopping rule needs to be enforced to terminate iteration. We use
as stopping rule that |θ j+1 − θ j | < ε and |τ 2

j+1 − τ 2
j | < ε must be met.

2.3 Standard errors of estimate and adjusted goodness-of-fit

The partial derivatives w.r.t. θ and τ 2 can be written as

∂L
∂θ

=
∑

i

{
(θ̂i − θ )

σ 2
i (θ )/w2

i + τ 2
+

(θ̂i − θ )2(t2
i /w2

i )θ
(σ 2

i (θ )/w2
i + τ 2)2

− (t2
i /w2

i )θ
σ 2

i (θ )/w2
i + τ 2

}
=

∑
i

u(1)
i

and
∂L
∂τ 2

=
∑

i

{
1
2

(θ̂i − θ )2

(σ 2
i (θ )/w2

i + τ 2)2
− 1

2
1

σ 2
i (θ )/w2

i + τ 2

}
=

∑
i

u(2)
i .

Hence, we can find an estimate of the variance-covariance matrix of (θ̂ , τ̂ 2)T as the
inverse of

Î(θ, τ 2) =

⎛
⎜⎝

∑
i

(
u(1)

i

)2 ∑
i u(1)

i u(2)
i∑

i u(1)
i u(2)

i

∑
i

(
u(2)

i

)2

⎞
⎟⎠ ,

so that estimates of Var (θ̂ ) can be found as∑
i

(
u(2)

i

)2

∑
i

(
u(1)

i

)2 ∑
i

(
u(2)

i

)2
−

(∑
i u(1)

i u(2)
i

)2 (2.14)

and of Var (τ̂ 2) as ∑
i

(
u(1)

i

)2

∑
i

(
u(1)

i

)2 ∑
i

(
u(2)

i

)2
−

(∑
i u(1)

i u(2)
i

)2 . (2.15)

This first-order method of estimating the variance-covariance matrix has been sug-
gested including McLachlan and Krishnan (1997, p. 122) since it often provides a
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more reliable way of estimating the variance-covariance matrix than second-order
methods. In the simulation study (provided as online supplementary material), it is
shown that this approximation is reasonable and slightly conservative.

We note in passing that also an estimate of τ 2 can be constructed following the
DerSimonian-Laird approach. Consider again the realizations θ̂i of �i for i = 1,

. . . , k. Let ω̂i = θ̂2
i

(
s2
i

z2
i

+ t2
i

w2
i

)
denote the associated variances. Then an estimate of

τ 2 can be provided by the DerSimonian–Laird estimator (DerSimonian and Laird,
1986; Malzahn et al., 2000; Böhning et al., 2002)

τ̂ 2 =
χ2 − (k− 1)∑

i
1
ω̂i
−

∑
i 1/ω̂2

i∑
i 1/ω̂i

,

where χ2 =
∑k

i=1(θ̂i − θ̄ )2/ω̂i and θ̄ =
∑

i (θ̂i/ω̂i )∑
i 1/ω̂i

. With τ̂ 2 available, we can define

θ̄DL =

∑
i (θ̂i/[ω̂i + τ̂ 2])∑
i 1/(ω̂i + τ̂ 2)

.

For the inverse-variance weighted estimate, we will use

Var (θ̄DL) =
1∑

i 1/(ω̂i + τ̂ 2)
. (2.16)

Having fitted the heterogeneity model (2.8) with parameter (θ̂ , τ̂ 2)T, the adjusted χ2

goodness-of-fit is

χ2
het =

k∑
i=1

(θ̂i − θ̂ )2

(σ 2
i (θ̂ )/w2

i + τ̂ 2)
,

which has now (k − 2) degrees of freedom since we loose 2 df for estimating two
parameters. For the inverse-variance weighted method, a similar χ2 goodness-of-fit
is obtained.

We have investigated in a simulation study (supplied as supplementary material)
the behaviour of these estimators. The results indicate that (2.14) and (2.15) provide
excellent approximations to the true variances. The simulation study also shows that
the DerSimonian–Laird approach is not as efficient as the APMLE. For more details,
see under archives at http://stat.uibk.ac.at/smij/

Hence, we concentrate on the latter in the following applications.
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Table 3 Meta-analysis of diagnostic accuracy of the
AUDIT-C for alcohol disorder

Alcohol disorder No disorder

study y(TP) m – y(FN) n – x(TN) x(FP) n + m

1 47 9 738 101 894
2 126 51 1543 272 1992
3 19 10 192 12 233
4 36 3 276 78 393
5 130 19 959 211 1319
6 84 2 89 68 243
7 67 0 423 112 602
8 751 0 2977 3226 6954
9 59 5 136 55 255
10 142 50 2788 571 3551
11 137 24 358 107 625
12 57 3 437 103 600
13 34 1 56 21 112
14 152 51 264 88 555

3 Applications

In the following, we will discuss some applications from medicine and psychology in
more detail.

3.1 AUDIT and AUDIT-C for alcohol disorders

Kriston et al. (2008) consider in their meta-analysis, besides the AUDIT itself, also the
consumption part of the AUDIT, called the AUDIT-C. The background of this is as
follows. Since the diagnostic instrument is designed to be applied to a large number of
people, it is beneficial to have a short instrument available. The AUDIT-C uses only
the three items of the original AUDIT related to alcohol intake and there is evidence
that this three-item version is also appropriate to screen for unhealthy alcohol use
(Reinert and Allen, 2002). In Table 3, we reproduce the data in Kriston et al. (2008)
on 14 studies using the AUDIT-C. Here the question of interest is if the AUDIT-C
represents a similar diagnostic accuracy as the original AUDIT. The associated SROC
diagrams are provided in Figure 6. The analysis in Table 4 on the basis of the
adjusted profile likelihood (2.9) incorporating heterogeneity variance shows a differ-
ence in diagnostic accuracy between AUDIT and AUDIT-C (in fact, AUDIT-C hav-
ing the better accuracy), but this difference is non-significant. However, AUDIT-C
shows the larger heterogeneity in terms of the estimated heterogeneity variance τ 2

which leads to a larger confidence interval for the AUDIT-C meta-analysis. Hence,
the less complex AUDIT-C questionnaire is on average as accurate as the AUDIT
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Table 4 Meta-analysis for AUDIT/AUDIT-C data

Estimator θ̂ ŜE(θ̂ ) 95% CI χ2 (p-val)

AUDIT-C
APMLE 0.0894 0.0198 0.0417–0.1191 13.84 (0.3111)

AUDIT
APMLE 0.0965 0.0132 0.0707–0.1223 13.89 (0.3076)
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Figure 6 SROC diagram for 14 studies in the AUDIT/AUDIT-C—alcohol disorder meta-analysis

questionnaire, but the variation across studies is larger for the AUDIT-C. Hence, a
price of less precision seems to be paid if using the less complex AUDIT-C.

3.2 Mini-mental state examination for dementia and cognitive impairment

In the following, we consider a meta-analysis by Mitchell (2009) on the mini-mental
state examination (MMSE) as a diagnostic test for the detection of dementia and
mild cognitive impairment (MCI). The data are reproduced in Table 5 in a form that
they allow a reanalysis with the methods developed here. Note that one dementia
study had to be excluded from the analysis since it was impossible to calculate the
frequencies of true positives, false positives, true negatives and false negatives.

Figure 7 shows the SROC diagram for the dementia as well as for the studies with
MCI. In this case, we are not comparing two tests but the diagnostic accuracy of the
MMSE for the two conditions, namely dementia and MCI. There is a clear difference
in diagnostic accuracy between the two conditions with a clear indication of higher
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Table 5 Meta-analysis of diagnostic accuracy of the
MMSE of dementia and MCI

Condition No condition

Condition y(TP) m− y(FN) x(FP) n − x(TN)

Dementia 65 3 240 870
Dementia 117 12 10 110
Dementia 48 19 63 989
Dementia 134 8 28 152
Dementia 24 5 44 292
Dementia 67 15 48 153
Dementia 64 17 0 71
Dementia 281 64 20 286
Dementia 13 1 44 286
Dementia 262 20 29 177
Dementia 143 18 29 123
Dementia 183 33 33 51
Dementia 22 0 152 140
Dementia 112 0 590 2091
Dementia 152 81 126 1009
Dementia 29 26 26 236
Dementia 31 6 3 247
Dementia 10 3 12 333
Dementia 707 88 1438 10 447
Dementia 181 108 17 184
Dementia 59 29 23 74
Dementia 74 23 16 143
Dementia 27 12 26 209
Dementia 40 6 75 528
Dementia 317 52 173 578
Dementia 387 116 16 54
Dementia 118 65 1 44
Dementia 44 7 34 396
Dementia 123 46 98 309
Dementia 25 43 3 171
Dementia 73 32 2 225
Dementia 37 45 0 440
Dementia 78 34 45 376
MCI 72 12 53 214
MCI 106 23 410 379
MCI 37 36 22 118
MCI 67 30 22 75
MCI 17 77 0 90
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Figure 7 SROC diagram for 38 studies in the MMSE dementia/MCI meta-analysis

accuracy for the dementia condition. Table 6 provides the details on the modelling.
For both conditions, there is empirical evidence for heterogeneity as expressed in the
χ2-value in column 5 of Table 6. Hence, the analysis is based on the heterogeneity
model (2.8) and parameter estimates, standard errors and confidence intervals are
then computed under the adjusted profile maximum likelihood (2.9). The diagnostic
accuracy is higher for dementia in comparison to MCI. In addition, the standard
error of θ̂ is a lot larger for MCI indicating also less precision of the MMSE for
this condition in comparison to dementia. It appears that the MMSE works better in
terms of its diagnostic accuracy for dementia than for MCI.

3.3 A database of diagnostic meta-analytic applications

Since there is limited space, we were only able to present a small number of meta-
analyses from a wide range of possible choices. As supporting empirical background
research of this paper, a database of meta-analytic datasets was formed. For more
details, see under archives at http://stat.uibk.ac.at/smij/

Table 6 Meta-analysis for MMSE dementia/MCI data

Estimator θ̂ ŜE(θ̂ ) 95% CI χ2 (p-val) χ2
het (p-val)

dementia
APMLE 0.1052 0.0132 0.0793–0.1311 459.79 (< 0.0000) 34.92 (0.2870)

MCI
APMLE 0.2521 0.0794 0.0965–0.4077 23.92 (0.0001) 4.42 (0.2199)
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This database is updated continuously and contains currently about 50 meta-
analytic datasets and is available as supplementary information on the journal’s
website. These datasets were collected on the basis of published literature (in contrast
to compiling an independent meta-analysis to a given topic). All areas of relevance
in medicine and psychology (including neighbouring areas) were considered. The
only criterion for becoming part of the database was that the published evidence
allowed to identify the following minimum information from each study involved
in the meta-analysis of interest: true positives, false negatives for the diseased arm
(group with the condition) and true negatives, false positives for the non-diseased
arm (group without the condition). This criterion was chosen since we wanted to
provide datasets that would allow a secondary analysis with the methods provided
here and elsewhere in the literature. These four frequencies turned out to be essential
in doing so, in contrast to situations where only sensitivities and specificities were
given which would not allow any reanalysis of the meta-analytic datasets.

4 Model diagnostics and comparison to other approaches

The question arises how appropriate the suggested Lehmann model is and it compares
to other existing approaches. We emphasize that in our situation we have assumed
that there is only one pair of sensitivity and false positive rate ( p̂i , ûi ) per study i
observed. Situations where several pairs per study are observed (such as in Aertgeerts
et al., 2004) are rare and not typical. Hence, we are not able to identify any straight
line model within a study with more than one parameter, since this would require at
least two pairs of sensitivity and specificity per study. For this point, see also Rücker
and Schumacher (2009, 2010). However, any one-parameter straight line model
within each study is estimable including the proposed Lehmann model, although
within-model diagnostics is limited since we are fitting the full within-study model.
Given that sample sizes within each diagnostic study are typically at least moderately
large, it seems reasonable to assume a bivariate normal distribution for log p̂ and
log û with means log p and log u as well as variances σ 2

p and σ 2
u , respectively, and

covariance σ with ρ = σ/(σpσu). This is very similar to the assumptions in the
approach taken by Reitsma et al. (2005) (see also Harbord et al. 2007) with the
difference that we are using the log-transformation whereas in Reitsma et al. (2005)
logit transformations are applied. Then, it is a well-known result (Ross, 1985, p. 127)
that the conditional mean of the random variable log p̂ (having unconditional mean
log p) conditional upon the value of the random variable log û (having unconditional
mean log u) is provided as

E(log p̂| log û) = log p + ρ
σp

σu
(log(û) − log(u)),

which can be written as α + θ log(û), where α = log(p) − θ log(u) and θ = ρ
σp

σu
.

This is an important result since it means that, in the log-space, sensitivity and
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false-positive rate are linearly related. Furthermore, if α is zero, the Lehmann
model arises.

The question then arises why not work with a straight line model log p| log u =
α + θ log u. The answer is that such a model is not identifiable since we have only
one pair of sensitivity and specificity observed in each study and it is not possible
to uniquely determine a straight line by just one pair of observations since there are
infinitely many possible lines passing through a given point in the log p–log u space.
However, the Lehmann model as a slope-only model is identifiable and it is more
plausible than other identifiable models such as the intercept-only model. Clearly, a
logistic-transformation would be more consistent with the existing literature (Rut-
ter and Gatsonis, 2001; Walter and Macaskill, 2004) than the log-transformation.
However, both models would give a perfect fit (within each study) since there are no
degrees of freedom left for testing the model fit. The situation changes when there are
repeated observations of sensitivity and specificity per study available. These meta-
analyses with repeated observations of sensitivity and specificity according to cut-off
value variation are very rare, but they exist.

A meta-analysis with repeated observations. One of these rare examples is the
CAGE meta-analysis (Aertgeerts et al., 2004) which we will use as a benchmark
dataset to investigate for the within-study appropriateness of each model. CAGE
is a further instrument for screening the general population for alcohol abuse and
dependence. It is a simple instrument consisting of a questionnaire with four ques-
tions. What makes this meta-analysis so unique is the fact that for each of the k = 10
studies, repeated sensitivities and specificities are provided. The data are documented
in Table 7. Here, a straight line model is identifiable on the log-scale as well as on the
logistic-scale. We fitted fours models (two for each of the two transformations) for
these data: the straight line model (usually not identifiable) and the slope-only model.
We use as the standard measure of performance the percentage of explained variance:
R2 = 1 − SSE

SSTOT × 100, where SSE and SSTOT are the usual sum-of-squares from
the ANOVA table. The results are presented in Table 8. Note that we used study
as a categorical covariate, so that an overall performance measure can be presented.
We find the performance of the Lehmann model (2.1) remarkably well in compari-
son to the logistic regression model in the case of an additional intercept parameter
(again the latter not being identifiable in most cases). Clearly, the performance of
the Lehmann model is superior in the slope-only case which is typically the identifi-
able case. Here, the logistic model is performing rather poor. As an alternative one
could also consider using the complementary log-log transformation on sensitivity
and false positive rate, or ultimately, a log-transformation on the θ -parameter of the
Lehmann family. We will consider this transformation among others in a simulation
study given further below.

Simulation on the choice of transformation. All in all, there are close relationships
between the bivariate normal random effects model, the Rutter-Gatsonis model and
the Lehmann family with the remaining difference that the Lehmann model works
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Table 7 CAGE meta-analysis data (Aertgeerts
et al., 2004)

Study Sensitivity Specificity

1 0.92 0.73
0.80 0.93
0.55 0.98
0.27 0.99

2 0.87 0.80
0.66 0.92
0.43 0.99
0.19 0.99

3 0.79 0.77
0.70 0.85
0.52 0.95
0.27 0.98

4 0.96 0.68
0.87 0.84
0.56 0.96
0.34 0.99

5 0.61 0.87
0.46 0.95
0.24 0.98
0.11 0.99

6 0.89 0.81
0.73 0.91
0.44 0.98
0.19 0.99

7 0.98 0.75
0.82 0.9
0.53 0.97
0.40 0.99

8 0.71 0.59
0.53 0.87
0.27 0.98
0.09 0.99

9 0.88 0.88
0.48 0.99
0.24 0.99
0.08 0.99

10 0.99 0.37
0.92 0.62
0.46 0.88
0.1 0.99
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Table 8 Model performance for CAGE
meta-analysis data (Aertgeerts et al., 2004)

Model R2 × 100%

log p = β log u 89.8

log[p/(1 − p)] = β log[(u/(1 − u)] 16.1

log p = α + β log u 85.8

log[p/(1 − p)] = α + β log[(u/(1 − u)] 93.6

with log-transformation, whereas the other two use the logit-transformation. What
remains is to investigate which transformation provides the best fit. Given the results
of the CAGE meta-analysis, it seems reasonable to assume within-study validity of the
Lehmann model. Hence, it is desirable to have the arising estimate of the diagnostic
accuracy close to normality in distribution. To provide some answer to the question
which transformation to use, we looked at the following four cases: the untrans-
formed θ , the log-transformation log θ , the logit-transformation log(θ/(1 − θ )) and
the complementary log-log transformation log(− log(1 − θ )), the latter assuming
θ ∈ (0, 1). In addition, there is the previously mentioned complementary log-log
transformation seeing the benefit of bringing the Lehmann model into the frame-
work of a complementary log-log link (log θ = log(− log p) − log(− log u)) and,
hence, ensuring feasible estimates. A simulation study was designed to mimic the
reality of meta-analysis of diagnostic studies. The number of studies k was selected
as k = 25. Then, sample sizes were generated ni , mi arising from a Poisson with
mean 25, 50, 100 to mimic sample size variation of the studies involved in the
meta-analysis (we only present the case of mean sample size 100 here). A baseline
heterogeneity was assumed for the false positive rate in that ui was sampled from
a uniform with interval end 0.05 and 0.5: ui ∼ U[0.05, 0.5]. From here the sensi-
tivity pi was calculated according to the Lehmann model (2.1) and finally yi was
sampled from a binomial with size parameter ni and event parameter pi , whereas
xi was sampled from a binomial with size parameter mi and event parameter ui .
From here the sample of diagnostic accuracy parameters θ̂1, . . . , θ̂k as well as the
transformations of interest could be determined. We present here the results for
E(ni ) = E(mi ) = 100 and θ = 0.1 in form of the probability plot. Figure 8 shows
the details including the Anderson-Darling test statistic for normality with p-value.
For more details on the Anderson-Darling test see Stephens (2006). It can be seen
that the results for the untransformed estimates of the diagnostic accuracy parameter
are quite satisfactory. The situation changes if the sample sizes per study become
small. This is illustrated in Figure 9 which is the identical scenario as before with the
only difference that we have now on average a sample size of 25 per study. Here the
approximation to the normal is less satisfactory. However, in practice of diagnostic
studies, sample sizes per study are usually large, with values above 100 not being
uncommon.
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Figure 8 Probability plots for four transformation for simulated data under the Lehmann model with average
sample size per study of 100
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Figure 9 Probability plots for four transformation for simulated data under the Lehmann model with average
sample size per study of 25
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5 Discussion

Meta-analysis of diagnostic studies is an important subfield requiring special statis-
tical attention. A state-of-the-art analysis requires modelling the SROC curve. Here
a simple model, the Lehmann model, was suggested having the beneficial property
of being identifiable within each study. In the modelling, study-specific false-positive
rates were allowed as nuisance parameters for which then a profile likelihood was
derived containing only the parameter of diagnostic accuracy—the parameter of
interest. The derivation used initially the normal approximation of the binomial
which appears to be justifiable since in most cases of meta-analysis of diagnostic
studies, study specific sample sizes are large (often larger than 100). Clearly, this
approximation becomes critical if involved studies become sparse.

We come back to the two-level approach by Rutter and Gatsonis (2001) which
has been discussed already in the introduction. The model is given as log πi j

1−πi j
=

(θi + αi DSi j ) exp(−βDSi j ), with the notations as before. It is interesting to compare
this model with the Lehmann model. For easiness of comparison, let us consider p
and u in the log-space instead of the logit-space. Also, we will use a dummy coding
for the disease status variable DSi . Then, the Rutter-Gatsonis model becomes (in our
notation)

log pi = (θi + αi ) exp(β), diseased

log ui = θi , non-diseased

so that the SROC model (sensitivity as a function of the false positive rate) is

log pi = (log ui + αi ) exp(β).

The difference between the Rutter-Gatsonis (RG) model and the Lehmann model
becomes clear, if we look at the special case β = 0. Then, the RG model assumes
that the diagnostic accuracy can be represented by differences of log-sensitives and
log-false positive rates, whereas the Lehmann model assumes that the diagnostic
accuracy can be represented by ratios of the latter. A further analysis for the data on
the CAGE meta-analysis (for the sake of brevity not presented here) shows that there
is more evidence for a slope-only model than for an intercept-only model.

Finally, we would like to point out that the Lehmann model and the associated
inference can be extended in various ways. Here it is crucial that the adjusted profile
likelihood is a true normal likelihood. This allows easily to incorporate covariate
information such as a variation of the condition of interest (e.g., dementia or MCI),
a diagnostic test variation or study-specific properties. These would occur as further
fixed effects in the model and associated profile likelihood. In the rare case that
repeated observation per study were available this would allow not only validation
of the Lehmann model but also the repeated effect to be included in the model.
All in all, the Lehmann model with its associated profile likelihood appears to be a
flexible approach for coping with the problems of SROC modelling in meta-analysis
of diagnostic studies.
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