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Recap

In last lecture, we have

I revised linear models with different structures
I introduced the likelihood based inference for linear models

(MLE estimation, distribution, model comparison)

In next a few lectures we are going to look at an extension of linear
models.



4.1.1 Introduction to LMMs



Restrictions of linear model

In linear models, we generally assume that the error term
{ε1, . . . , εn} are i.i.d ∼ N(0, σ2) , which leads to independent
response random variables {Y1,Y2, ...,Yn}.

However, in many practical areas such as social, behavioral, and
health sciences, correlated/dependent data frequently arise.



Motivating Examample: mathachieve dataset

In this dataset, we have scores on a math-achievement test from
7185 high-school students, which are from 160 schools. We want to
model the performance of students math-achievement test and the
socioeconomic status (SES) of the student’s family, and the type of
students’ school.

It is okay to assume the performance of students across different
schools are independent.

However, it is unreasonable to assume that the performance of
students in the same school are independent of one-another, since
students took the same classes from the same teachers.



Math achievement by socio-economic status for 20 randomly
selected Catholic schools. The broken lines give linear least-squares

fits.



Math achievement by socio-economic status for 20 randomly
selected public schools.



A better model

We will fit a hierarchical linear model to the math-achievement
data. This model consists of two parts:

(1) within schools, we have the regression of math achievement on
the individual-level covariate SES;

(2) across schools, we have for each school estimates the average
level of SES, and the type of school

A flexible way to model this type of correlated data is to assume
there is a grouped structure.



Cluster data

In clustered data, we have each subject is measured at each data
point, and each data point belongs to a cluster (group).

For example: in studies of health services and outcomes,
assessments of quality of care are obtained from patients who are
grouped by within different clinics.



Longitudinal data

In longitudinal data, we have each subject is measured at different
occasions, and each subject (measured at multiple times) forms a
group.

For example, suppose the unemployment rate remained high for a
long period of time during Covid. One can see if the same collection
of individuals stay unemployed over the entire period or if they move
in and out of unemployment over the time period.



Within group and between group
One importance consequence of grouping is that observations within
a group are more similar (correlated) than observations in different
groups (independent).

The group structure can be expressed in terms of dependence
among the observations within the same group. Such data can also
be regarded as hierarchical/multilevel data.

Figure 1: Image



Fixed and random effects

How can we extend the linear model to allow for such grouped
dependent structures ?

To incorporate the correlation within groups and the variation
between groups, we can extend linear model by introducing random
effects in the model and thus obtain Linear Mixed Models (LMMs).



Fixed and random effects

I fixed effect = population-level parameters (β in linear model)
that are associated with quantitative variables

I random effect = grouped-level “parameters”, whose values are
randomly sampled from a population of values being studied

Fixed effects (parameters) are constant across observations, whilst
random effects vary (between groups).

To include dependence, we must make, random effect, these
grouped-level parameters to be random (not constants).

Fixed effects (parameters) don’t change if you re-run an experiment,
random effects do.



4.1.2 Basics of Linear Mixed Models



Grouped observations

First, we denote the observations of response variable within i-th
group as

yi = (yi1, yi2, . . . , yini ),

where ni is the number of observations in i-th group. These are
observations of (non-independent) random variables

Yi = (Yi1,Yi2, . . . ,Yini ).

Here we let i = 1, 2 . . . ,m, where m is the number of groups, and
we let n =

∑m
i=1 ni .



Linear mixed models

A general LMM is as follows:

Yij =xij,1β1 + xij,2β2 + · · ·+ xij,pβp

+ uij,1γi ,1 + · · ·+ uij,qγi ,q

+ εij

=xT
ij β + uT

ij γi + εij , j = 1, . . . , ni ; i = 1, . . . ,m,

where β = (β1, . . . , βp)T is parameter vector of fixed effects, and
γi = (γi1, . . . , γiq)T is the vector of random effects in i-th group.

Moreover let εi = (εi1, , . . . , εini )T represents random errors within
i-th group, where εij ∼ N(0, σ2) independently.

We assume independence between each groups, that means
γ1,γ2, . . . ,γm, ε1, ε2, . . . , εm are all independent.



Interpretation - mathachieve dataset

For example, in mathachieve dataset, we want to analysis the
relationship between the response variable:

I mathach: the student’s score on a math-achievement test

and 3 explanatory variables:

I cses, the adjusted socioeconomic status of the student’s
family;

I meanses, the average socioeconomic status for students in
each school;

I sector, a factor coded Catholic or Public for the type of
student’s school.



Interpretation - mathachieve dataset
The individual-level equation for individual j in school i is

mathachij = βi0 + βi1csesij + εij

At the school level, we will entertain the possibility that the school
intercepts depend upon sector and upon the average level of SES in
the schools:

βi0 = β0 + β1meansesi + β2sectori + γi0

βi1 = β3 + γi1

Rearranging terms we have a LMMs:

mathachij =β0 + β1meansesi + β2sectori + β3csesij

+ γi0 + γi1csesij + εij



Random coefficients

As we said γi is a vector of random coefficients. During this course,
unless otherwise specified we assume that

γi ∼ N(0,D),

where D is a q × q covariance matrix of the random effects.

We often assume D = Dθ is parameterized by some unknown
parameter θ.

By introducing γi , i = 1, . . . ,m, we include the with-in group
correlation into the linear model.



With-in group correlations
Consider the following simple LMMs:

Yij = β0 + γi + εij , i = 1, . . . ,m; j = 1, . . . , ni ,

where the random effect and the error satisfy:

γi ∼ N(0, σ2
γ), εij ∼ N(0, σ2

ε ).

It can be shown that within {Yi1,Yi2, . . . ,Yini} is:

r i
jk = corr(Yij ,Yik) = Cov(γi + εij , γi + εik)√

Var(γi + εij)Var(γi + εik)

=
σ2
γ

σ2
γ + σ2

ε

.

Thus, if σγ = 0, there is no with-in group correlation. If σ2
ε � σ2

γ ,
the correlation r i

jk becomes very high.



Two sources of randomness

Specifically, by introducing the random effect, we make the data
incorporates two sources of randomness: the within-group
randomness and the between-group randomness. Thus, it can be
interpreted as two-stage hierarchical.

I stage 1: specifies the within-group randomness, which is given
by fixing i and letting j = 1, . . . , ni ;

I stage 2: specifies the between-group randomness, which is
given by letting i = 1, . . . ,m.



LMM Matrix form I

To present the LMMs in a matrix form, let
Yi = (Yi1,Yi2, . . . ,Yini )T , Xi = (xi1, xi2, . . . , xini )T be a ni × p
matrix, and Ui = (ui1,ui2, . . . ,uini )T be a ni × q matrix. Therefore,
we can write

Yi = Xiβ + Uiγi + εi

= Xiβ + ε∗
i , i = 1 . . . ,m,

where ε∗
i = Uiγi + εi can be regarded as random “errors” in i-th

group. Note that εi ∼ N(0, σ2Ini ). It is straightforward to see that

ε∗
i ∼ N(0,UiDUT

i + σ2Ini ),

which leads to the marginal model:

Yi ∼ N(Xiβ, UiDUT
i + σ2Ini ).



LMM Matrix form II
If we want to further present all the groups i = 1, 2, . . . ,m in one
matrix formula, we can write

Y =

Y1
...

Ym

 ∈ Rn, X =

X1
...

Xm

 ∈ Rn×p,

and

γ =

γ1
...

γm

 ∈ Rmq, ε =

ε1
...

εm

 ∈ Rn×1.

Moreover, let

U =


U1, 0n1×q, · · · , 0n1×q

0n2×q, U2, · · · , 0n2×q
... . . .

0nm×q, 0nm×q · · · Um

 ∈ Rn×mq



Matrix form II
Therefore, we can write the LMMs for all group as

Y = Xβ + Uγ + ε.

Since γi ∼ N(0,D), we have that γ ∼ N(0,G), where

G =


D

D
. . .

D

 ∈ Rmq×mq.

Similarly, if we express ε∗ = Uγ + ε, we have

ε∗ ∼ N(0,V ), V = UGUT + σ2In,.

As D = Dθ, we can write G and V as Gθ and Vθ, respectively.



Conclusion

I We have introduced the fixed effects and random effects

I We have introduced the linear mixed models (LMMs) for
modelling data with dependence

I We have seen LMMs in different matrix forms.


