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Recap

Previously, we

» reintroduced the likelihood: “the probability that we would have
seen the data we actually did, for each value of the parameter”.

P reviewed the “usual” recipe for finding maximum likelihood
estimates: find a stationary point of the log-likelihood (and
check it is a maximum).

Let's look at one more example.



Example: gamma with known rate parameter
Suppose Y; ~ gamma(0, 1) i.i.d, with
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Example: gamma with known rate parameter
Suppose Y; ~ gamma(0, 1) i.i.d, with
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The likelihood is
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The log-likelihood is



Differentiating the log-likelihood

Differentiating, we have
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which has no closed-form solution for 6.
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which has no closed-form solution for 6.
It is very common in practice that it is not possible to write down a

closed-form expression for the MLE, so we must use numerical
methods to maximise the log-likelihood.



2.2.1 Score Function



Score

Let 9
ui(0) = a—eiﬂ(ﬁ), i=1,...,p

and u(0) = [u1(6), ..., up(0)]T. Then we call u(@) the vector of

scores or score vector.

Where p = 1 and 6 = (0), the score is the scalar defined as

u(f) = %6(0).



Score quiz 1

Suppose we have observations yi,...,y, of Y1,..., Yy, iid.
Bernoulli(p) random variables, and we want to estimate p.

As a first guess at p, | guess that p = 0.5, and calculate the score
there, and find u(0.5) = —2

Is the MLE:

» greater than 0.57
» less than 0.57

» equal to 0.57

» Not possible to tell.



Score quiz 2

Suppose we have observations yy,...,y, of Y1,..., Yy, ii.d.
Bernoulli(p) random variables, and we want to estimate p.

After finding u(0.5) = —2, | now guess that p = 0.2, calculate the
score there, and find 1v(0.2) =1

Is the MLE:

P greater than or equal to 0.57

» greater than 0.2 but less than 0.57
» equal to 0.27

» less than 0.27

> Not possible to tell.



Notes on the score

» The maximum likelihood estimate @ satisfies
u(6) =0,

that is,

u,-(é)zO, i=1,...,p.

» u(0) is a function of @ for fixed (observed) y. However, if we
replace yi,...,yn in u(@), by the corresponding random
variables Yi,..., Y, then we obtain a vector of random
variables U(0) = [U1(0),..., U,(0)].



An important result about the score

Theorem: The expected score at the true (but unknown) value of
0, denoted by 8y, is zero:

E[U(60)] = 0
i.e.
E[U,'(Oo)]zo, i:].,...,p,
provided that

1. The expectation exists.
2. The sample space for Y does not depend on 6.



Proof (continuous y — in discrete case replace | by 3°)
Ignore the subsript, for each i=1,...,p
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Example (Bernoulli)

Yi,...,Yn are observations of Yi,..., Y}, i.i.d. Bernoulli(p) random
variables. Here 8 = (p) and

u(p) =ny/p—n(l-y)/(1 - p).

Since E[U(p)] = 0, we must have E[Y] = p (which we already
know is correct).



The Bernoulli loglikelihood and score

e.g. take 15 samples from a Bernoulli(0.45) distribution.
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The Bernoulli loglikelihood and score
e.g. take 15 samples from a Bernoulli(0.45) distribution.
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The Bernoulli loglikelihood and score

e.g. take 15 samples from a Bernoulli(0.45) distribution.
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The Bernoulli loglikelihood and score

e.g. take 15 samples from a Bernoulli(0.45) distribution.
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Information: Bernoulli loglikelihoods
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Bernoulli loglikelihoods quiz

In both cases, p = 0.4. In case A, a 95% confidence interval for p is
[0.15,0.70]. Which of the following could be a 95% confidence
interval for p in case B?

> [0.01,0.79]
> [0.31,0.50]
» Neither of the above



Bernoulli loglikelihoods quiz

In both cases, p = 0.4. In case A, a 95% confidence interval for p is
[0.15,0.70]. Which of the following could be a 95% confidence
interval for p in case B?

> [0.01,0.79]
> [0.31,0.50]
» Neither of the above

The data provide more information about the parameter in case B

than in case A, so we have a higher confidence in case B that the

true parameter value is close to 0.4, leading to a smaller confidence
interval.

We call minus the second derivative of the log-likelihood the
observed information, which is 41.7 in case A, and 417 in case B,
both at 0.4.



Summary of Socre Function

For now, we

» Defined the score as the gradient of the log-likelihood.
» show that score is useful in finding the MLE.

We also mentioned that the amount of information provided by the
data is largest when the curvature of the log-likelihood is greatest.

We will formally define information to reflect this intuition.



2.2.2 Information Matrix



Observed Information

Suppose that y1, ..., y, are observations of Yi,...,Y},, whose joint
p.d.f. fy(y; 0) is completely specified except for the values of p
unknown parameters 8 = (61, ...,0,)7.

Previously, we defined the Hessian matrix H(0) to be the matrix
with components

62
H(8)];i = ——¢(0 i=1,....,p; j=1,...,p.

We call —H(0) the observed information (matrix). Where p =1
and 0 = (), the observed information is a scalar defined as
32

—H(9) = —ﬁf(ﬁ).



Fisher information

As with the score, if we replace y1,...,y, in H(8), by the
corresponding random variables Y3,..., Yy, we obtain a matrix of
random variables. Then, we define the expected information
(matrix) or Fisher information (matrix) as

[Z(0)]; = Eo(~[H(O)]5)  i=1,....pij=1.....p.

Note that here the expectation is with respect to @, not the true
value of the parameter.



Example (Bernoulli)

Yi,--.,Yn are observations of Yi,...,Y,, i.i.d. Bernoulli(p) random
variables. Here 8 = (p) and

~ny n(l-y)

W= )

~Hle) = % i ,(73{1—_13})/2)
He) =+ 1-p)  p(T—p)



Example (Normal)

Y1,.-.,Yn are observations of Yi,..., Yy, i.id. N(u,o?) random
variables. Here 6 = (u,0?) and




A link between the score and expected information

Theorem: The variance-covariance matrix of the score vector is
equal to the expected information matrix i.e.

Varg[U(0)] = Z(0)

or
Varg[U(0)];; = [Z(0)], i=1,....p, j=1,...,p
provided that

1. The variance exists.
2. The sample space for Y does not depend on 6.

This result holds uniformly for all 8, not just at the 6.



Proof (continuous y — in discrete case replace | by 3°)}

Foreachi=1,...,pandj=1,...,p,

Varg[U(0)]; = Eo[Ui(8) U;(6)]
0 0
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Proof

Now

Z(6)]; = Eo [—80%9/(9)1
2
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Maximum likelihood estimation

Maximum likelihood estimation is an attractive method of
estimation:

> It is intuitively sensible (choose 8 which makes the observed
data most probable).

P It is general: you just need a probability model and some data!

» Computing the the MLE is often fairly simple. Even when the
simultaneous equations we obtain by differentiating the
loglikelihood function are impossible to solve directly, solution
by numerical methods is usually feasible.

» Other good properties: efficiency, consistency and asymptotic
normality, ...



Numerical-Method to find MLE

We can use score to determine if our guess () is to the left or right
of the MLE 6.

Question: After knowing the direction, by how much should we
adjust our guess?



Newton-Raphson Method

Note that by Taylor expansion:
u(8) = u(@D) + (8 — 6M)YH(OW) + ..., note that u(d) = 0 and
ignore the remainder terms:

Therefore
0~ 00 — u(e™)/HOM)
This suggests the following Newton-Raphson algorithm:
1. Let 01 denote your initial guess of the MLE.
2. Fori=2,3,..., update () as:
i—1
o) — -1y _ @)
H(6(—1)

3. Terminate the iteration until |0; — 0;_1| < €, where € is a small
constant denote our convergence tolerance.



Newton-Raphson method

To find the root of a function f(x) =0

f(x)

f(x;) B




Conclusion

» We have defined the score, the Hessian matrix, the observed
information and the expected information.

» The score plays an important role in numerical methods to
maximise the log-likelihood.

> We showed that that the expected value of the score vector at
the true value of 6 is zero.

> We proved that “variance of the score equals the expected
information”

» We show the Newton-Raphson method to find the MLE
numerically



