UNIVERSITY OF

Southampton

Week 7 - Lecture 2
Accept-Reject (A-R) Sampling

MATH 6173 Statistical Computing, 17/11/2021

Chao Zheng
chao.zheng@southampton.ac.uk

Mathematical Sciences & S3RI

3.2 Accept-Reject (A-R) sampling

Week 7-Lec 2

3.2 AR samplin,

4> 45 » 4« =)

4 =

»

1/21

Recap of Lecture 1

» Linear Congruential Generation
» Inverse Transform Sampling

Algorithm 1: Inverse Transformation Sampling

1 draw U = u from Unif(0, 1).;
2 compute z = F~1(u);
3 deliver X = z.

Week 7-Lec 2

3.2 AR sampling

40> 45 » 4« =

»

<4

»

2/21

A-R sampling: Intuition

There are many distributions from which it is difficult, or even impossible,
to directly simulate by an inverse transformation.

For example, can you easily write the CDF and its inverse function for
normal distribution?

Week 7-Lec 2

3.2 A-R sampling

3/21

I
v

A-R sampling: Intuition

There are many distributions from which it is difficult, or even impossible,
to directly simulate by an inverse transformation.

For example, can you easily write the CDF and its inverse function for
normal distribution?

Question: How to simulate random numbers from those difficult
distributions?

Accept-Reject (A-R) Sampling (sometimes known as rejection

sampling or acceptance-rejection sampling) provides an elegant solution
to simulate difficult distribution.

Week 7-Lec 2 3.2 A-R sampling

4 r 45 » 4

I
v
N
I
v
I

3.2.1 A-R Sampling Algorithm

Week 7-Lec 2

3.2.1 A-R Algorithm

4> 45 » 4« =)

4 =

»

4/21

A-R Sampling: the Algorithm

Given target densities 7(z) and another density p(z) on X with
m(x) < Mp(z) for all z € X and some constant M < oo, we can
generate a sample from 7 as follows:

Algorithm 2: A-R Sampling

1 draw X = z from p(z);
2 draw Y =y from Unif(0,1);
3if y < g7oy then
accept X = x as a sample from T;

else
reject X = x.
end

We call p(x) as the instrumental density or the proposal density.
Since m(x) and p(x) are both pdfs, M is necessarily larger than 1.

Week 7-Lec 2 3.2.1 A-R Algorithm
A1 > 45 » € =) =)

5/21

Theory of A-R Sampling

Theorem 3.3
The distribution of the samples generated by A-R sampling is m(z).
Proof.

3.2.1 A-R Algorithm

Week 7-Lec 2

4 r 45 » 4

6/21

Theory of A-R Sampling

Theorem 3.3
The distribution of the samples generated by A-R sampling is m(z).

Proof. For any (measurable) set A C X,

P(X € A, X is accepted)

P(X € A|X is accepted) = F(X is accepted)

Note that .
P(X € A, X is accepted) = /X/O Iq(x) <y < ZVZE)TJ)U)) p(x)dydx
= x () x)dx
= [o) frspla)a

= r(A)/M

P(X is accepted) = P(X € X, X is accepted) = 7(X)/M = 1/M.
Hence, P(X € A|X is accepted) = m(.A), which completes the proof. [

Week 7-Lec 2 3.2.1 A-R Algorithm 6/21

A1 > 45 » € =) =)

Normalising constants

constants C; and (), respectively; i.e.

W—C—Wandp:

3

(z

can still use A-R algorithm in this scenario as

g

x)

<M<

N

(z

C

p
if we can find a M to bound

~

™

(z)

IN

M,

(z)
Week 7-Lec 2

p(x)

3.2.1 A-R Algorithm

40> 45 » 4« =

»

b
Cp
where only 7, p are known but C; and C), are not available. However, we

<4

»

In practice, often we only know 7(x) and p(x) up to some normalising

where M = M —=. This means we can ignore the normalising constants
i

, then we can apply the A-R algorithm.

7/21

Remarks on A-R Sampling

1. We can generate random numbers from some very complicated
target pdf 7(z) even if p(x) is simple.

2. The computational cost for this algorithm depends on the
acceptance probability P (y < J\;S(Ei)) = -, which we want it to be

as large as possible in simulations. This means we need to choose
p(x) properly.

3. The distribution of the random numbers generated from A-R
sampling is exactly (NOT approximately) 7(z).

4. The algorithm can be extended to multivariate random number
generation.

Week 7-Lec 2 3.2.1 A-R Algorithm
A1 > 45 » € =) =)

8/21

Example 3.2: Generating Beta(a, b)

Example 3.2 Derive an A-R sampling algorithm for generating
random numbers from Beta(a, b) distribution in the situation when

a>1and b>1, and implement it in R. Note that the pdf of
Beta(a, b) is

S ol —)bt x
(T (1—2)"'1(0 < z < 1),

where T'(z f z*le=%dz.

r b
It is easy to see that 7(z) is upper bounded by F((Z)—lt(b)) I(0<z<1),0
and a pdf induced by this upper bound is p(x) = I[(0 < & < 1), which is
exactly the pdf of Unif(0,1). Then we can set M = FF(E;;;E())

Week 7-Lec 2

3.2.1 A-R Algorithm 9/21
d 0> 45 » 4« =) 4 =

Example 3.2: Generating Beta(a, b)

In this case, we have =g 11 — g)b L
Mp(z) ()

Therefore, the A-R sampling algorithm for Beta(a, b) is as follow:

Algorithm Ex 3.2
1 draw X =« from Unif(0,1);

2 draw Y =y from Unif(0, 1) independently from X.

3ify <2 (1 —2)° !, accept X = x;
otherwise reject.

Suppose we want to generate n samples from the distribution of

Beta(a, b), we just simply deliver 2 to Z when X = « is accepted, and
repeat the Steps 1.-3. until collecting n entries in Z.

Week 7-Lec 2

3.2.1 A-R Algorithm

A1 > 45 » € =) =)

Example 3.2: Generating Beta(a, b)

An R program implementing above algorithm:
r.mybeta <- function(n, a, b){

This function is for generating a sample of n

observations from Beta(a,b) distribution with the

restriction that a >=1 and b>=1.
X <- NULL

for(i in 1:n) {
repeat { x <- runif (1)
y <- runif (1)

if(y <= x7(a-1)*x(1-x)"(b-1)) {
X[i] <- x

break}

return (X)

Week 7-Lec 2 3.2.1 A-R Algorithm

4 r 45 » 4

Example 3.2: Generating Beta(a, b)
Using the above algorithm, we generate a sample of 1000 random
numbers from Beta(2,3), and plot the simulated pdf and the actual pdf:

set.seed (2020)
mysample <- r.mybeta(n=1000, a=2, b=3)

plot (density(mysample),lwd=2, main=" Simulated and actual
pdf of Beta(2,3)");
curve (dbeta(x,2,3) ,from=0,to=1, add=T, lwd=1.5, 1lty=3);
legend(x=0.8, y=1.5, legend=c("Simulated pdf", "Actual pdf"),
lty=c(1,3), cex=0.6)

Simluated and actual pdf of Beta(2,3)

o
2
w |
>
3 o
2 =
3
o
0
@
e b
< T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
N =1000 Bandwidth = 0.04542
Week 7-Lec 2 3.2.1 A-R Algorithm 12/21

4 r 45 » 4

I
I
I
S
o
2

Week 7-Lec 2

Example 3.3: Generating N(0, 1)

Example 3.3 Derive an A-R sampling algorithm for generating
random numbers from N(0,1) from a double exponential
distribution £(A) with A > 0, which has the density form

and implement it in R.

f(@) = 5 exp(=Alzl),

3.2.1 A-R Algorithm

40> 45 » 4« =

» 4 =

»

13/21
)

Example 3.3: Generating N(0, 1)

Example 3.3 Derive an A-R sampling algorithm for generating
random numbers from N(0,1) from a double exponential
distribution £(A) with A > 0, which has the density form

and implement it in R.

f(@) = 5 exp(=Alzl),

A standard normal distribution has the pdf

= \/gexp(—m /2)
G

()

It is easy to see that, when z > 0
1 /2 . 2% — 2|z
— —+/Z exp | =

f@) ~ V7 &P

1\F
< 4=
2 >_)\ s
2
hence we can let M = 1\/? exp <)\—>
AV

Week 7-Lec 2

2

3.2.1 A-R Algorithm

40> 45 » 4« =

» 4 =

»

ul

—

b
58
N
S

Example 3.3: Generating N(0, 1)

(x z|—)?
Also, M](c(i) = exp (77(‘ |2))

Therefore, the request A-R sampling algorithm should be:

Algorithm Ex 3.3
1 draw X = & from L()\);
2 draw Y =y from Unif(0, 1);

3 ify <exp (—7(@\;”2), accept X = z;
otherwise reject.

Note that in Step 1, we need to draw X = z from L(\), to implement
this we can apply the inverse transformation sampling.

Week 7-Lec 2

3.2.1 A-R Algorithm

4> 45 » 4« =)

Week 7-Lec 2

Example 3.2: Generating N(0, 1)

By simple calculation, the CDF for L(\) is
F(z)

5 eXP (=Az|)dz =

o exp()\x),
2
1
Thus, taking the inverse transformation yields

if x <0

1- §exp(—)\x), if x>0
Fl(u) = {)‘_1 L),

if u < 1/2
—A"1In(2 — 2u),

if u > 1/2.

3.2.1 A-R Algorithm

40> 45 » 4« =

» 4 =

»

15/21
O

Example 3.2: Generating N(0, 1)

The new sampling algorithm for N (0, 1) is as follow:
Algorithm Ex 3.3
1 draw U = u from Unif(0,1);
2 compute X =z = F~1(u);
3 draw Y =y from Unif(0, 1);
4 if y <exp (*M) accept X = x;
otherwise reject.

Week 7-Lec 2 3.2.1 A-R Algorithm 16/21
A1 > 45 » € =) =))

Example 3.3: Generating N(0, 1)
An R program implementing above algorithm:

r.mynormal <- function(n, lambda){

This function is for generating a sample of n
observations from N(0,1)
X <- NULL

for(i in 1:mn) {
repeat { u <- runif (1)
if (u<=0.5){

x <= lambda”(-1)*log(2*u)
} else{

x <- -lambda”(-1)*log(2-2%u)
}

y <- runif (1)

if (y <= exp(-(abs(x)-lambda)~2/2)) {
X[i] <- x

break}

return (X)

X

Week 7-Lec 2

3.2.1 A-R Algorithm
4 r 45 » 4

I
I
I
S
o
2

Example 3.3: Generating N(0, 1)

Using the above algorithm, let A =1 in £(\), we generate a sample of

2000 random numbers from N(0, 1), and plot the simulated pdf and the

actual pdf:

set.seed (2020)

mysample <- r.mynormal(n=2000, lambda=1)

plot (density(mysample),lwd=2, main=" Simulated and actual
pdf of N(O,1)")

curve (dnorm(x), add=T, lwd=2, 1lty=3, col="red")

legend (x=2, y=0.4, legend=c("Simulated pdf",

"Actual pdf"), 1lty=c(1,3), cex=0.6)

Simluated and actual
pdf of N(0,1)

02 03 04
| |

Density

0.1

0.0

N = 2000 Bandwidth = 0.1957

Week 7-Lec 2 3.2.1 A-R Algorithm
4 r 45 » 4

I
v
N
I
v
I

Acceptance Probability/Efficiency

The probability of a generated X being accepted is 7 = 1/M. We define
T as the efficiency of A-R sampling.

Further, denote by T the number of trials to achieve an acceptance of
X =ux. Then

P(T=t)=(1-7)""r,
which means T follows a Geometric(7) distribution with
E(T)=7"1=M.

This implies that the larger the 7 is, the smaller is T expected to be, thus
the higher is the efficiency.

Week 7-Lec 2 3.2.1 A-R Algorithm

A1 > 45 » € =) =) = a0

Acceptance Probability and Efficiency

Recall Example 3.2, if a =2 and b = 3, then we have
M = FF(Eza)ng) = 12. The efficiency for A-R sampling is 1/M = 1/12. We
can also verify this through simulation.

r.mybeta <- function(n, a, b){
X <- NULL
count <- O ## count the number of total samples
for(i in 1:n) {
repeat { x <- runif (1)
y <= runif (1)
count <- count + 1
if(y <= x"(a-1)*(1-x)"(b-1)) {
X[i] <- x; break} } 1}
return(list (X=X, count=count))

}

set.seed (2020)
totalsamples <- r.mybeta(n=1000, a=2, b=3)$count

Week 7-Lec 2 3.2.1 A-R Algorithm 20/21
A1 > 45 » € =) =) = a0

Take home problem

» Generate N(0,1) random numbers using A-R sampling. We know
the proposal density up to a constant, i.e., p(z) = 1/(1 + 2?),
x € R. Design the algorithm and implement it in R. What is the
effiency of this algorithm?

» How to extend A-R sampling to generate two-dimensional random
vectors from a joint pdf 7(z,y)?

Further Readings:

1. Monte Carlo Statistical Methods, Christian Robert and George
Casella, 2nd Edition, Chapter 2.

2. Generalized Accept—Reject sampling schemes. Martin Wells, George
Casella, and Christian Robert, Institute of Mathematical Statistics,
2004. 342-347.

Week 7-Lec 2 3.2.1 A-R Algorithm

A1 > 45 » € =) =)

21/21

	3.2 A-R sampling
	3.2.1 A-R Algorithm

