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Preliminary
This week we will carry out data analysis using linear mixed models (LMMs). This requires
an adds-on R package called lme4, which provides functions to automatically fit and analyse
LMMs.

We first install and load the lme4 package.
install.packages("lme4")
library(lme4)

In lme4, the linear mixed modelling is implemented by the lmer function. Very similar to
lmer for linear models, it takes as its first two arguments specifying the model formula and
the data with which to evaluate the formula, i.e.

lmer(formula, data=NULL,...)

The fomula here is used to describe the linear model, similar to that in the lm function.
In this case it includes both fixed-effects and random-effects terms. The fomula take the
form resp∼expr, where resp determines the response variable and expr is an expression of
explanatory variables. For example, formulas in the lmer function should contain random-
effects terms as follows:

resp ∼ FEexpr + (REexpr1 | factor1) ...

where FEexpr is an expression determining the fixed-effects, and (REexpr1 | factor1)is an
expression determining a random-effect, with groups determined by factor1.

In lmer, the second argument, data, is optional but recommended and is usually the name
of an R data frame, this is also similar to that in the lm function.

The mathachieve dataset
The dataset mathachieve that we will analyse today is from the 1982 “High School and
Beyond” survey, and pertain to 7185 high-school students from 160 schools. The response
variable variable mathach is the student’s score on a math-achievement test, and there are 3
explanatory variables of our interest: cses, the adjusted socioeconomic status of the student’s
family; meanses, the average socioeconomic status for students in each school; and sector,
a factor coded Catholic or Public for the type of student’s school.
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The variable School is an identification number for the student’s school. The schools define
groups — it is unreasonable to assume that students in the same school are independent of
one-another. Note that sector is a school-level variable and hence is identical for all students
in the same school.

Let’s import the date file into R:
mathachieve <- read.csv("mathachieve.csv")

Fit the data with LMMs
Recall the general form of LMM in the lecture notes, which is:

Yij = xT
ijβ + uT

ijγi + εij, j = 1, . . . , ni; i = 1, . . . ,m, (1)

where γi ∼ N(0,D) and εij ∼ (0, σ2).

Consider a linear model consists of two hierarchical levels: First, within schools, we have
the regression of math achievement on the individual-level covariate cses; Then, at the
school level, we will entertain the possibility that the math achievement depend upon sector
and upon the average level covariate meanses in the schools. Here the hierarchical model is
created due to we group the data by schools. Therefore, including the intercept terms, we
can write the following model:

mathachij = β0 + β1meansesi + β2sectori + β3csesij + γi0 + γi1csesij + εij (2)

where the β’s are fixed effects, while the γ’s are random effects, m = 160 is the number of
groups (schools). The change from equation (1) to equation (2) is purely notational.

As a result, to implement the LMMs we need to estimate the following 3 unknown parameters
of interest:

β = (β0, β1, β2, β3), σ2, and D =
(
d11, d12
d21, d22

)

Recall that earlier we claimed to use lmer function random-effects terms should be of the
form (expr | factor). Therefore, to fit the linear mixed models here we just need to simply
organise the formula as requested,
math.lme.1 <- lmer(mathach ~ meanses + sector + cses + (cses | school),

data=mathachieve )

Similar to the linear regression, you can check the model fit by
summary(math.lme.1)

Notice that the formula for the random effects includes only the term cses; as in a linear-
model formula, a random intercept is implied unless it is explicitly excluded (by specifying
-1 in the random formula).
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In the outpout, for random effects it displays estimates of the variance and covariance
parameters for the random effects. Therefore, we have d̂11 = 2.3851 and d̂22 = 0.7004. The
term labelled Residual is the estimate of σ2, where we obtain that σ̂2 = 36.7098.

Question: How would you estimate d̂12?

The table of fixed effects is similar to output from lm, where we have β̂0 = 13.4356, β̂1 = 5.2463,
β̂2 = −1.3722, and β̂3 = 2.1950.

The panel labelled Correlation gives the estimated sampling correlations among the fixed-
effect coefficient estimates, which are not usually of direct interest. Very large correlations
(close to 1 in absolute value), however, are indicative of an ill-conditioned model.

Question: How would you run above linear mixed model with two additional
interaction terms meanses:cses and cses:sector as fixed effects?

Question: How would you run above linear mixed model without the inter-
cept term in random effect?

Question: How would you run above linear mixed model with only the
intercept term appear in random effect?

REML or MLE
By default, we estimate the parameters (fixed effects and D) using the restricted maximum
likelihood (REML) method. If we want to switch to the MLE estimate, we just need to
specify RMEML=FALSE, for example:
math.lme.1.mle <- lmer(mathach ~ meanses + sector + cses + (cses | school),

data=mathachieve, REML=FALSE )
summary(math.lme.1.mle)

This will have a slightly different estimate.

Model comparison
We can use AIC or BIC socre, or ANOVA (generliased likelihood ratio test) to compare
different models. Try
AIC(math.lme.1, math.lme.2, math.lme.3, math.lme.4, math.lme.1.mle )

and
anova(math.lme.1, math.lme.2, math.lme.3, math.lme.4, math.lme.1.mle)

Question: Do you know what are the degrees of freedom in above models?
Why?
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