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Recap

In previous lecture, we have

I asymptotics of MLE
I construct the confidence interval
I revised the log-likelihood test for testing a nested model pair
I introduced the AIC and BIC for comparing different models

All the contents so far are about just observations of (a set of)
random variables. This week we are going to revise the linear model,
where we have a response variable and a group of explanatory
variables.



3.1.1 The linear model



Linear regression

We denote the n observations of the response variable by
y = (y1, y2, . . . , yn)T . These are assumed to be observations of
random variables Y = (Y1,Y2, . . . ,Yn)T . Associated with each yi is
a vector xi = (xi1, xi2, . . . , xip)T of values of p explanatory variables.

In a linear model, we assume that

Yi = β1xi1 + β2xi2 + . . .+ βpxip + εi

=
p∑

j=1
xijβj + εi

= xT
i β + εi i = 1, . . . , n

where εi ∼ N(0, σ2) independently.



Matrix form

We can write our observations of explanatory variables in matrix
form:

X =

xT
1
...

xT
n

 =

x11 · · · x1p
... . . . ...

xn1 · · · xnp


The n × p matrix X consists of known (observed) constants and is
called the design matrix.

Let β = (β1, . . . , βp)T and ε = (ε1, ε2, . . . , εn)T . Then we can
wiret down the most economical expression of linear model in matrix
form

Y = Xβ + ε.



Distribution of response variable

Instead directly assume a joint pdf fY (y , θ) for the observational
responseY = (Y1,Y2, . . . ,Yn)T , in linear model we relate it to our
explanatory variables X .

Since Var(εi) = σ2, and Cov(εi , εj) = 0, as ε1, . . . , εn are
independent of one another, the error vector ε ∼ N(0, σ2I).

Then the distribution of Y is multivariate normal with mean vector
Xβ and variance covariance matrix σ2I, i.e.

Y ∼ N(Xβ, σ2I).



3.1.2 Examples of linear model
structure



Example: the null model

If we do not include any variables xi in the model, we have

Yi = β0 + εi , εi ∼ N(0, σ2), i = 1, . . . , n,

so

X =


1
1
...
1

 , β = (β0).

This is one (dummy) explanatory variable. In practice, this variable
is present in all models.



Example: simple linear regression

If we include a single variable xi in the model, we might have

Yi = β0 + β1xi + εi , εi ∼ N(0, σ2) i = 1, . . . , n

so

X =


1 x1
1 x2
...

...
1 xn

 , β =
(
β0
β1

)
.

There are two explanatory variables: the dummy variable and one
‘real’ variable.



Example: multiple regression

To include multiple explanatory variables, we might model

Yi = β0 + β1xi1 + β2xi2 + . . .+ βp−1xi p−1 + εi , εi ∼ N(0, σ2),

for i = 1, . . . , n. So

X =


1 x11 x12 · · · x1 p−1
1 x21 x22 · · · x2 p−1
...

...
... . . . ...

1 xn1 xn2 · · · xn p−1

 , β =


β0
β1
...

βp−1

 .

There are p explanatory variables: the dummy variable and p − 1
‘real’ variables.



Example: categorical explanatory variable

Suppose xi is a categorical variable, taking values in a set of k
possible categories. For simplicity we write xi ∈ {1, . . . , k}. We
wish to model

Yi = µxi + εi , εi ∼ N(0, σ2), i = 1, . . . , n,

so that the mean of Yi is the same for all observations in the same
category, but differs for different categories.

We could rewrite this model to include an intercept, as

Yi = β0 + βxi + εi , εi ∼ N(0, σ2), i = 1, . . . , n,

so that µj = β0 + βj , for j = 1, . . . , k.



Example: categorical explanatory variable (continued)

It is not possible to estimate all of the β parameters separately, as
they only affect the distribution through the combination β0 + βj .
Instead, we choose a reference category l , and set βl = 0.

The intercept term β0 then gives the mean for the reference
category, with βj giving the difference in mean between category j
and the reference category.

We can rewrite the model as a form of multiple regression by first
defining a new explanatory variable zi

zi = (zi1, . . . , zik)T ,

where

zij =
{
1 if xi = j
0 otherwise.



categorical explanatory variable (continued)

zi is sometimes called the one-hot encoding of xi , as it contains
precisely one 1 (corresponding to the category xi), and is 0
everywhere else. We then have

Yi = β0 + β1zi1 + β2zi2 + . . .+ βkzik + εi ,

so

X =


1 z11 z12 · · · z1k
1 z21 z22 · · · z2k
...

...
... . . . ...

1 zn1 zn2 · · · znk

 , β =


β0
β1
...
βk

 ,
where each row of X will have two ones, and the remaining entries
will be zero.

We can also do linear models with more than categorical
explanatory variables, and even allow an interaction between them.



3.1.3 Maximum likelihood estimation



MLE for β and σ2

We use the observed data y1, . . . , yn to estimate the regression
coefficients β1, . . . , βp.

The likelihood for a linear model is

L(β, σ2) =
(
2πσ2

)− n
2 exp

(
− 1
2σ2

n∑
i=1

(yi − xT
i β)2

)
. (1)

This is maximised with respect to (β, σ2) at

β̂ = (XT X)−1XT y

and
σ̂2 = 1

n

n∑
i=1

(
yi − xT

i β̂
)2
.



Residuals

The corresponding fitted values are

ŷ = Xβ̂ = X(XT X)−1XT y

or
ŷi = xT

i β̂, i = 1, . . . , n.

The residuals r = (r1, . . . , rn) are r = y − ŷ or ri = yi − xT
i β̂ for

i = 1, . . . , n.. These residuals describe the variability in the observed
responses y1, . . . , yn which has not been explained by the linear
model. We call

D =
n∑

i=1
r2
i =

n∑
i=1

(
yi − xT

i β̂
)2

the residual sum of squares or deviance for the linear model.



3.1.4 Properties of the MLE



Properties of the MLE
As Y is normally distributed, and β̂ = (XT X)−1XT Y is a linear
function of Y , then β̂ must also be normally distributed. We have

E (β̂) = β and Var(β̂) = σ2(XT X)−1,

so
β̂ ∼ N(β, σ2(XT X)−1).

It is possible to prove that
D
σ2 ∼ χ

2
n−p

which implies that
E (σ̂2) = n − p

n σ2,

so the maximum likelihood estimator is biased for σ2. We often use
the unbiased estimator of σ2

σ̃2 = D
n − p = 1

n − p

n∑
i=1

r2
i .



3.1.5 Comparing linear models



Hypothesis testing

As described previously, we proceed by comparing models pairwise
using a likelihood ratio test.

We will assume that model H1 contains p linear parameters and
model H0 a subset of q < p of these. Without loss of generality, we
can think of H1 as the model

Yi =
p∑

j=1
xijβj + εi , i = 1, . . . , n

and H0 being the same model with

βq+1 = βq+2 = · · · = βp = 0.



Likelihood ratio test

Now, a likelihood ratio test of H0 against H1 has a critical region of
the form

C =
{

y :
max(β,σ2)∈Θ(1) L(β, σ2)
max(β,σ2)∈Θ(0) L(β, σ2) > k

}
where k is determined by α, the size of the test, so

max
θ∈Θ(0)

P(y ∈ C ; β, σ2) = α.

For a linear model,

L(β, σ2) =
(
2πσ2

)− n
2 exp

(
− 1
2σ2

n∑
i=1

(yi − xT
i β)2

)
.

This is maximised with respect to (β, σ2) at β = β̂ and
σ2 = σ̂2 = D/n.



Critical region
Therefore we have

max
β,σ2

L(β, σ2) = (2πD/n)−
n
2 exp

(
−n
2

)
.

Let the deviances under models H0 and H1 be denoted by D0 and
D1 respectively. Then the critical region is of the form

(2πD1/n)− n
2

(2πD0/n)− n
2
> k.

Rearranging,
(D0 − D1)/(p − q)

D1/(n − p) > k ′,

for some k ′.

We refer to the left hand side of this inequality as the F -statistic.
We reject the simpler model H0 in favour of the more complex
model H1 if F is ‘too large’.



Distribution of F test under H0

As we have required H0 to be nested in H1, F ∼ Fp−q, n−p when H0
is true.

Therefore, the precise critical region can be evaluated given the size,
α, of the test. We reject H0 in favour of H1 when

(D0 − D1)/(p − q)
D1/(n − p) > k ′

where k is the 100(1− α)% quantile of the Fp−q, n−p distribution.



Conclusion

I We have revised the linear models in different forms

I We have revisited the MLE and its properties for the unknown
parameters in linear model

I We have looked at the theory of likelihood ratio test for
comparing linear models.


