
MATH3085/6143 Survival Models – Worksheet 4 Solutions
1. i) The Kolmogorov forward equation has the form
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x+t = 0 as state 3 is absorbing.

ii) The rate of change in the probability of moving from sick to death between time x and x+ t is a
function of two elements:

a) The first term is the rate of death from the healthy state at time x + t weighted by the
probability that a person is healthy at x+ t.

b) The second term is the rate of death from the sick state at time x+t weighted by the probability
a person is sick at x+ t.

iii) The Kolmogorov forward equation has the form
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as µ31
x+t = 0 as state 3 is absorbing.

2. i)

1. Learner 2. Restricted

3. Qualified

ii) Using analogous notations defined in lecture notes, let

µ12 = transition intensity from Learner to Restricted

µ13 = transition intensity from Learner to Qualified

µ21 = transition intensity from Restricted to Learner

µ23 = transition intensity from Restricted to Qualified

t+1 = total observed holding (waiting) time in state Learner

t+2 = total observed holding (waiting) time in state Restricted

n12 = total observed number of transitions from state Learner to state Restricted

n13 = total observed number of transitions from state Learner to state Qualified

n21 = total observed number of transitions from state Resticted to state Learner

n23 = total observed number of transitions from state Restricted to state Qualified.

Therefore, the likelihood function for µ = {µ12, µ13, µ21, µ23} is given by
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iii) (a) It is usually easier to work with log-likelihood,

l(µ) = logL(µ)

= n12 logµ12 + n13 logµ13 + n21 logµ21 + n23 logµ23 − t+1 (µ12 + µ13)− t+2 (µ21 + µ23).

The first order partial derivative of log-likelihood with respect to µ12 is then
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Now set ∂l(µ)
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= 0 and solve for the MLE of the transition rate from Learner to Restricted
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Also note that the second order partial derivative is given by
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which is always negative, confirming that the estimate is indeed a maximum.

(b) So from part (iii)(a), the estimated constant transition rate from Learner to Restricted is

µ̂12 =
382

1161
= 0.3290.

(c) Recall from lecture notes that the MLEs, µ̂kl are asymptotically independent, unbiased and

normally distributed with Var(µ̂kl) ≈
[
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]−1
, thus we have
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Hence, the 95% confidence interval is given by

µ̂12 ± 1.96× s.e.(µ̂12) = 0.3290± 1.96× 0.3290

3821/2
= [0.296, 0.362].

3. i) Using the general expression of maximum likelihood estimate (MLE) of transition intensities in
multiple state models, MLE of transition intensity from state 1 to 2, µ̂12 is

µ̂12 =
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=
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= 0.2,

while the MLE of transition intensity from state 2 to 1, µ̂21 is

µ̂21 =
n21

t+2
=
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5200
= 0.8.

ii) Denoting pij(x, t) as the probability that a person in state i at time x will be in state j at time
x + t and µij(x + t) (i ̸= j) as the corresponding transition intensities, then we have from the
Kolmogorov forward equations that

d

dt
p12(x, t) = p11(x, t)µ12(x+ t)− p12(x, t)µ21(x+ t)

= p11(x, t)µ12 − p12(x, t)µ21 (for a time-homogeneous process)

= [1− p12(x, t)]µ12 − p12(x, t)µ21

= µ12 − (µ12 + µ21)p12(x, t).



Therefore, ∫
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= t+ C

⇒ µ12 − [µ12 + µ21]p12(x, t) = A exp[−(µ12 + µ21)t]
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because we have the boundary condition that p12(x, 0) = 0. By substituting the MLE of µ12 and
µ21 obtained from part (i), the required probability is then computed as

p12(x, 3) =
0.2− 0.2 exp{−(0.2 + 0.8)3}

0.2 + 0.8
= 0.1900.

4. i) Similar to question 2(ii), we let

µ12 = transition intensity from state Alive to Dead from heart disease

µ13 = transition intensity from state Alive to Dead from cancer

µ14 = transition intensity from state Alive to Dead from other causes

t+1 = total observed waiting time in state Alive

n12 = total observed number of transitions from state Alive to Dead from heart disease

n13 = total observed number of transitions from state Alive to Dead from cancer

n14 = total observed number of transitions from state Alive to Dead from other causes

The likelihood for the transition intensities, µ = {µ12, µ13, µ14} is given by

L(µ) =
∏
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ii) The log-likelihood is

l(µ) = logL(µ) = n12 logµ12 + n13 logµ13 + n14 logµ14 − t+1 (µ12 + µ13 + µ14).

The first order partial derivative of log-likelihood with respect to µ12 is then

∂
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Now set ∂
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l(µ) = 0 to obtain the MLE of transition intensity from alive to dead from heart
disease as
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.

Also, a simple check shows that the second order partial derivative is
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,

which is always negative, confirming that the estimate is indeed a maximum.


