MATH3091 Statistical Modelling I
Lecture 1: Module Information

Dr. Chao Zheng and Prof. Sujit Sahu



Overview:

>

>

The teaching of this module will be shared by Dr Chao Zheng
and Prof Sujit Sahu

Chao (during weeks 1-5) will teach the first part on Linear
Models.

This part will include review of Math2010 and introduction to
new materials on likelihood based inference (e.g. maximum
likelihood estimation) and linear mixed models.

Sujit (during weeks 6-10) will introduce the generalised linear
models for modelling count data (e.g. number of Covid-19
deaths in England).

There will be approximately 36 contact hours scheduled (see
the next slide) — all during weeks 1-10.



Plan of the 36 contact hours in MATH3091

P> 22 lectures
» 2 or 3 lectures per week on Monday and Friday
» video recordings from last year will be available to watch

» 8 computer labs
» Monday 17:00-18:00

» 6 problem classes
» usually on Fridays
» problem sheets will be provided much ahead of time.
P you are asked to attempt the problems beforehand to get more

out of these sessions.



Arrangement (Weeks 1-5)

» Chapter 1: Preliminaries

» Chapter 2: Likelihood Based Statistical Theory

» Chapter 3: Linear models

» Chapter 4: Linear Mixed Models

Monday (am) Monday (pm) Friday (pm)

Week 1 Lec1 Lab 1(preparation) Lec 2, Lec 3
Week 2 Lec 4 Lab 2(Chap 2) Lec 5, PC 1(Chap 2)
Week 3 Lec 6 Lab 3(Chap 3) Lec 7, PC 2(Chap 3)
Week 4 Lec 8 Lab 4(Chap 4) Lec 9, PC 3(Chap 4)
Week 5 *Class Test*

» We might have a Lec 9" and Lab 4’ in the Monday of Week 5,
depending on our progress



Assessment methods and key dates

>

1.

>
>

vvyvy

®

In-person Class Test: — 25%

Time: 4-6 PM on March 4

It cannot be taken at any other date, time or in other
format.

It will be based on the contents taught during Weeks 1-5.
It is open book but you cannot use any electronic devices
(phones/laptops) during the test

One piece of Coursework: — 25%

Due date: 5PM on May 20
A mini project using R for fitting generalised linear models
Project details to be handed out later

Written final assessment: — 50%

Time: end of semester exam period
Based on both linear (mixed) and generalised linear models



Contact and Office Hour

» Module mailbox:
»> math3091@soton.ac.uk.
» All queries should be sent to this email address only.
» We both will monitor this email address.
» We aim to give you a prompt reply.
» E-Mail sent to our university email addresses may receive a
delayed reply.

» Office Hour:
> Monday 16:00-17:00 (during Weeks 1-5)
> Friday 14:30-15:30 (TBD, during Weeks 6-10)
» No prior appointment is needed
» Bb Collaborate, or see me in person at 9001/B54 (during weeks
1-5).



The Module Blackboard Site

> Module Information:
» provides the information presented above

» Diary (log book)

» Organised by week, this is where you will find all the lecture
videos, slides, R work sheets for computer labs, theory exercise
sheets for the problem classes

P After the end of the live class we will also publish recordings
and exercise solutions.

» This page will also detail what activities are planned for the
week ahead at any particular time

» Course Content
» Lecture note booklet
> R data sets
» Past papers and solutions
» Any additional material



What we will be learning and why is it exciting?

» We will be modelling realistic real life datasets with statistical
models, which help us to

» understand the random process by which observed data have
been generated.

» make predictions and decisions based on our inferences
concerning the process.

P assess uncertainties in the inference we make

» We will extend and develop new methods for model fitting

» Linear (mixed) models extended from MATH2010
» Generalised linear models for count data

> Below are some example datasets we will analyse:



1.1 Dataset Examples



nitric: Nitric acid

This data set relates to 21 successive days of operation of a plant
oxidising ammonia to nitric acid.

The response yield is ten times the percentage of ingoing
ammonia that is lost as unabsorbed nitric acid (an indirect measure
of the yield).

The aim here is to study how the yield depends on:

> flow of air to the plant (flow),
P> temperature of the cooling water entering the absorption tower

(temp)
» concentration of nitric acid in the absorbing liquid (conc).



Plotting the nitric data (pairs plot from Math2010)
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Plotting the nitric data (Learning more from ggplot)
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birth: Weight of newborn babies

This data set contains weights of 24 newborn babies. There are two
explanatory variables, sex (Sex) and gestational age in weeks (Age)
together with the response variable, birth weight in grams (Weight).

The aim here is to study how birth weight depends on sex and
gestational age.



Plotting the birth data (basic scatter plot)
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Plotting the birth data (from ggplot 2)
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survival: Time to death

This data set contains survival times in 10 hour units (time) of 48
rats each allocated to one of 12 combinations of 3 poisons (poison)
and 4 treatments (treatment).

The aim here is to study how survival time depends on the poison
and the treatment, and to determine whether there is an interaction
between these two categorical variables.



Plotting the survival data
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beetle: Dose response study on insecticide

This data set represents the number of beetles exposed (exposed)
and number killed (killed) in eight groups exposed to different
doses (dose) of a particular insecticide. Interest is focussed on how
mortality is related to dose.

#t dose exposed killed
## 1 1.6907 59 6
##H 2 1.7242 60 13
## 3 1.7552 62 18
## 4 1.7842 56 28
## 5 1.8113 63 52
## 6 1.8369 59 53



The proportion of beetles killed by dose of insecticide

(Wrong) Linear model for dose/response study
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shuttle: Challenger disaster

This data set concerns the 23 space shuttle flights before the
Challenger disaster.

The disaster is thought to have been caused by the failure of a
number of O-rings, of which there were six in total.

The data consist of variables including:

» the number of damaged O-rings for each pre-Challenger flight

P the launch temperature in degrees Fahrenheit

» the pressure at which the pre-launch test of O-ring leakage was
carried out

» the name of the orbiter

The Challenger launch temperature on 20th January 1986 was 31F.
The aim is to predict the probability of O-ring damage at the
Challenger launch.


https://youtu.be/j4JOjcDFtBE?t=88

The proportion of O-rings damaged by launch temperature
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Other data sets analysed

» ‘heart’: Estimating treatment effects for heart attack patients
» Which factors influence the most patient survival rate after
heart attack?

» ‘accident’: Number of road accidents in Cambridge
» Which of the two roads is more dangerous?
» How does time of day affect road accident?

P> ‘job": Job satisfaction and income
» Are people with higher income more satisfied with their jobs?



Modelling pandemic data?
Covid-19 deaths in different local authorities

Mean weekly covid death rate per 100,000
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1.2 Elements of statistical modelling



Statistical modelling

Statistical models help us to

» understand the random process by which the observed data
have been generated (data generating mechanism).

> make predictions and decisions based on our inferences
concerning the process.



Statistical modelling

Statistical models help us to

» understand the random process by which the observed data
have been generated (data generating mechanism).

> make predictions and decisions based on our inferences
concerning the process.

We describe random processes using probabilistic models. Given a
model, statistical inference may involve estimating any unspecified
features of the model, comparing competing models, assessing the
appropriateness of a model; and report uncertainties associated
with the conclusions we draw, all in the light of observed data.

» Above are methods of mathematically approximating the world
» People from CS background may also call above as “Machine
Learning”



Requirements of a statistical model

» Plausibility: the model should be reasonable, given
background (scientific) knowledge of the phenomenon being
studied.

» Parsimony: we should avoid the model being more
complicated than it needs to be.

Occam’s razor: entities should not be multiplied beyond necessity

» Goodness of fit: the model should fit the data well.



All models are wrong

but some are useful

George E.P. Box




1.3 (Linear) Regression Models



Regression Models

In practical applications, we often distinguish between a response
variable and a group of explanatory variables.

The aim is to determine the pattern of dependence of the response
variable on the explanatory variables. A regression model has the
general form

response = function(structure and randomness)

P structure describes how the response depends on the
explanatory variables

» randomness describes the probability distribution of the
response.



Linear models

In MATH2010, you studied linear models, where the response is
assumed to follow normal distribution, and its mean depends on the
explanatory variables.

Yi=XiB+e;, i=1,...,n



Linear models

In MATH2010, you studied linear models, where the response is
assumed to follow normal distribution, and its mean depends on the
explanatory variables.

Yi=XiB+e;, i=1,...,n

Is the assumption always a reasonable model?



Distributions quiz 1

Which distribution could be used to model the number of students
enrolled in a course who attend a given lecture?

» Bernoulli

Binomial
Exponential
Gamma
Geometric

Normal

Poisson

None of the above
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We might want to model how that number of students varies
according to some explanatory variables, such as time of day, day of
the week, week of the semester, and so on.

That requires a more general regression model.



Go beyond the linear model

linear mixed model
generalised linear model
nonparametric regression
quantile regression

Cox proportional-hazards model



Conclusion

> We have seen some examples of situations in which it is not
sensible to use the linear model. We will see some more
examples in this module.

» Once we have written down the model, we want to estimate
the parameters of the model, express uncertainty in estimates,
make predictions and compare candidate models.

> We learned many models beyond linear regression

> We can do all these using the likelihood based methods.



