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2.1 The likelihood function



Setup and notation

Suppose that data consist of n observations y = (y1, . . . , yn)T .

The vector y contains observations of random variables

Y = (Y1, . . . ,Yn)T ,

which have joint probability density function (p.d.f.) fY (joint
probability function (p.f.) for discrete variables).

We often assume that Y1, . . . ,Yn are independent random
variables. Hence

fY (y) = fY1(y1)fY2(y2) · · · fYn (yn) =
n∏

i=1
fYi (yi ).



Introduction to the likelihood

In parametric statistical inference, we specify a joint distribution fY ,
for Y , which is known except for some parameters
θ = (θ1, θ2, . . . , θp).

Then we use the observed data y to make inferences about θ. In
this case, we usually write fY as fY (y ; θ), to make explicit the
dependence on the unknown θ.

Often we think of the joint density fY (y ; θ) as a function of y for
fixed θ, which describes the relative probabilities of different
possible values of y , given a particular set of parameters θ.

However, in statistical inference, we have observed y , and want to
know (infer) θ: e.g, which values of θ could plausibly have
generated the observations y?



The likelihood function

In this way, we can think of fY (y ; θ) as a function of θ for fixed y ,
which describes the relative likelihoods of different possible (sets of)
θ, given observed data y1, . . . , yn.

For this likelihood, we write it as

L(θ; y) = fY (y ; θ),

which is a function of the unknown parameter θ. For convenience,
we often drop y from the notation, and write L(θ).



Notes on the likelihood

1. Frequently it is more convenient to consider the log-likelihood
function `(θ) = log L(θ).

2. Nothing in the definition of the likelihood does not requires
y1, . . . , yn to be observations of independent random variables,
although we shall frequently make this assumption.

3. Any factors which depend on y1, . . . , yn alone (and not on θ)
can be ignored when writing down the likelihood. Such factors
give no information about the relative likelihoods of different
possible values of θ.



Modelling births in the UK

Between 2011 and 2015 there were n = 3827170 live births recorded
in the UK. Let

Yi =
{
1 if child i is female
0 if child i is male

,

i = 1, . . . , n.

How could we model Yi?

I Yi ∼ Bernoulli(p), where p is unknown
I Yi ∼ Bernoulli(0.5)
I Yi ∼ geometric(p), where p is unknown
I Yi ∼ geometric(0.5)
I Yi ∼ Poisson(λ), where λ is unknown
I None of the above



Modelling births in the UK

Between 2011 and 2015 there were n = 3827170 live births recorded
in the UK. 1863820 of these children were recorded as female and
1963350 as male.

Suppose we model Yi ∼ Bernoulli(p). How would you estimate p?

I 0.5
I 1863820/3827170 = 0.486
I 1963350/3827170 = 0.513
I 1863820/1963350 = 0.949
I 1963350/1863820 = 1.053
I None of the above

We estimate p as ȳ = 1863820
3827170 = 0.486.
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Modelling births in the UK: likelihood function
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Modelling births in the UK: log-likelihood function
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Example (Bernoulli)

y1, . . . , yn are observations of Y1, . . . ,Yn, independent identically
distributed (i.i.d.) Bernoulli(p) random variables. Here θ = (p) and
the likelihood is

L(p) =
n∏

i=1
pyi (1 − p)1−yi = p

∑n
i=1 yi (1 − p)n−

∑n
i=1 yi .

The log-likelihood is

`(p) = log L(p) = nȳ log p + n(1 − ȳ) log(1 − p).



Example (Bernoulli)
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n∏

i=1
pyi (1 − p)1−yi = p

∑n
i=1 yi (1 − p)n−

∑n
i=1 yi .

The log-likelihood is
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Plotting the log-likelihood with R

lfun <- function(p, y) {
ybar <- mean(y)
n <- length(y)
n * ybar * log(p) + n * (1 - ybar) * log(1 - p)

}

e.g. suppose y is
y <- c(1, 0, 0, 0, 1, 0, 0, 0, 1, 0)

We can plot the log-likelihood with
curve(lfun(x, y), from = 0, to = 1, ylim = c(-12, -6),

xlab = "p", ylab = "log-likelihood log L(p)")



Plotting the log-likelihood
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How would you estimate p in this example?

How confident are you
of your estimate? (e.g. could p = 0.5 plausibly have generated the
data?)
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How would you estimate p in this example? How confident are you
of your estimate? (e.g. could p = 0.5 plausibly have generated the
data?)



2.1.1 Maximum likelihood estimation



Maximum likelihood estimation

We call the value of θ which maximises the likelihood L(θ) the
maximum likelihood estimate (MLE) of θ, denoted by θ̂.

θ̂ = arg max
θ

L(θ)

θ̂ depends on y , as different observed data samples lead to different
likelihood functions.

The corresponding function of Y is called the maximum likelihood
estimator and is also denoted by θ̂.



Some properties of the MLE

As θ = (θ1, . . . , θp), the MLE for any component of θ is given by
the corresponding component of θ̂ = (θ̂1, . . . , θ̂p)T .

The MLE for any function of parameters g(θ) is given by g(θ̂).

As log is a strictly increasing function, the value of θ which
maximises L(θ) also maximises `(θ) = log L(θ). It is almost always
easier to maximise `(θ).



“Usual” recipe for finding the MLE

1. Write down the likelihood L(θ).
2. Take logs to find the log-likelihood `(θ) = log L(θ).
3. Find a stationary point θ̂ by differentiating `(θ) with respect to
θ1, . . . , θp, and solving the resulting p simultaneous equations.

4. Check that the stationary point θ̂ is a maximum (rather than a
minimum or point of inflection) of the log-likelihood.



Example (Bernoulli)
y1, . . . , yn are observations of Y1, . . . ,Yn, i.i.d. Bernoulli(p) random
variables. Here θ = (p) and the log-likelihood is

`(p) = nȳ log p + n(1 − ȳ) log(1 − p).

Differentiating with respect to p,

∂

∂p `(p) = nȳ
p − n(1 − ȳ)

1 − p

so the MLE p̂ solves

nȳ
p̂ − n(1 − ȳ)

1 − p̂ = 0.

Solving this for p̂ gives p̂ = ȳ . Note that

∂2

∂p2 `(p) = −nȳ/p2 − n(1 − ȳ)/(1 − p)2 < 0

everywhere, so the stationary point is clearly a maximum.



Checking with R

In our test case, where y is
y

## [1] 1 0 0 0 1 0 0 0 1 0

let’s plot out the likelihood, and add on the MLE:
curve(lfun(x, y), from = 0, to = 1, ylim = c(-12, -6),

xlab = "p", ylab = "log-likelihood")
ybar <- mean(y)
points(ybar, lfun(ybar, y))



Checking with R
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Is this a sensible estimate?

For one particular dataset, we have just found p̂ as 0.3. This is the
maximum likelihood estimate for this particular dataset.

To check that this is a sensible way to estimate p, we could
generate data y1, . . . , yn from the model for some known value of p,
and estimate p with p̂ = ȳ .

Is p̂ close to p?
n <- 100
theta <- 0.6
y <- rbinom(n, 1, theta)
p_hat <- mean(y)
p_hat

## [1] 0.62
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Repeating the simulation process

When we generate a new dataset from the model, and compute p̂
again, we get a different answer:
y <- rbinom(n, 1, theta)
p_hat <- mean(y)
p_hat

## [1] 0.63



The distribution of estimates from repeated simulations

We could do this 10000 times, and look at the range of estimates
which we get:
p_hat_sims <- replicate(10000, mean(rbinom(n, 1, theta)))
hist(p_hat_sims, xlim = c(0, 1))



Histogram of p_hat_sims
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The mean of estimates from repeated simulations

mean(p_hat_sims)

## [1] 0.599103

This is very close to the true value of p, 0.6.

It seems that p̂ does not systematically underestimate or
overestimate p.



Estimates to estimators

In this case, p̂ = Ȳ = 1
n

∑n
i=1 Yi is the maximum likelihood

estimator of θ. It is a random variable, and we can look at its
distribution.

This is a short-cut to the process of repeated simulation from the
model described above.

For instance, we can check that E (p̂) = E (Ȳ ) = p (for any p), so
the estimate is unbiased, and we can find Var(p̂) = Var(Ȳ ) to see
how spread out the esimates will be.

We can also check what happens to the distribution of p̂ as the
number of samples n grows large.

There are general results about the distribution of the maximum
likelihood estimator as n grows large, which we will study soon.
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Conclusion

I We have reintroduced the likelihood: “the probability that we
would have seen the data we actually did, for each value of the
parameter”.

I We have reviewed the “usual” recipe for finding maximum
likelihood estimates: find a stationary point of the
log-likelihood (and check it is a maximum).

I Likelihood is very general: we can find a likelihood function for
any probability model. The difficult part is often to choose an
appropriate model.


