MATH3091 problem sheet 1

Please attempt following questions before 11th Feb 2022.

- 1. Write down the likelihood and log-likelihood functions for observations y_1, \ldots, y_n from i.i.d. random variables/vectors Y_1, \ldots, Y_n with following distributions:
 - (a) $Y_i \sim \text{Poisson}(\lambda)$
 - (b) $Y_i \sim \text{Unif}(a, b)$
 - (c) $\mathbf{Y}_i = (Y_{i1}, Y_{i2}, Y_{i3})^T \sim \text{Multinomial}(1, \theta, 2\theta, 1 3\theta)$
 - (d) $Y_i \sim \text{Weibull}(\beta)$, with p.d.f $f_{Y_i}(y) = \alpha y^{\alpha-1} e^{-y^{\alpha}}$ for y > 0 and 0 otherwise.
 - (e) $Y_i \sim \text{Pareto}(\alpha)$, with p.d.f $f_{Y_i}(y) = \alpha(1+y)^{-\alpha-1}$ for y > 0 and 0 otherwise.
- 2. In each of the cases from question 1, find the maximum likelihood estimate of
 - (a) parameter λ in Poisson distribution
 - (b) *parameters a and b in uniform distribution
 - (c) parameter θ in multinomial distribution (you do not need to verify your MLE is the maximiser for this question)
 - (d) parameter α in Pareto distribution
- 3. Suppose y_1, y_2, \dots, y_n are observations from random variables Y_1, \dots, Y_n , which are i.i.d. with p.d.f. (or p.f.) $f_Y(y;\theta)$ for a scalar parameter θ . In each case below, derive the maximum likelihood estimate of θ , and find the score and Fisher information.
 - (a) $f_Y(y;\theta) = \theta \exp(-\theta y), y > 0, \theta > 0$ (exponential distribution);
 - (b) $f_Y(y;\theta) = \theta y^{\theta-1}, y \in (0,1), \theta > 0$; (beta distribution)
 - (c) $f_Y(y;\theta) = \theta(1-\theta)^{y-1}, y \in \{1, 2, 3, ...\}, \theta \in (0, 1)$ (geometric distribution).
- 4. In each of the cases from question 3, use the fact that the expected score is zero to find an unbiased estimator of θ^{-1} .
- 5. *Suppose y_1, y_2, \dots, y_n are observations from random variables Y_1, \dots, Y_n , which are i.i.d. Multinomial $(1, \theta_1, \theta_2, 1 \theta_1 \theta_2)$ distributed. Derive the Fisher information matrix for parameters (θ_1, θ_2) .
- 6. *Suppose y_1, y_2, \dots, y_n are observations from p-dimensional random vectors Y_1, \dots, Y_n , each follows $N(\boldsymbol{\mu}, \sigma^2 \boldsymbol{I}_p)$, where $\boldsymbol{\mu} = (\mu_1, \dots, \mu_p)$ is the p-dimensional mean vector and

- I_p is the $p \times p$ identity matrix. Determine the MLE for (μ, σ^2) , the score function and the Fisher information matrix.
- 7. Suppose y_1, \ldots, y_n are observations of Y_1, \ldots, Y_n , i.i.d. Geometric(θ) random variables, each with p.d.f. $f_Y(y;\theta) = \theta(1-\theta)^{y-1}, y \in \{1,2,3,\ldots\}$, where $0 < \theta < 1$ is an unknown parameter.
 - (a) Calculate the log-likelihood function, the score function and the Fisher information.
 - (b) Calculate the maximum likelihood estimator $\hat{\theta}$ of θ and construct its approximate (large sample) confidence interval at 99% confidence level.
- 8. Continue Question 7. Suppose that we would like to test $H_0: \theta = 0.5$ against the general alternative $H_1: \theta$ is unrestricted.
 - (a) Find the log likelihood ratio statistic L_{01} for testing H_0 against H_1 .
 - (b) What is the asymptotic distribution of L_{01} under H_0 ?
 - (c) Suppose we want a test of approximate size $\alpha = 0.01$. For which values of L_{01} would you reject H_0 ? You may need to use the 'qchisq' function in 'R' to find the critical value.