
MATH3091 Computer Lab 2

7 Feb 2022

In this lab, we will code up the likelihood function, find MLE, and revise the linear model.
Please take your time and make sure you understand each of the R command.

Log-likelihood function
Recall the log-likelihood function for Bernoulli(p) i.i.d data,

`(p) = nȳ log(p) + n(1 − ȳ) log(1 − p),

where ȳ = ∑n
i=1 yi/n. We have seen the log-likelihood function in the Lecture 2, where we

are taking two input arguments: y for the n-vector of observed data and p for the value of
parameters.
bernoulli.lfun <- function(p, y) {
ybar <- mean(y)
n <- length(y)

# return the log-likelihood
n * ybar * log(p) + n * (1 - ybar) * log(1 - p)
}

We can plot the curve of this function for a range of p, given the data. Say,
y <- c(1, 0, 0, 0, 1, 0, 0, 0, 1, 0)

The the log-likelihood function
curve(bernoulli.lfun(x, y), from = 0, to = 1, ylim = c(-12, -6),

xlab = "p", ylab = "log L(p) ", main="Bernoulli log-likelihood")

Question: Could you plot the log-likelihood for another sample
y <- c(rep(1,100), rep(0,120))?

Now let us look at the normal N(µ, σ2) log-likelihood function, which is

`(µ, σ2) = −n

2 log(2π) − n

2 log(σ2) − 1
2

∑n
i=1(yi − µ)2

σ2

We can program it simply as:
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normal.lfun<-function(mu, sigma2, y){
n <- length(y)

#return the log-likelihood
ret <- NULL
for (i in 1:length(mu)){
lik<- -.5*n*log(2*pi) -.5*n*log(sigma2) - (1/(2*sigma2))*sum((y-mu[i])**2)
ret <- c(ret,lik)
}
return(ret)
}

Question: Can you plot the log-likelihood function versus µ, with a fixed
σ2 = 1 and a data set of 20 random numbers from N(2, 1)?

Find the MLE
Now let us think about how to find MLEs by optimising the log-likelihood function. Of
course, we can derive them directly if there is a close-form expression (like p̂ = ȳ for the
Bernoulli(p) data). If not, numerical methods is needed.

By default, the optim command can be invoked.
#help file of optim
help(optim)

A minimal working example of this command is optim(starting values, negative
log-likelihood, data). Here starting values is a vector of starting values, negative
log-likelihood is the name of the function that we seek to minimise, and data declares
the dataset for the get the MLE.
#data of 10 samples
y <- c(1, 0, 1, 0, 1, 0, 0, 0, 1, 0)

bernoulli.lfun1 <- function(p, y) {
ybar <- mean(y)
n <- length(y)

# return the negative log-likelihood
-n * ybar * log(p) - n * (1 - ybar) * log(1 - p)
}
#here we are taking an extra minus sign
#because optim is used to minimise an object

#the MLE by hand calculation should be .4
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optim(0.3, bernoulli.lfun1, y=y)

Question: Can you numerically find the MLE of µ given σ2 = 1 using the
normal data that we generated above? Comparing your results to the MLE
by expression.

Question: We can also code the New-Raphson method introduced in Lecture
4 to do the optimisation, which is more complex, you can try it in your spare
time.

Linear regression model
Next, we will go over the R multiple regression commands, which you should have seen before.
As the later material on generalised linear models depends on you understanding this.

Let us import the nitric acid data again

Recall the read.csv command to read in the file nitric.csv.
nitric <- read.csv("nitric.csv")

This data set relates to 21 successive days of operation of a plant oxidising ammonia to nitric
acid. The response yield is ten times the percentage of ingoing ammonia that is lost as
unabsorbed nitric acid (an indirect measure of the yield). The aim here is to study how the
yield depends on flow of air to the plant (flow), temperature of the cooling water entering
the absorption tower (temp) and concentration of nitric acid in the absorbing liquid (conc).

Get a plot of the data.
pairs(nitric)

or with the help of ggplot2 and GGally

GGally::ggpairs(data=nitric)

Fit a linear model. We fit the linear model

Yi = α + β1xi1 + β2xi2 + β3xi3 + εi, i = 1, . . . , 21,

where Yi is the yield, xi1 is the flow, xi2 is the temp and xi3 is the conc on the i-th day.
To fit this model to the nitric data, we can use
nitric.lm1 <- lm(yield ~ flow + temp + conc, data = nitric)
summary(nitric.lm1)

Interpretation. It looks like conc is not required in the model because its p-value is 0.344.
The other parameters are all significant. The model explained about 91.36% of total variation
in the data.

Remove a term from the model. We can refit by omitting conc.
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nitric.lm2 <- lm(yield ~ flow + temp, data = nitric)

Alternatively, we could use update to drop a term from nitric.lm1:
nitric.lm2.alt <- update(nitric.lm1, . ~ . - conc)

This updates the linear model object nitric.lm1 by removing conc from the formula. Check
that nitric.lm2 and nitric.lm2.alt are the same.

We can write this second model mathematically as

Yi = α + β1xi1 + β2xi2 + εi, i = 1, . . . , 21.

We can get a summary of the fitted model with
summary(nitric.lm2)

Question: Do you think you should drop any other variables?

Find confidence intervals. We could find a 95% confidence interval for each regression
coefficient βi by using the Estimate and standard error columns of the summary output.
From those we can obtain a confidence interval using

Estimate ± Std. Error × critical value.

For a 95% confidence interval the critical value is
qt(0.975, 18)

which is 2.1. Therefore 0.671 ± 0.127 × 2.1 or (0.404, 0.937) is a 95% confidence interval for
β1 under model 2. Find 95% confidence intervals for the intercept α and regression coefficient
β2.

R has a built in function confint to find confidence intervals. You can find out more about
the arguments of confint by checking the help
?confint

Try
confint(nitric.lm2)

Question: How does this compare to the confidence intervals you found "by
hand" above?

Question: Can you find 90% confidence intervals for the parameters of
nitric.lm2 using confint?

Check the diagnostic plots. For the selected model we should check the assumptions. We
do this by issuing the command
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plot(nitric.lm2)

It produces four plots. We will only consider the first two plots.

If the model is good, the first plot should not show any systematic pattern: the points should
be randomly scattered above and below the x-axis.

The second plot is the normal qqplot. This is used to check normality. If the residuals
are normally distributed then all the points should lie close to a straight line. In our case
observation 21 shows some outlying behaviour. Otherwise the plot seems to be fine.

How can we predict using a fitted linear model?. We can predict using the linear
model output very easily using the predict function. Look at the help file
?predict.lm

If we just wanted to predict the means at the values for the explanatory variables we have
used to fit, we just use
predict(nitric.lm2, se.fit = TRUE, interval = "confidence")

This gives the predicted means, standard errors and the default 95% confidence interval.

If we want to predict future actual observations (NOT the means) at the values for the
explanatory variables which we have used to fit, we use
predict(nitric.lm2, interval = "prediction")

This gives the predicted observations and the default 95% confidence interval.

If we want to predict at new values for the explanatory variables then we first create a data
set which has the column names exactly as the original data set. The response yield column
is not needed. Then put the values for the explanatory variables for which we want to predict
as rows. Then use the above commands, but the second argument should be the name of the
new data set.

Suppose that we want to predict the yield value at flow = 60, temp = 20 using the model
with two covariates flow and temp. We create a new data frame, newdata for example, by
using
newdata <- data.frame(flow = 60, temp = 20)

Then issue the command
predict(nitric.lm2, newdata = newdata, se.fit = TRUE, interval = "confidence")

This gives the predicted mean, standard errors and the default 95% confidence interval. The
command
predict(nitric.lm2, newdata = newdata, se.fit = TRUE, interval= "prediction")

gives the predicted observation and the default 95% prediction interval.
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Question: What is the difference between the "predition interval" and the
"confidence interval"?
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