MATH3085/6143 Survival Models – Worksheet 4 Solutions

1. i) The Kolmogorov forward equation has the form

$$\frac{\mathrm{d}}{\mathrm{d}t} p_x^{23} = \sum_{k=1}^3 {}_t p_x^{2k} \mu_{x+t}^{k3} \quad \text{where we define } \mu_{x+t}^{33} = -\mu_{x+t}^{31} - \mu_{x+t}^{32} = 0$$

$$= {}_t p_x^{21} \mu_{x+t}^{13} + {}_t p_x^{22} \mu_{x+t}^{23}$$

as $\mu_{x+t}^{31} = \mu_{x+t}^{32} = 0$ as state 3 is absorbing.

- ii) The rate of change in the probability of moving from sick to death between time x and x + t is a function of two elements:
 - a) The first term is the rate of death from the healthy state at time x + t weighted by the probability that a person is healthy at x + t.
 - b) The second term is the rate of death from the sick state at time x+t weighted by the probability a person is sick at x+t.
- iii) The Kolmogorov forward equation has the form

$$\begin{array}{ll} \frac{\mathrm{d}}{\mathrm{d}t}tp_{x}^{21} & = & \displaystyle\sum_{k=1}^{3}{}_{t}p_{x}^{2k}\mu_{x+t}^{k1} & \text{where we define } \mu_{x+t}^{11} = -\mu_{x+t}^{12} - \mu_{x+t}^{13} \\ & = & {}_{t}p_{x}^{22}\mu_{x+t}^{21} + {}_{t}p_{x}^{23}\mu_{x+t}^{31} - {}_{t}p_{x}^{21}(\mu_{x+t}^{12} + \mu_{x+t}^{13}) \\ & = & {}_{t}p_{x}^{22}\mu_{x+t}^{21} - {}_{t}p_{x}^{21}\mu_{x+t}^{12} - {}_{t}p_{x}^{21}\mu_{x+t}^{13} \end{array}$$

as $\mu_{x+t}^{31} = 0$ as state 3 is absorbing.

2. i)

ii) Using analogous notations defined in lecture notes, let

 μ_{12} = transition intensity from Learner to Restricted

 μ_{13} = transition intensity from Learner to Qualified

 μ_{21} = transition intensity from Restricted to Learner

 μ_{23} = transition intensity from Restricted to Qualified

 t_1^+ = total observed holding (waiting) time in state Learner

 t_2^+ = total observed holding (waiting) time in state Restricted

 n_{12} = total observed number of transitions from state Learner to state Restricted

 n_{13} = total observed number of transitions from state Learner to state Qualified

 n_{21} = total observed number of transitions from state Resticted to state Learner

 n_{23} = total observed number of transitions from state Restricted to state Qualified.

Therefore, the likelihood function for $\mu = \{\mu_{12}, \mu_{13}, \mu_{21}, \mu_{23}\}$ is given by

$$L(\boldsymbol{\mu}) = \prod_{k,l:k\neq l} \mu_{kl}^{n_{kl}} \exp(-t_k^+ \mu_{kl})$$

$$= \mu_{12}^{n_{12}} \exp(-t_1^+ \mu_{12}) \times \mu_{13}^{n_{13}} \exp(-t_1^+ \mu_{13}) \times \mu_{21}^{n_{21}} \exp(-t_2^+ \mu_{21}) \times \mu_{23}^{n_{23}} \exp(-t_2^+ \mu_{23})$$

$$= \mu_{12}^{n_{12}} \mu_{13}^{n_{13}} \mu_{21}^{n_{21}} \mu_{23}^{n_{23}} \exp[-t_1^+ (\mu_{12} + \mu_{13})] \exp[-t_2^+ (\mu_{21} + \mu_{23})].$$

iii) (a) It is usually easier to work with log-likelihood,

$$l(\boldsymbol{\mu}) = \log L(\boldsymbol{\mu})$$

= $n_{12} \log \mu_{12} + n_{13} \log \mu_{13} + n_{21} \log \mu_{21} + n_{23} \log \mu_{23} - t_1^+(\mu_{12} + \mu_{13}) - t_2^+(\mu_{21} + \mu_{23}).$

The first order partial derivative of log-likelihood with respect to μ_{12} is then

$$\frac{\partial l(\boldsymbol{\mu})}{\partial \mu_{12}} = \frac{n_{12}}{\mu_{12}} - t_1^+.$$

Now set $\frac{\partial l(\boldsymbol{\mu})}{\partial \mu_{12}} = 0$ and solve for the MLE of the transition rate from Learner to Restricted

$$\frac{n_{12}}{\hat{\mu}_{12}} - t_1^+ = 0 \qquad \Rightarrow \qquad \hat{\mu}_{12} = \frac{n_{12}}{t_1^+}.$$

Also note that the second order partial derivative is given by

$$\frac{\partial^2 l(\boldsymbol{\mu})}{\partial \mu_{12}^2} = -\frac{n_{12}}{\mu_{12}^2},$$

which is always negative, confirming that the estimate is indeed a maximum.

(b) So from part (iii)(a), the estimated constant transition rate from Learner to Restricted is

$$\hat{\mu}_{12} = \frac{382}{1161} = 0.3290.$$

(c) Recall from lecture notes that the MLEs, $\hat{\mu}_{kl}$ are asymptotically independent, unbiased and normally distributed with $\operatorname{Var}(\hat{\mu}_{kl}) \approx \left[-\frac{\partial^2 l(\boldsymbol{\mu})}{\partial \mu_{kl}^2}\right]^{-1}$, thus we have

$$s.e.(\hat{\mu}_{12}) = \frac{\hat{\mu}_{12}}{n_{12}^{1/2}}.$$

Hence, the 95% confidence interval is given by

$$\hat{\mu}_{12} \pm 1.96 \times s.e.(\hat{\mu}_{12}) = 0.3290 \pm 1.96 \times \frac{0.3290}{382^{1/2}} = [0.296, 0.362].$$

3. i) Using the general expression of maximum likelihood estimate (MLE) of transition intensities in multiple state models, MLE of transition intensity from state 1 to 2, $\hat{\mu}_{12}$ is

$$\hat{\mu}_{12} = \frac{n_{12}}{t_1^+} = \frac{4330}{21650} = 0.2,$$

while the MLE of transition intensity from state 2 to 1, $\hat{\mu}_{21}$ is

$$\hat{\mu}_{21} = \frac{n_{21}}{t_2^+} = \frac{4160}{5200} = 0.8.$$

ii) Denoting $p_{ij}(x,t)$ as the probability that a person in state i at time x will be in state j at time x+t and $\mu_{ij}(x+t)$ ($i \neq j$) as the corresponding transition intensities, then we have from the Kolmogorov forward equations that

$$\frac{\mathrm{d}}{\mathrm{d}t}p_{12}(x,t) = p_{11}(x,t)\mu_{12}(x+t) - p_{12}(x,t)\mu_{21}(x+t)$$

$$= p_{11}(x,t)\mu_{12} - p_{12}(x,t)\mu_{21} \quad \text{(for a time-homogeneous process)}$$

$$= [1 - p_{12}(x,t)]\mu_{12} - p_{12}(x,t)\mu_{21}$$

$$= \mu_{12} - (\mu_{12} + \mu_{21})p_{12}(x,t).$$

Therefore,

$$\int \frac{\mathrm{d}p_{12}(x,t)}{\mu_{12} - [\mu_{12} + \mu_{21}]p_{12}(x,t)} = \int \mathrm{d}t$$

$$\Rightarrow \frac{\log \{\mu_{12} - [\mu_{12} + \mu_{21}]p_{12}(x,t)\}}{-(\mu_{12} + \mu_{21})} = t + C$$

$$\Rightarrow \mu_{12} - [\mu_{12} + \mu_{21}]p_{12}(x,t) = A \exp[-(\mu_{12} + \mu_{21})t]$$

$$\Rightarrow p_{12}(x,t) = \frac{\mu_{12} - A \exp[-(\mu_{12} + \mu_{21})t]}{\mu_{12} + \mu_{21}}$$

$$\Rightarrow p_{12}(x,t) = \frac{\mu_{12} - \mu_{12} \exp[-(\mu_{12} + \mu_{21})t]}{\mu_{12} + \mu_{21}}$$

because we have the boundary condition that $p_{12}(x,0) = 0$. By substituting the MLE of μ_{12} and μ_{21} obtained from part (i), the required probability is then computed as

$$p_{12}(x,3) = \frac{0.2 - 0.2 \exp\{-(0.2 + 0.8)3\}}{0.2 + 0.8} = 0.1900.$$

4. i) Similar to question 2(ii), we let

 μ_{12} = transition intensity from state Alive to Dead from heart disease

 μ_{13} = transition intensity from state Alive to Dead from cancer

 μ_{14} = transition intensity from state Alive to Dead from other causes

 t_1^+ = total observed waiting time in state Alive

 n_{12} = total observed number of transitions from state Alive to Dead from heart disease

 n_{13} = total observed number of transitions from state Alive to Dead from cancer

 n_{14} = total observed number of transitions from state Alive to Dead from other causes

The likelihood for the transition intensities, $\mu = \{\mu_{12}, \mu_{13}, \mu_{14}\}$ is given by

$$L(\boldsymbol{\mu}) = \prod_{k,l:k \neq l} \mu_{kl}^{n_{kl}} \exp(-t_k^+ \mu_{kl})$$

= $\mu_{12}^{n_{12}} \mu_{13}^{n_{13}} \mu_{14}^{n_{14}} \exp[-t_1^+ (\mu_{12} + \mu_{13} + \mu_{14})].$

ii) The log-likelihood is

$$l(\boldsymbol{\mu}) = \log L(\boldsymbol{\mu}) = n_{12} \log \mu_{12} + n_{13} \log \mu_{13} + n_{14} \log \mu_{14} - t_1^+(\mu_{12} + \mu_{13} + \mu_{14}).$$

The first order partial derivative of log-likelihood with respect to μ_{12} is then

$$\frac{\partial}{\partial \mu_{12}} l(\boldsymbol{\mu}) = \frac{n_{12}}{\mu_{12}} - t_1^+.$$

Now set $\frac{\partial}{\partial \mu_{12}} l(\boldsymbol{\mu}) = 0$ to obtain the MLE of transition intensity from alive to dead from heart disease as

$$\hat{\mu}_{12} = \frac{n_{12}}{t_1^+}.$$

Also, a simple check shows that the second order partial derivative is

$$\frac{\partial^2}{\partial \mu_{12}^2} l(\boldsymbol{\mu}) = -\frac{n_{12}}{\mu_{12}^2},$$

which is always negative, confirming that the estimate is indeed a maximum.