
MATH3085/6143 Survival Models – Worksheet 6 Solutions

1. i) • The central exposed to risk at age x, EC
x , is the observed waiting time in the age range

[x, x+ 1) of all individuals under study, where observation ends either with death, censoring
or the end of study period.

• In aggregate data, the central exposed to risk can be estimated by (an estimate of) the number
of lives exposed to risk at the mid-point of the rate interval.

• The initial exposed to risk at age x, E0
x, is the number of survivors to exact age x, and

therefore does not account for the exact timing of deaths.

• The calculation of initial exposed to risk in aggregate data typically requires adjustments
(from central exposed to risk) for those lives who die.

• It may be approximated as EC
x + dx/2, where dx is the number of deaths of individuals aged

x through the assumption that deaths are uniformly distributed (UDD) across each year of
age.

ii) The age definition used for both deaths and exposed to risk is the same since the standard
approaches we have seen previously use age at last birthday, so no adjustment is necessary. Using
the census approximation, we have that

EC
x =

∫ t1

t0

Px(t)dt ≈ 1

2
[Px(t0) + Px(t1)].

The initial exposed to risk, E0
x, can then be obtained using the approximation

EC
x + 0.5dx,

through the assumption of UDD across each year of age. Therefore, at age 22 we have

E0
22 =

1

2
(P22(2005) + P22(2006)) +

1

2
× d22 =

150 + 160

2
+

20

2
= 165,

and for age 23,

E0
23 =

1

2
(P23(2005) + P23(2006)) +

1

2
× d23 =

160 + 155

2
+

25

2
= 170.

Hence,

q̃22 =
d22
E0

22

=
20

165
= 0.1212

and

q̃23 =
d23
E0

23

=
25

170
= 0.1471.

iii) Using the notation from Chapter 14, that is suppose x+ ai is the age at which individual i enters
the study (the latest of the date of individual i’s 22nd birthday and the start of calendar year
2005), and x + bi denotes the age at which individual ceased to be observed if death had not
happened (the earliest of the date of individual i’s 23rd birthday and the date of individual i’s
exit from study for reasons other than death). The initial exposed to risk is then easily calculated
as
∑

i(bi − ai).
Alternatively, one can also start with the approximation of central exposed to risk using

∑
i(b
′
i−ai),

where x+b′i is the age at which individual i leaves the study including deaths. The initial exposed
to risk can then be approximated as central exposed to risk plus half the number of individuals
who died during the study.



2. i) The census approximation is used when the exact dates of entry and exit from observation are not
recorded, but rather policies in-force or census data are available at particular dates (for example
total number of individuals aged x at the end of each year). In particular, define Px(t) to be the
number of lives under observation aged x last birthday, at time t, the central exposed to risk over
the interval considered [t0, tf ] can be computed as

EC
x =

∫ tf

t0

Px(t)dt,

where t0 and tf are the earliest and latest census dates respectively. Moreover, suppose also that
we have census data at t1, t2, . . ., tf−1, then we may partition the integral into sum of integrals,

EC
x =

∫ tf

t0

Px(t)dt =

∫ t1

t0

Px(t)dt+

∫ t2

t1

Px(t)dt+ · · ·+
∫ tf

tf−1

Px(t)dt.

Now by employing the key assumption that Px(t) can be well approximated by a linear function
between census dates, the census approximation of EC

x can be expressed as

EC
x =

t1 − t0
2

[Px(t0) + Px(t1)] +
t2 − t1

2
[Px(t1) + Px(t2)] + · · ·+

tf − tf−1
2

[Px(tf−1) + Px(tf )]

=

f∑
i=1

ti − ti−1
2

[px(ti−1) + Px(ti)]

through repeated application of trapezium rule.

ii) Denote EC
45 as the exposed to risk for 1 January 2011 - 31 December 2011, age 45 last birthday

and Px(t) as the number of policies in-force age x last birthday on 1 January in year t. If the
number of policies in-force is recorded on 1 January, then the required EC

45 is easily calculated as

EC
x =

1

2
[P45(2011) + P45(2012)]

through the census formula. However, as we shall see in a moment, the above calculation is
complicated by different company’s age definition and the timing at which the number of policies
is recorded.

For Company A: The data are recorded on 1 January in each year, but the age definition used is
age nearest birthday, and so require adjustments to transform them into age last birthday. For
example, to obtain P45(2011) (age range [45, 46]), we know:

• Half is contributed by the number of policies in-force at age 45 nearest birthday (age range
[44.5, 45.5]).

• Another half is contributed by the number of policies in-force at age 46 nearest birthday (age
range [45.5, 46.5]).

Hence, by assuming that birthdays are uniformly distributed through the calendar year, then

P45(2011) =
1

2
(5920 + 5993) = 5956.5.

Similarly,

P45(2012) =
1

2
(5911 + 5988) = 5949.5.

Finally,

EC
45 =

1

2
[P45(2011) + P45(2012)] =

1

2
(5956.5 + 5949.5) = 5953.

For Company B: The age definition used is age last birthday, which is consistent with the required

EC
45. But the data are recorded on 31 March in each year, so we need to adjust the data to match



the Px(t), which is defined on 1 January in each year. In order to obtain P45(2011), we need to
perform linear interpolation by assuming linearity in the number of policies in-force across policy
years (between 31 March in each year). Thus, by performing linear interpolation within the years
2010 and 2011, we obtain

P45(2011) =
1

4
× 3939 +

3

4
× 3921 = 3925.5.

Similarly,

P45(2012) =
1

4
× 3921 +

3

4
× 3930 = 3927.75.

Hence,

EC
45 =

0.25

2
(3925.5 + 3921) +

0.75

2
(3921 + 3927.75) = 3924.09375.

For Company C: In this case, both the age definition and the timing of recorded data are incon-
sistent with the exposure we are trying to estimate. However, the adjustments required are rather
straightforward here since we only need to realign the age and time accordingly. Specifically,

P45(2011) = number of policies in-force age 46 next birthday at the end of 31 Dec 2010 = 9237,

P45(2012) = number of policies in-force age 46 next birthday at the end of 31 Dec 2011 = 9252.

Thus,

EC
45 =

1

2
[P45(2011) + P45(2012)] =

1

2
(9237 + 9252) = 9244.5

3. i) In order to test for the overall goodness of fit, the chi-squared test is used. In particular, we are
interested to the null hypothesis

H0 : µx = mS
x .

Under the null hypothesis that the observed rates come from a population with underlying mor-
tality equal to the PMA92C20 rates, the test statistic∑

x

(dx − EC
x m

S
x )2

EC
x m

S
x

=
∑
x

(m̂x −mS
x )2

mS
x

EC
x

follows χ2
v, where v is the degree of freedom computed as the number of age groups. Thus, we

extend the table in the question by including two more quantities.

Age, x m̂x−mS
x√

mS
x

EC
x

(m̂x−mS
x )

2

mS
x

EC
x

70 1.243 1.546
71 0.062 0.004
72 -0.025 0.001
73 -0.0275 0.076
74 0.284 0.081
75 2.427 5.89
76 4.231 17.901
77 2.809 7.888
78 1.694 2.869
79 1.953 3.815

40.070

The observed statistic is this 40.07. Since we have 10 age groups here, by comparing this value
with the critical value of χ2

10 at 5% significance level (18.31), we reject the null hypothesis since
the observed test statistic is substantially greater than the critical value, and conclude that the
PMA92C20 rates does not describe the experience of the observed population well.



ii) • Small but consistent/systematic bias over the whole age range.

• Extreme standardised differences at one or two ages balanced by small deviations at the
remaining ages.

• Runs of consecutive deviations of the same sign, indicating that the mortality distribution by
age has a different shape from that of the rates being compared with.

4. i) We use the chi-squared test to assess the overall goodness of fit. In other words, we test the null
hypothesis H0 that the observed rates come from a population in which the standard mortality
rates are the true underlying rates.

The test statistic is ∑
x

(dx − EC
x m

S
x )2

EC
x m

S
x

.

So the quantity is computed and illustrated in the table that follows.

x dx EC
x m

S
x

dx−EC
x mS

x√
EC

x mS
x

(dx−EC
x mS

x )
2

EC
s mS

x

14 3 4.86 -0.84 0.71
15 8 6.58 0.55 0.30
16 5 6.00 -0.41 0.17
17 14 7.95 2.15 4.62
18 17 9.74 2.33 5.43
19 9 6.67 0.90 0.81
20 15 9.47 1.80 3.24
21 10 11.37 -0.41 0.17
22 10 11.07 -0.32 0.10

15.55

Now under the null hypothesis, the test statistic follows χ2
9, which has a critical value of 16.92 at

5% significance level. Hence, since

∑
x

(dx − EC
x m

S
x )2

EC
x m

S
x

= 15.55 < 16.92,

we do not reject the null hypothesis, i.e. there is no significance evidence against the hypothesis
that the observed rates come from a population in which the standard mortality rates are the true
underlying rates.

ii) To test for bias, we can use either the sign test or the cumulative deviations test.

Sign test
Denote Ux as an indicator to detect ages at which the observed rate is greater than the standard
rate being compared:

Ux =

{
1 if m̂x ≥ mS

x (or equivalently dx ≥ EC
x m

S
x )

0 if m̂x < mS
x (or equivalently dx < EC

x m
S
x )

.

Under the null hypothesis H0 : µx = mS
x , we have the normal approximation,

S ∼ N
(

9

2
,
9

4

)
.

Hence, the test statistic is

Z =
S ± 1

2 −
9
2(

9
4

)1/2 .



H0 is rejected if |z| > 1.96, where z is the observed value of Z. Here, observed S is 5, thus

z =
5− 1

2 −
9
2(

9
4

)1/2 = 0 < 1.96.

Therefore, we do not reject the null hypothesis.

Cumulative deviations test
The test statistic follows

Z =

∑
x(dx − EC

x m
S
x )√∑

xE
C
x m

S
x

∼ N(0, 1)

under H0 : µx = mS
x . We reject the null hypothesis at 5% significance level if |z| > 1.96, where z

is the observed value of Z. Using the data given, the test statistic is calculated as

z =
17.29√
73.71

= 2.01 > 1.96.

Hence, there is a significant evidence at 5% level that systematic bias exists in this part of the
age range (as opposed to conclusion drawn from sign test). However, this conclusion should be
treated with extreme caution, when applying multiple tests to the same hypothesis.

5. i) The chi-squared test is used to assess the overall goodness of fit. We test the null hypothesis H0

the the observed rates come from a population in which the graduated mortality rates are the
true underlying rates.

Denote m̂x as the graduated rates, the test statistic is computed and illustrated in the table that
follows.

Age x dx EC
x m̂x

dx−EC
x m̂x√

EC
x m̂x

(d−EC
x m̂x)2

EC
x m̂x

40 4 3.0816 0.5232 0.2737
41 4 5.4211 -0.6103 0.3725
42 12 5.7974 2.5760 6.6360
43 7 7.1646 -0.0615 0.0038
44 11 9.2008 0.5932 0.3518
45 7 6.0424 0.3896 0.1518
46 12 9.7440 0.7227 0.5223
47 16 9.6845 2.0294 4.1184
48 15 11.4765 1.0401 1.0818
49 10 11.0745 -0.3229 0.1043

13.6163

Since the graduation is performed using a linear regression, we lose 2 degrees of freedom (two
parameters corresponding to intercept and slope are estimated). Therefore, under H0, the test
statistic follows ∑

x

(dx − EC
x m̂x)2

EC
x m̂x

∼ χ2
8.

Hence, we do not reject the null hypothesis as the observed test statistic (13.62) is smaller than
the critical value of χ2

8 at 5% significance level (15.51), and conclude that the graduated rates
provide a satisfactory fit to the observed rates.

ii) Under the null hypothesis, the individual standardised deviations follow

dx − EC
x m̂x√

EC
x m̂x

∼ N(0, 1).

Two moderately large standardised deviations (2.5760 and 2.0294) might give us cause for concern,
as the probability of 2 observations outside the range (−2, 2) for a sample of size 10 is only about
2%. However, a formal test is not recommended here.


