MATH3085/6143 Survival Models — Worksheet 4 Solutions

1. i) The Kolmogorov forward equation has the form
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as p3l, = 32, = 0 as state 3 is absorbing.

ii) The rate of change in the probability of moving from sick to death between time z and = + ¢ is a
function of two elements:

a) The first term is the rate of death from the healthy state at time x + ¢t weighted by the
probability that a person is healthy at = + t.

b) The second term is the rate of death from the sick state at time x4+t weighted by the probability
a person is sick at = + t.

iii) The Kolmogorov forward equation has the form
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as p3L, = 0 as state 3 is absorbing.
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ii) Using analogous notations defined in lecture notes, let

112 = transition intensity from Learner to Restricted

u13 = transition intensity from Learner to Qualified

o1 = transition intensity from Restricted to Learner

o3 = transition intensity from Restricted to Qualified

t] = total observed holding (waiting) time in state Learner

t; = total observed holding (waiting) time in state Restricted
n1s = total observed number of transitions from state Learner to state Restricted
nig = total observed number of transitions from state Learner to state Qualified
n91 = total observed number of transitions from state Resticted to state Learner
neg = total observed number of transitions from state Restricted to state Qualified.

Therefore, the likelihood function for g = {p12, t13, o1, 23} is given by

L(p) = H figtt exp(—t i)
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iii) (a) It is usually easier to work with log-likelihood,

l(p) = logL(p)
= nazlog 1o + n13log ju13 + 121 log w1 + nazlog pos — 1 (12 + 1) — 3 (a1 + pas).

The first order partial derivative of log-likelihood with respect to uie is then
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Now set % = 0 and solve for the MLE of the transition rate from Learner to Restricted
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Also note that the second order partial derivative is given by
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which is always negative, confirming that the estimate is indeed a maximum.
(b) So from part (iii)(a), the estimated constant transition rate from Learner to Restricted is

382
(119 = —— = 0.3290.
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(c) Recall from lecture notes that the MLEs, fiy; are asymptotically independent, unbiased and

normally distributed with Var(jig) ~ [— 8;52“)] ", thus we have
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Hence, the 95% confidence interval is given by

0.3290

iz £1.96 x s.c.(jnz) = 0.3200 £ 1.96 x oo

= [0.296, 0.362).

i) Using the general expression of maximum likelihood estimate (MLE) of transition intensities in
multiple state models, MLE of transition intensity from state 1 to 2, ji1s is
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while the MLE of transition intensity from state 2 to 1, fio; is
noa1 4160 o

iy = 2 =2 8,
L= T 5200

ii) Denoting p;;(z,t) as the probability that a person in state i at time z will be in state j at time
x4+t and pij(xz +t) (i # j) as the corresponding transition intensities, then we have from the
Kolmogorov forward equations that
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Therefore,
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because we have the boundary condition that pia(z,0) = 0. By substituting the MLE of p12 and
21 obtained from part (i), the required probability is then computed as

0.2 — 0.2exp{—(0.2 4+ 0.8)3}

x,3) = = 0.1900.
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4. i) Similar to question 2(ii), we let
12 = transition intensity from state Alive to Dead from heart disease
13 = transition intensity from state Alive to Dead from cancer
t14 = transition intensity from state Alive to Dead from other causes
tf = total observed waiting time in state Alive
nia = total observed number of transitions from state Alive to Dead from heart disease
nig3 = total observed number of transitions from state Alive to Dead from cancer
nia = total observed number of transitions from state Alive to Dead from other causes

The likelihood for the transition intensities, g = {12, 13, 114} is given by

Lp) = [ wirexp(—t; )
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ii) The log-likelihood is
I(p) = log L(p) = nizlog purz + nizlog pas + niglog g — 6 (a2 + p13 + paa).
The first order partial derivative of log-likelihood with respect to uis is then
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Now set %l(u) = 0 to obtain the MLE of transition intensity from alive to dead from heart
disease as
iz = 22
= .
ty

Also, a simple check shows that the second order partial derivative is
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which is always negative, confirming that the estimate is indeed a maximum.



