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Recap

Last time, we

I Define the expected (or Fisher) information I(θ)
I Proved that Varθ(U(θ)) = I(θ)
I Show the Newton–Raphson algorithm to find the MLE (local

maximum)



2.3.1 Asymptotic distribution of the
MLE



Asymptotic distribution of the MLE

Suppose that y1, . . . , yn are observations of independent random
variables Y1, . . . ,Yn, whose joint p.d.f. fY (y ; θ) =

∏n
i=1 fYi (yi ; θ) is

completely specified except for the values of an unknown parameter
vector θ, and that θ̂ is the maximum likelihood estimator of θ.

As n→∞, the distribution of θ̂ tends to a multivariate normal
distribution with mean vector θ and variance covariance matrix
I(θ)−1.

Where p = 1 and θ = (θ), the distribution of the MLE θ̂ tends to
N[θ, 1/I(θ)].



Sketch proof (one parameter case)

(Proof not examinable)

We can write the score as

u(θ) = ∂

∂θ
`(θ) =

n∑
i=1

∂

∂θ
log fY (yi ; θ)

so U(θ) can be expressed as the sum of n i.i.d. random variables.

Asymptotically, as n→∞, by the central limit theorem, U(θ) is
normally distributed.

But for the true θ, E [U(θ)] = 0 and Var[U(θ)] = I(θ), so
asymptotically

U(θ) ∼ N[0, I(θ)].



Sketch proof (continued)

A Taylor series expansion of U(θ̂) around the true θ gives

U(θ̂) = U(θ) + (θ̂ − θ)U ′(θ) + . . .

Now, U(θ̂) = 0, and if we approximate U ′(θ) = H(θ) by
E [H(θ)] = −I(θ), and also ignore higher order terms

θ̂ = θ + 1
I(θ)U(θ).

As U(θ) is asymptotically N[0, I(θ)], θ̂ is asymptotically
N[θ, I(θ)−1].



Approximate distribution of the MLE

For ‘large enough n’, we can treat the asymptotic distribution of the
MLE as an approximation. The fact that E (θ̂) ≈ θ means that the
MLE is approximately unbiased for large samples.

The variance of θ̂ is approximately I(θ)−1. It is possible to show
that this is the smallest possible variance of any unbiased estimator
of θ (this result is called the Cramér–Rao lower bound, which we do
not prove here).

Therefore the MLE is the ‘best possible’ estimator in large samples.
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Bernoulli example

If Y1, . . . ,Yn are i.i.d. Bernoulli(p) random variables then

I(p) = n
p(1− p) ,

so asymptotically p̂ = Ȳ has a N(p, p(1− p)/n) distribution.

What does this result mean in practice?

e.g. if n = 10 and p = 0.5, how does the distribution of the MLE
compare with a N(0.5, 0.025) distribution?



Bernoulli example: p.f. of p̂ (n = 10, p = 0.5)
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How should we compare these two distributions?



Bernoulli example: c.d.f. of p̂ (n = 10, p = 0.45)
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Bernoulli example: c.d.f. of p̂ (n = 100, p = 0.45)
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Bernoulli example: c.d.f. of p̂ (n = 1000, p = 0.45)
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Exponential Examples

If Y1, . . . ,Yn are i.i.d. Exponential(θ) random variables then

I(θ) = n
θ2 ,

so asymptotically θ̂ = 1/Ȳ has a N(θ, θ2/n) distribution.



Exponential example: p.d.f. of θ̂ (n = 10, θ = 1)
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Exponential example: p.d.f. of θ̂ (n = 100, θ = 1)
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2.3.2 Quantifying uncertainty in
parameter estimates



Standard errors

A standard error is an estimate of the standard deviation of an
estimator.

If p = 1, a standard error of the MLE θ̂ is

s.e.(θ̂) = 1
I(θ̂) 1

2
,

and for a vector parameter θ

s.e.(θ̂i ) = [I(θ̂)−1]
1
2
ii , i = 1, . . . , p.



Constructing large sample confidence intervals

Asymptotically, θ̂i ∼ N(θi , [I(θ)−1]ii ) and we can find z1−α
2
such

that

P

−z1− α
2
≤ θ̂i − θi

[I(θ)−1]
1
2
ii

≤ z1−α
2

 = 1− α.

Therefore

P
(
θ̂i − z1−α

2
[I(θ)−1]

1
2
ii ≤ θi ≤ θ̂i + z1−α

2
[I(θ)−1]

1
2
ii

)
= 1− α.



Constructing large sample confidence intervals

The endpoints of this interval cannot be evaluated because they also
depend on the unknown parameter vector θ. However, if we replace
I(θ) by its MLE I(θ̂) we obtain the approximate large sample
100(1 − α)% confidence interval

[θ̂i − z1−α
2

[I(θ̂)−1]
1
2
ii , θ̂i + z1−α

2
[I(θ̂)−1]

1
2
ii ].

For α = 0.1, 0.05, 0.01, z1−α
2

= 1.64, 1.96, 2.58.



Example (Bernoulli)

If y1, . . . , yn are observations of Y1, . . . ,Yn, i.i.d. Bernoulli(p)
random variables then asymptotically p̂ = ȳ has a N(p, p(1− p)/n)
distribution, and a large sample 95% confidence interval for p is

[p̂ − 1.96[I(p̂)−1]
1
2 , p̂ + 1.96[I(p̂)−1]

1
2 ]

= [p̂ − 1.96[p̂(1− p̂)/n]
1
2 , p̂ + 1.96[p̂(1− p̂)/n]

1
2 ]

= [ȳ − 1.96[ȳ(1− ȳ)/n]
1
2 , ȳ + 1.96[ȳ(1− ȳ)/n]

1
2 ].



how many heads?

Toss a coin 10 times. How many “heads” did you get?

Can work out [ȳ − 1.96[ȳ(1− ȳ)/n] 1
2 , ȳ + 1.96[ȳ(1− ȳ)/n] 1

2 ] for
each possible number of heads:
## lower upper
## 0 0.00000000 0.0000000
## 1 -0.08594193 0.2859419
## 2 -0.04792257 0.4479226
## 3 0.01596902 0.5840310
## 4 0.09635811 0.7036419
## 5 0.19009679 0.8099032
## 6 0.29635811 0.9036419
## 7 0.41596902 0.9840310
## 8 0.55207743 1.0479226
## 9 0.71405807 1.0859419
## 10 1.00000000 1.0000000

For the number of heads you got, does the interval contain 0.5?
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Checking the coverage (n = 10, α = 0.05)

n <- 10
sum_y <- rbinom(10000, size = n, prob = 0.5)
y_bar <- sum_y / n
I_hat <- y_bar * (1 - y_bar) / n
lower <- y_bar - 1.96 * sqrt(I_hat)
upper <- y_bar + 1.96 * sqrt(I_hat)
coverage <- mean(lower < 0.5 & upper > 0.5)
coverage

## [1] 0.8906

The actual coverage is lower than the nominal 95% level.
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Checking the coverage (n = 100, α = 0.05)

n <- 100
sum_y <- rbinom(10000, size = n, prob = 0.5)
y_bar <- sum_y / n
I_hat <- y_bar * (1 - y_bar) / n
lower <- y_bar - 1.96* sqrt(I_hat)
upper <- y_bar + 1.96* sqrt(I_hat)
coverage <- mean(lower < 0.5 & upper > 0.5)
coverage

## [1] 0.9404

The actual coverage is close to the nominal 95% level. The
confidence interval is designed using an approximation which will
work well for large n, so this is expected.
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2.3.3 Comparing statistical models



Comparing statistical models

If we have a set of competing probability models which might have
generated the observed data, we may want to determine which of
the models is most appropriate.

Suppose that we have two competing alternatives, f (0)
Y (model M0)

and f (1)
Y (model M1) for fY , the joint distribution of Y1, . . . ,Yn.

Often M0 and M1 both take the same parametric form, fY (y ; θ) but
with θ ∈ Θ(0) for M0 and θ ∈ Θ(1) for M1, where Θ(0) and Θ(1) are
alternative sets of possible values for θ.

In the regression setting, we are often interested in determining
which of a set of explanatory variables have an impact on the
distribution of the response.



2.3.3.1 Hypothesis testing



Hypothesis testing
A hypothesis test provides one way of comparing two competing
statistical models.

One hypothesis,

H0: the data were generated from model M0,

has special status, and is referred to as the null hypothesis. The null
hypothesis is the reference model, and will be assumed to be
appropriate unless the observed data strongly indicate that H0 is
inappropriate, and that

H1: the data were generated from model M1,

(the alternative hypothesis) should be preferred.

The fact that a hypothesis test does not reject H0 should not be
taken as evidence that H0 is true and H1 is not, merely that the data
does not provide sufficient evidence to reject H0 in favour of H1.



Critical region

A hypothesis test is defined by its critical region or rejection region,
which we shall denote by C .

I If y ∈ C , H0 is rejected in favour of H1;
I If y 6∈ C , H0 is not rejected.



Size and power of a test

We define the size (or significance level) of the test

α = max
θ∈Θ(0)

P(Y ∈ C ; θ)

This is the maximum probability of erroneously rejecting H0, over all
possible distributions for Y implied by H0.

We also define the power function

ω(θ) = P(Y ∈ C ; θ)

It represents the probability of rejecting H0 for a particular value of
θ.

A good test will have small size, but large power.



Fixing the size, maximising the power

In general, we fix α to be some small value (often 0.05), so that the
probability of erroneous rejection of H0 is limited. In doing this, we
are giving H0 precedence over H1.

Given our specified α, we try to choose a test to make ω(θ) as large
as possible for θ ∈ Θ(1) \Θ(0).



2.3.3.2 Likelihood ratio tests for
nested hypotheses



Likelihood ratio test
Suppose that M0 and M1 both take the same parametric form,
fY (y ; θ) with θ ∈ Θ(0) for M0 and θ ∈ Θ(1) for M1, where Θ(0) and
Θ(1) are alternative sets of possible values for θ.

A likelihood ratio test of H0 against H1 has a critical region of the
form

C =
{

y :
maxθ∈Θ(1) L(θ)
maxθ∈Θ(0) L(θ) > k

}
where k is determined by α, the size of the test, so

max
θ∈Θ(0)

P(Y ∈ C ; θ) = α.

We only reject H0 if the observed data are much more probable
under some distribution in H1 than any distribution under H0.

In general, this will not be available to us. However, we can make
use of an important asymptotic result.



The log likelihood ratio statistic

First we notice that, as log is a strictly increasing function, the
rejection region is equivalent to

C =
{

y : 2 log
(

maxθ∈Θ(1) L(θ)
maxθ∈Θ(0) L(θ)

)
> k ′

}
where

max
θ∈Θ(0)

P(y ∈ C ; θ) = α.

We call
L01 ≡ 2 log

(
maxθ∈Θ(1) L(θ)
maxθ∈Θ(0) L(θ)

)
the log likelihood ratio statistic



Asymptotic distribution of the log likelihood ratio statistic

If H0 is nested within H1, in other words Θ(0) ⊂ Θ(1) (Θ(0) is a
subspace of Θ(1)) then under H0: θ ∈ Θ(0), asymptotically as
n→∞, L01 has a chi-squared distribution with degrees of freedom
equal to the difference in the dimensions of Θ(1) and Θ(0).

A sketch proof is in the notes, but is not examinable.

So a log likelihood ratio test rejects H0 if L01 exceeds the
100(1− α)% point of the relevant chi-squared distribution.
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Example (Bernoulli)

y1, . . . , yn are observations of Y1, . . . ,Yn, i.i.d. Bernoulli(p) random
variables. Suppose that we require a size α test of the hypothesis
H0: p = p0 against the general alternative H1: ‘p is unrestricted’
where α and p0 are specified.

Here θ = (p), Θ(0) = {p0} and Θ(1) = (0, 1) and the log likelihood
ratio statistic is

L01 = 2nȳ log
( ȳ
p0

)
+ 2n(1− ȳ) log

( 1− ȳ
1− p0

)
.

As d1 = 1 and d0 = 0, under H0, the log likelihood ratio statistic
has an asymptotic χ2

1 distribution.



Finding the critical value

We reject H0 if L01 is ‘too large’ to have come from a χ2
1

distribution.

If α = 0.05, then we should reject H0 if the test statistic is greater
than the 95% point of the χ2

1 distribution:
qchisq(0.95, df = 1)

## [1] 3.841459



Quiz: nested or non-nested?
Suppose we have continuous response variables Yi and explanatory
variables xi , and suppose εi ∼ N(0, σ2). Consider the following
models:

I Model 1: Yi = β0 + εi
I Model 2: Yi = β0 + β1xi + εi
I Model 3: Yi = β0 + β1 log xi + εi
I Model 4: Yi = β0 + β1xi + β2x2

i + εi
I Model 5: logYi = β0 + εi

Which of the following statements are true? Select as many as
apply.

I Model 1 is nested in Model 2
I Model 2 is nested in Model 3
I Model 1 is nested in Model 3
I Model 2 is nested in Model 4
I Model 1 is nested in Model 5



2.3.3.3 Information criteria for model
comparison



Comparing non-nested models

We have seen how to use a likelihood ratio test to compare two
nested models, but we may also want to compare non-nested models.
An alternative approach is to record some criterion measuring the
quality of the model for each of a candidate set of models, then
choose the model which is the best according to this criterion.

It is tempting to to choose the model which has the largest
likelihood. However, if we do this we will always end up choosing
complicated models, which fit the observed data very closely, but do
not meet our requirement of parsimony.
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Penalised likelihood approaches

For a given model depending on parameters θ ∈ Rp, let ˆ̀ = `(θ̂) be
the log-likelihood function for that model evaluated at the MLE θ̂.
It is not sensible to choose between models by maximising ˆ̀ directly,
and instead it is common to choose a model to maximise a criteria
of the form

ˆ̀− penalty,

where the penalty term will be large for complex models, and small
for simple models.

Equivalently, we may choose between models by minimising a
criteria of the form

−2ˆ̀+ penalty.

By convention, many commonly-used criteria for model comparison
take this form.
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AIC and BIC

The Akaike information criterion (AIC) is

AIC = −2ˆ̀+ 2p,

where p is the dimension of the unknown parameter in the
candidate model, and the Bayesian information criterion (BIC) is

BIC = −2ˆ̀+ log(n)p,

where n is the number of observations.

BIC penalises complex models more than AIC. We can choose
between models by choosing the one with smaller AIC (or smaller
BIC).



Conclusion

I We have seen a sketch proof of the asymptotic distribution of
the MLE.

I We have seen how to use this asymptotic distribution to
construct (approximate) confidence intervals.

I These approximate confidence intervals will have about the
right coverage if the sample size n is sufficiently large.

I We have seen how to use the likelihood ratio test to conduct a
hypothesis test to compare two nested models.

I We have introduced AIC and BIC, which can be used to
compare models even if those models are not nested.

I You should now be able to attempt all questions in problem
sheet 1 and Question 2 in problem sheet 2 (available next
week).


