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Abstract

The robustification parameter, which balances bias and robustness, has played

a critical role in the construction of sub-Gaussian estimators for heavy-tailed

data. Although it can be tuned by cross-validation in traditional practice, in

large scale statistical problems such as high dimensional covariance matrix es-

timation and large scale multiple testing, the number of robustification param-

eters scales with the size of the problem so that cross-validation can be compu-

tationally unaffordable. In this paper, we propose a new data-driven principle

to select the robustification parameter for Huber-type sub-Gaussian estimators

in three fundamental problems: mean estimation, linear regression and, sparse

regression in high dimensions. Our proposal is guided by non-asymptotic devi-

ation analysis, and is conceptually different from cross-validation which relies

on the mean squared error to assess the fit. The promising performance of

the proposed methods, apart from the theoretical justifications, are further

illustrated with extensive numerical experiments and real data analysis.
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1 Introduction

Data subject to heavy-tailed and/or skewed distributions are frequently observed in many

areas, ranging from microarray experiments (Purdom and Holmes, 2005), neuroimaging (Ek-

lund, Nichols and Knutsson, 2016) to finance (Cont, 2001). Rigorously, a random variable X

is heavy-tailed if its tail probability P(|X| > t) decays to zero polynomially in 1/t as t→∞,

or equivalently, if X has finite polynomial-order moments. The connection between moment

and tail probability is revealed by the well known equality E(|X|k) = k
∫∞

0
tk−1P(|X| > t) dt

for any k ≥ 1. When the sampling distribution has only a small number of finite moments,

with high chance some observations will deviate wildly from their mean. We refer to such

observations as distributional outliers. In contrast, data generated from a Gaussian or sub-

Gaussian distribution (Vershynin, 2012) are strongly concentrated around their expected

value, and the occurrence of even a single outlier will be rare.

Heavy-tailed data bring new challenges to conventional statistical methods. For linear

models, regression estimators based on the least squares loss are suboptimal, both theoret-

ically and empirically, in the presence of heavy-tailed errors. We refer to Catoni (2012) for

a deviation analysis, showing that the deviations of the empirical mean can be much worse

for non-Gaussian samples than for Gaussian ones. More broadly, this study exemplifies the

pitfalls of asymptotic studies in statistics and inspires new thoughts about the notions of

optimality commonly used to assess the performance of estimators. In particular, mini-

max optimality under mean squared error does not quite capture the influence of extreme

behaviors of estimators. However, these rare events may have catastrophically negative im-

pacts in practice, leading to wrong conclusions or false discoveries. Since Catoni (2012),

non-asymptotic deviation analysis has drawn considerable attention and it is becoming in-

creasingly important to construct sub-Gaussian estimators for heavy-tailed data; see, for

example, Brownlees, Joly and Lugosi (2015), Minsker (2015, 2018), Hsu and Sabato (2016),

Devroye et al. (2016), Lugosi and Mendelson (2016), Fan, Li and Wang (2017), Lugosi and

Mendelson (2019), Lecué and Lerasle (2017) and Zhou et al. (2018), among others.

For linear models, Fan, Li and Wang (2017) and Zhou et al. (2018) proposed Huber-type

estimators in both low and high dimensional settings and derived non-asymptotic deviation

bounds for the estimation error. To implement either Catoni’s or Huber-type method, a tun-

ing parameter τ needs to be specified in advance to ultimately balance between resistance to

outliers (robustness) and bias of the estimation. Deviation analysis suggests that this tuning

parameter, which we refer to as the robustification parameter, should adapt to the sample
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size, dimension, variance of noise and confidence level. Calibration schemes are typically

based on cross-validation or Lepski’s method, which can be computationally intensive espe-

cially for large-scale inference and high dimensional estimation problems where the number of

parameters may be exponential in the number of observations. For example, Avella-Medina

et al. (2018) proposed adaptive Huber estimators for estimating high dimensional covariance

and precision matrices. For a d× d covariance matrix, although every entry can be robustly

estimated by a Huber-type estimator with τ chosen via cross-validation, the overall proce-

dure involves as many as d2 tuning parameters and therefore the cross-validation method

will soon become computationally expensive as d grows. Efficient tuning is important for

not only the problem’s own interest, but also its applications in a broader context.

This paper develops data-driven Huber-type methods for mean estimation, linear re-

gression, and sparse regression in high dimensions. For each problem, we first provide

sub-Gaussian concentration bounds for the Huber-type estimator under minimal moment

condition on the errors. These non-asymptotic results are intended primarily to guide the

choice of key tuning parameters. Some of them are of independent interest and improve

the existing results by weakening the sample size scaling. Secondly, we propose a novel

data-driven principle to calibrate the robustification parameter τ > 0 in the Huber loss

`τ (x) =

{
x2/2 if |x| ≤ τ,

τ |x| − τ 2/2 if |x| > τ.
(1)

In Huber’s original proposal (Huber, 1981), τ is chosen as 1.345 so that the asymptotic effi-

ciency of the estimator is 95% for the normal model. Since then, this has become the default

setting and also find its use in high dimensional statistics even though the asymptotic effi-

ciency is no longer well defined; see, for example, Lambert-Lacroix and Zwald (2011), Elsener

and van de Geer (2018) and Loh (2017). Guided by non-asymptotic deviation analysis, our

proposed τ grows with sample size for bias-robustness trade-off. For linear regression under

different regimes, the optimal tuning parameter τ depends on the dimension d differently:

τ ∼ σ
√

(n/d) in the low dimensional setting (i.e. d/n is small) and τ ∼ σ
√
n/ log(d) in high

dimensions. Thirdly, we provide simple and fast algorithms to implement the data-driven

procedure under various scenarios.

The remainder of this paper is organized as follows. In Section 2, we revisit the funda-

mental mean estimation problem. Motivated by a careful analysis of the truncated sample

mean, we introduce a novel data-driven adaptive Huber estimator. We extend this data-

driven tuning scheme to robust regression in Section 3 under both low and high dimensional
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settings. Extensive numerical experiments are given in Section 4 to demonstrate the finite

sample performance of the proposed procedure. All the proofs, together with additional

technical details, are relegated to the supplementary files.

2 Robust data-adaptive mean estimation

2.1 Motivation

To motivate our proposed data-driven scheme for Huber-type estimators, we start with revis-

iting the mean estimation problem. Let X1, . . . , Xn (n ≥ 2) be independent and identically

distributed (i.i.d.) random variables from X with mean µ and finite variance σ2 > 0. The

sample mean, denoted as X̄n, is the most natural estimator for µ. However, it severely suf-

fers from not being robust to heavy-tailed sampling distributions (Catoni, 2012). In order

to cancel, or at least dampen, the erratic fluctuations in X̄n which are more likely to occur

if the distribution of X is heavy-tailed, we consider the truncated sample mean

mτ =
1

n

n∑
i=1

ψτ (Xi) (2)

for some τ > 0, where

ψτ (x) = sign(x) min(|x|, τ), x ∈ R (3)

is a truncation function. Here, τ is a tuning parameter that controls the bias and robustness

of mτ . To see this, note that the bias, which is given by Bias := E(mτ ) − µ, satisfies

|Bias| = |E{X − sign(X)τ}I(|X| > τ)| ≤ τ−1E(X2). Regarding (distributional) robustness,

the following result shows that the truncated sample mean with a properly chosen τ is a

sub-Gaussian estimator as long as the second moment is finite.

Proposition 1. Assume that v2 :=
√

E(X2) is finite. For any z > 0,

(i) the truncated mean mτ with τ = v
√
n/z for some v ≥ v2 satisfies P{|mτ − µ| ≥

2v
√
z/n} ≤ 2e−z;

(ii) the truncated mean mτ with τ = cv2

√
n/z for some 0 < c ≤ 1 satisfies P{|mτ − µ| ≥

2(v2/c)
√
z/n} ≤ 2e−z/c

2
.
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Proposition 1 shows that how the procedure would perform under various idealized sce-

narios, as such providing guidance on the choice of τ . Here z > 0 is a user-specified parameter

that controls the confidence level; see further discussions before Remark 2. Given a properly

tuned τ , the sub-Gaussian performance is achieved; conversely, if the resulting estimator per-

forms well, it means that the data are truncated at the right level and therefore can be further

exploited. An ideal τ is such that the sample mean of truncated data ψτ (X1), . . . , ψτ (Xn)

serves as a good estimator of µ. The influence of distributional outliers is weakened due

to proper truncation. At the same time, we may expect that the empirical second moment

for the same truncated data will provide a reasonable estimate of v2
2. Motivated by this

observation, we propose to choose τ by solving the equation

τ =

{ n∑
i=1

ψ2
τ (Xi)

}1/2√
n

z
, τ > 0,

which is equivalent to

1

n

n∑
i=1

ψ2
τ (Xi)

τ 2
=
z

n
, τ > 0. (4)

We will show that under mild conditions, equation (4) has a unique solution, denoted as τ̂z,

which gives rise to a data-driven mean estimator

mτ̂z =
1

n

n∑
i=1

min(|Xi|, τ̂z) sign(Xi). (5)

To understand the statistical property of τ̂z, consider the population version of (4):

E{ψ2
τ (X)}
τ 2

=
E{min(X2, τ 2)}

τ 2
=
z

n
, τ > 0. (6)

The following result establishes existence and uniqueness of the solution to (6).

Proposition 2. Assume that v2 =
√

E(X2) is finite.

(i) Provided 0 < z < nP(|X| > 0), equation (6) has a unique solution, denoted by τz,

which satisfies

[E{min(X2, q2
z/n)}]1/2

√
n

z
≤ τz ≤ v2

√
n

z
,

where qα := inf{t : P(|X| > t) ≤ α} is the upper α-quantile of |X|.

(ii) Let z = zn > 0 satisfy zn → ∞ and z = o(n). Then τz → ∞ and τz ∼ v2

√
n/z as

n→∞.
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We now move to the sample version. As a direct consequence of Proposition 2, the

following result ensures existence and uniqueness of the solution to equation (4).

Proposition 3. Provided 0 < z <
∑n

i=1 I(|Xi| > 0), equation (4) admits a unique solution.

Throughout, denote τ̂z the solution to (4), which is unique and positive whenever z <∑n
i=1 I(|Xi| > 0). For completeness, we set τ̂z = 0 on the event {z ≥

∑n
i=1 I(|Xi| > 0)}.

If the distribution of X satisfies P(X = 0) = 0, then τ̂z > 0 with probability one, provided

0 < z < n. With both τz and τ̂z well defined, we investigate the statistical property of τ̂z.

Theorem 1. Assume E(X2) < ∞ and P(X = 0) = 0. For any 1 ≤ z < n and 0 < r < 1,

we have

P(|τ̂z/τz − 1| ≥ r) ≤ e−a
2
1r

2z2/(2z+2a1rz/3) + e−a
2
2r

2z/2 + 2e−(a1∧a2)2z/8, (7)

where

a1 = a1(z, r) =
P (τz)

2Q(τz)

2 + r

(1 + r)2
and a2 = a2(z, r) =

P (τz − τzr)
2Q(τz)

2− r
1− r

(8)

with P (t) = E{X2I(|X| ≤ t)} and Q(t) = E{ψ2
t (X)}.

Remark 1. Here we give some direct implications of Theorem 1.

(i) Let z = zn ≥ 1 satisfy z = o(n) and z → ∞ as n → ∞. By Proposition 2, τz → ∞
and τz ∼ v2

√
n/z, which further implies P (τz)→ v2

2 and Q(τz)→ v2
2 as n→∞.

(ii) With r = 1/2 and z = logκ(n) for some κ ≥ 1 in (7), the constants a1 = a1(z, 1/2) and

a2 = a2(z, 1/2) satisfy a1 → 5/9 and a2 → 3/2 as n → ∞. The resulting τ̂z satisfies

that with probability approaching one, τz/2 ≤ τ̂z ≤ 3τz/2.

We end this section with a uniform deviation bound for mτ . Uniformity of the rate over

a neighborhood of the optimal tuning scale requires an additional log(n)-factor. As a result,

we show that the data-driven estimator mτ̂z is tightly concentrated around the mean with

high probability.

Theorem 2. For z ≥ 1, let τ ∗z = v2

√
n/z. Then with probability at least 1− 2ne−z,

sup
τ∗z /2≤τ≤3τ∗z /2

|mτ − µ| ≤ 4v2(z/n)1/2 + v2n
−1/2. (9)

Let z = 2 log(n) and τ̂z be the solution to (4). The mean estimator mτ̂z given in (5) satisfies

|mτ̂z − µ| ≤ 4v2

√
2 log(n)/n+ v2n

−1/2 with probability at least 1− c1n
−c2 for all sufficiently

large n, where c1, c2 > 0 are absolute constants.
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2.2 Adaptive Huber estimator

For the truncation method, even with the theoretically desirable tuning parameter τ =

v2

√
n/z, the deviation of the resulting estimator only scales with v2 rather than the standard

deviation σ. The optimal deviation, which is enjoyed by the sample mean with sub-Gaussian

data, is of order σ
√
z/n. To achieve such an optimal order, Fan, Li and Wang (2017)

modified Huber’s method to construct an estimator that exhibits fast (sub-Gaussian type)

concentration under finite variance condition.

Specified in (1), the Huber loss is continuously differentiable with `′τ (x) = ψτ (x) where

ψτ (·) is given in (3). Given a sample of observations X1, . . . , Xn from X with mean µ and

finite variance σ2, Huber’s estimator is obtained by solving the optimization problem

µ̂τ = argmin
θ∈R

n∑
i=1

`τ (Xi − θ), (10)

or equivalently, µ̂τ is the unique solution to

0 =
n∑
i=1

ψτ (Xi − θ) =
n∑
i=1

min(|Xi − θ|, τ) sign(Xi − θ). (11)

We refer to Catoni (2012) for a general class of robust mean estimators. The following result

is Theorem 5 in Fan, Li and Wang (2017), which shows the exponential-type concentration

of µ̂τ when τ is properly calibrated.

Proposition 4. Let z > 0 and v ≥ σ. Provided n ≥ 8z, µ̂τ with τ = v
√
n/z satisfies the

bound |µ̂τ − µ| ≤ 4v
√
z/n with probability at least 1− 2e−z.

Proposition 4 indicates that a theoretically desirable tuning parameter for the Huber

estimator is τ ∼ σ
√
n/z. Motivated by the data-driven approach proposed in Section 2.1,

we consider the following modification of (6):

E{ψ2
τ (X − µ)}
τ 2

=
E[min{(X − µ)2, τ 2}]

τ 2
=
z

n
, τ > 0. (12)

According to Proposition 2, provided 0 < z < nP(X 6= µ), this equation has a unique

solution, denoted by τz,µ, which satisfies√
E
[
min{(X − µ)2, q̄z/n}

]√n

z
≤ τz,µ ≤ σ

√
n

z
,

where q̄α = inf{t : P(|X − µ| > t) ≤ α} is the upper α-quantile of |X − µ|. From a large

sample perspective, if z = zn satisfies z →∞ and z = o(n), then τz,µ →∞ and τz,µ ∼ σ
√
n/z

as n→∞.
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In light of (11) and (12), a clearly motivated data-driven estimate of µ can be obtained

by solving the following system of equations:f1(θ, τ) :=
∑n

i=1 ψτ (Xi − θ) = 0,

f2(θ, τ) := n−1
∑n

i=1 min{(Xi − θ)2, τ 2}/τ 2 − n−1z = 0,
θ ∈ R, τ > 0. (13)

Observe that for any given τ > 0, equation f1(·, τ) = 0 always admits a unique solution, and

for any given θ, equation f2(θ, ·) = 0 has a unique solution provided z <
∑n

i=1 I(Xi 6= θ).

With initial values θ(0) = X̄n and τ (0) = σ̂n
√
n/z where σ̂2

n denotes the sample variance,

we solve (13) successively by computing a sequence of solutions {(θ(k), τ (k))}k≥1 that fulfill

f2(θ(k−1), τ (k)) = 0 and f1(θ(k), τ (k)) = 0 for k ≥ 1. For a predetermined tolerance level ε, we

stop the algorithm within the `-th iteration step when max{|θ(`)− θ(`−1)|, |τ (`)− τ (`−1)|} ≤ ε.

We then use θ(`) as our final robust estimator of µ.

In the case of z = 1, we see that the algorithm stops in the first iteration and delivers

the solution X̄n. According to the results in Section 2.1, if z ≥ 1 is fixed, there is no

net improvement in terms of robustness; instead, we should let z = zn slowly grow with

the sample size to gain robustness without introducing extra bias. Specifically, we choose

z = log(n) throughout the numerical experiments carried out in this paper.

Remark 2. Our proposed procedure has some similarities to the estimator considered in

Bickel (1975), which is obtained as the solution of
∑n

i=1 ψσ̂(Xi − θ) = 0, where σ̂ is chosen

independently as the normalized interquartile range

σ̂(1) = {X(n−[n/4]+1) −X([n/4])}/2Φ−1(3/4)

or the symmetrized interquartile range

σ̂(2) = median{|Xi −m|}/Φ−1(3/4),

where X(1) < · · · < X(n) are the order statistics and m is the sample median. Provided that

X has a symmetric distribution, the consistency of σ̂(1) or σ̂(2) can be established. Unlike

this classical approach, we waive the symmetry requirement by allowing the robustification

parameter to diverge to reduce the bias that is induced by the Huber loss when the distri-

bution is asymmetric. Another difference is that Bickel’s proposal is a two-step method that

estimates the scale and location separately, whereas our procedure estimates µ and calibrates

τ simultaneously by solving a system of equations. In fact, as a direct extension of the idea

in Section 2.1, we may also tune τ independently from estimation by solving(
n

2

)−1 ∑
1≤i<j≤n

min{(Xi −Xj)
2/2, τ 2}

τ 2
=
z

n
, τ > 0.
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Let X ′ be an independent copy of X. Then the population version of this equation is

E [min{(X −X ′)2/2, τ 2}] τ−2 = z/n, whose solution is unique under mild conditions and

scales as σ
√
n/z.

3 Robust data-adaptive linear regression

In this section, we extend the proposed data-driven method for robust mean estimation to

regression problems. Consider the linear regression model

Yi = β∗0 +Xᵀ
i β
∗ + εi, i = 1, . . . , n, (14)

where Yi’s represent response variables, Xi’s are d-dimensional vector of covariates, β∗0 and

β∗ ∈ Rd are the intercept and vector of regression coefficients, respectively, and ε1, . . . , εn

are independent regression errors with zero mean and finite variance. For simplicity, we also

introduce Zi = (1,Xᵀ
i )ᵀ for i = 1, . . . , n and use θ∗ = (β∗0 ,β

∗ᵀ)ᵀ to denote the total vector

of unknown parameters. The goal is to estimate θ∗ from observed data {(Yi,Xi)}ni=1.

3.1 Adaptive Huber regression in low dimensions

We start with the low-dimensional setting where d � n. In the presence of heavy-tailed

errors, finite sample properties of the least squares method are suboptimal both theoreti-

cally and empirically. The necessity of finding robust alternatives to the least squares was

discussed in Huber (1973) under Huber’s ε-contamination model. Under different hypotheses

that allow for heavy-tailed distributions, we refer to Audibert and Catoni (2011) and Sun,

Zhou and Fan (2017) for non-asymptotic analysis of Huber-type robust regression methods;

the former focuses on the excess risk bounds and the latter provides deviation bounds for

the estimator along with non-asymptotic Bahadur representations.

Given any τ > 0, Huber’s M -estimator is defined as

θ̂τ = (β̂0,τ , β̂
ᵀ
τ )

ᵀ ∈ argmin
θ∈Rd+1

n∑
i=1

`τ (Yi −Zᵀ
i θ), (15)

where `τ (·) is given in (1). By the convexity of Huber loss, the solution to (15) is uniquely

determined via the first-order condition:
∑n

i=1 ψτ (Yi −Z
ᵀ
i θ̂τ )Zi = 0.

Most of the desirable features of Huber’s method are established under the assumption

that the distribution of errors is symmetric around zero. Due to asymmetry, the bias induced
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by the Huber loss is nonnegligible. To make this statement precise, note that θ̂τ = (β̂0,τ , β̂
ᵀ
τ )

ᵀ

is a natural M -estimator of

θ∗τ = (β∗0,τ ,β
∗ᵀ
τ )ᵀ = argmin

(β0,βᵀ)ᵀ∈Rd+1

n∑
i=1

E{`τ (Yi − β0 −Xᵀ
i β)}, (16)

whereas the true parameters β∗0 and β∗ are identified as argminβ0,β
∑n

i=1 E{(Yi−β0−Xᵀ
i β)2}.

For a fixed τ > 0, although β̂0,τ and β̂τ are robust estimates of β∗0,τ and β∗τ , respectively, in

general (β0,τ ,βτ ) differs from (β∗0 ,β
∗), as unveiled by the following result.

Proposition 5. Assume that ε andX are independent, and that the function α 7→ E{`τ (ε−
α)} has a unique minimizer, denoted by ατ = argminα∈R E{`τ (ε− α)}, which satisfies

P(|ε− ατ | ≤ τ) > 0. (17)

Assume further that E(ZZᵀ) is positive definite. Then we have

β∗0,τ = β∗0 + ατ and β∗τ = β∗. (18)

Moreover, ατ with τ > σ satisfies the bound

|ατ | ≤
σ2 − E{ψ2

τ (ε)}
1− τ−2σ2

1

2τ
. (19)

Note also that Huber loss minimization is equivalent to the following penalized least

squares problem (She and Owen, 2011):

(µ̂τ , θ̂τ ) = argmin
µ∈Rn,θ∈Rd+1

{
1

2

n∑
i=1

(Yi − µi −Zᵀ
i θ)2 + τ

n∑
i=1

|µi|

}
, (20)

where µ = (µ1, . . . , µn)ᵀ and θ̂τ here coincides with that in (15). The loss function in (20)

can be written as
∑n

i=1(Yi−µi− β0−Xᵀ
i β)2/2 + τ

∑n
i=1 |µi|. This explains from a different

perspective that why the bias arises only at the intercept. The larger the value of τ is, the

sparser the µ̂τ is and therefore the smaller the estimation bias is.

The message delivered by Proposition 5 calls attention to intercept estimation, a problem

of independent interest that needs to be treated with greater caution. If the distribution of ε

is asymmetric, ατ is typically non-zero for any τ > 0: the smaller the τ is, the larger the bias

becomes and so is the prediction error. To balance bias and robustness, in the following we

propose two modifications, one-step and two-step, of Huber’s method that are robust against

heavy-tailed and asymmetric error distributions and meanwhile maintain high efficiency in

the normal case.
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3.1.1 One-step method

As pointed out in Zhou et al. (2018), there is an inherent bias-robustness trade-off in the

choice of τ , which should adapt to the sample size, dimension and the variance of noise.

Theorem 3 below makes this statement precise. To begin with, we impose the following

moment conditions.

Condition 1. The covariates X1, . . . ,Xn are i.i.d. random vectors from X. There exists

some constant A0 > 0 such that for any u ∈ Rd+1 and t ∈ R, P(|〈u, z〉| ≥ A0‖u‖2 ·t) ≤ 2e−t
2
,

where z = S−1/2Z and S = E(ZZᵀ) is positive definite. The regression errors εi are

independent and satisfy E(εi|Xi) = 0 and E(ε2
i |Xi) ≤ σ2 almost surely.

Theorem 3. Assume Condition 1 holds. For any z > 0 and v ≥ σ, the estimator θ̂τ in (15)

with τ = v
√
n/(d+ z) satisfies the bound

‖S1/2(θ̂τ − θ∗)‖2 ≤ c1v

√
d+ z

n

with probability at least 1 − 2e−z provided n ≥ c2(d + z), where c1, c2 > 0 are constants

depending only on A0.

Theorem 3 establishes a sub-Gaussian concentration bound for θ̂τ under the optimal

sampling size scaling, which improves that in Theorem 2.1 in Zhou et al. (2018). To achieve

a sub-Gaussian performance under the finite variance condition, the key observation is that

the robustification parameter τ should adapt to the sample size, dimension, variance of

noise and confidence level for optimal trade-off between bias and robustness. Extending our

data-driven proposal for mean estimation, we estimate θ∗ and calibrate τ simultaneously by

solving the system of equationsg1(θ, τ) :=
∑n

i=1 ψτ (Yi −Z
ᵀ
i θ)Zi = 0,

g2(θ, τ) := (n− d)−1
∑n

i=1 min{(Yi −Zᵀ
i θ)2, τ 2}/τ 2 − n−1(d+ z) = 0,

θ ∈ Rd+1, τ > 0.

(21)

With initial values θ(0) := θ̂ols = (
∑n

i=1ZiZ
ᵀ
i )−1

∑n
i=1 YiZi and τ (0) = σ̂n

√
n/(d+ z) where

σ̂2
n = (n−d)−1

∑n
i=1(Yi−Zᵀ

i θ̂ols)
2, for k ≥ 1, compute τ (k) as the solution to g2(θ(k−1), τ (k)) =

0 and then compute θ(k) as the solution to g1(θ(k), τ (k)) = 0. Repeat the above steps until

convergence or until the maximum number of iterations is reached. Denote by (θ̂, τ̂) the

final solution, then set θ̂ I := θ̂τ̂ as our one-step estimator.
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The main advantage of the proposed adaptive Huber regression over the classical one

with τ = 1.345σ is that the estimation bias with respect to intercept is alleviated. When

τ is of the order σ
√

(n/d), from (19) in Proposition 5 we see that the order of bias |ατ | is

roughly σ
√

(d/n). Examining the proof of Proposition 5, we find that the decrease in bias is

linear in 1/τ when the second moment is finite, and is quadratic in 1/τ if the third moment

is finite. We contrast this decrease with the stochastic term that dominates the error bound,

which is given by the quadratic form of the score function evaluated at θ∗. The order of this

term is roughly σ
√

(d/n) + τd/n. Balancing out the two terms yields the proposed choice of

τ . However, by letting τ grow with sample size, the bias is reduced at the expense of losing

some robustness of the coefficients estimators. When τ scales as a constant, such as cσ, the

corresponding Huber loss is Lipschitz with bounded score function, and since β∗τ = β∗ for any

τ > 0, there will be no sacrifice in bias. The tuning constant c is typically chosen to ensure

a given level of asymptotic efficiency. Asymptotic properties of general robust M -estimators

have been well studied in the literature; see Avella-Medina and Ronchetti (2015) for a recent

selective overview. The next result establishes the deviations of the Huber estimator with a

fixed τ from a non-asymptotic viewpoint, representing a useful complement to Theorem 3.

Theorem 4. Suppose Condition 1 and the assumptions in Proposition 5 hold. Assume

further that

ρτ := P(|ε− ατ | ≤ τ/2) > 0. (22)

Then for any z > 0, the estimator θ̂τ in (15) satisfies

‖S1/2(θ̂τ − θ∗τ )‖2 . ρ−1
τ A0

(
σ

√
d+ z

n
+ τ

d+ z

n

)
(23)

with probability at least 1− 2e−z provided n ≥ c3(d+ z), where c3 = c3(ρτ , A0) > 0.

3.1.2 Two-step method

Motivated by our bias-robustness analysis and the results of finite sample investigation, we

further introduce a two-step procedure that estimates the regression coefficients and intercept

successively.

In the first stage, we compute the Huber estimator θ̂τ = (β̂0,τ , β̂
∗ᵀ
τ )ᵀ by solving the

optimization problem in (15) with τ = cσ for some constant c > 1. We take c = 1.345 so

that its efficiency at the normal model is 95%. For σ, it can be estimated simultaneously

12



with θ∗ by solving a system of equations as in Huber’s proposal 2 (Huber, 1981), or we

can fix σ at an initial robust estimate and then optimize over θ (Hampel et al., 1986). We

follow the former route and consider an iterative simultaneous estimation procedure, starting

at iteration 0 with an initial estimate θ(0). At iteration k = 0, 1, 2, . . . it applies a simple

procedure to obtain σ̂(k), which is then used to update θ(k), producing θ(k+1). The procedure

involves two steps.

Step 1: Scale estimation. Using the current estimate θ(k), we compute the vector of residuals

r(k) = (r
(k)
1 , . . . , r

(k)
n )ᵀ and the robustification parameter τ (k) = 1.345σ̂(k), where σ̂(k) denotes

the median absolute deviation (MAD) estimator median{|r(k)
i −median(r

(k)
i )|}/Φ−1(3/4).

Step 2: Weighted least squares. Compute the n × n diagonal matrix W(k) = diag((1 +

w
(k)
1 )−1, . . . , (1 + w

(k)
n )−1), where w

(k)
i = |r(k)

i |/τ (k) − 1 if |r(k)
i | > τ (k) and w

(k)
i = 0 if |r(k)

i | ≤
τ (k). Then we update θ(k) to produce θ(k+1) via weighted least squares, that is,

θ(k+1) = argmin
θ∈Rd+1

n∑
i=1

(Yi −Zᵀ
i θ)2

1 + w
(k)
i

= (ZᵀW(k)Z)−1ZᵀY ,

where Z = (Z1, . . . ,Zn)ᵀ ∈ Rn×(d+1) and Y = (Y1, . . . , Yn)ᵀ.

Starting with θ(0) = θ̂ols, we repeat the above two steps for s = 0, 1, 2, . . . until conver-

gence. We use β̂ II ∈ Rd to denote the vector of coefficients estimates extracted from the

final solution produced by the above procedure.

In the second stage, observe that β∗0 = E(δi), where δi = Yi −Xᵀ
i β
∗ = β∗0 + εi are the

residuals. To estimate β∗0 , defining fitted residuals δ̂i = Yi −Xᵀ
i β̂

II, we solve the system of

equations f1(β0, τ) := n−1
∑n

i=1 min{(δ̂i − β0)2, τ 2}/τ 2 − n−1log(n) = 0,

f2(β0, τ) :=
∑n

i=1 ψτ (δ̂i − β0) = 0,
(24)

in the same way as for solving (13) to obtain β̂ II
0 . Stack β̂ II

0 on top of β̂ II we obtain the

two-step estimator θ̂ II ∈ Rd+1 of θ∗.

Both the one-step and two-step methods are computationally efficient. For the former,

letting τ diverge with sample size reduces the estimation bias in intercept at the cost of los-

ing some robustness for estimating coefficients; the latter achieves high degree of robustness

for estimating both the intercept and regression coefficients, and therefore takes the biggest

advantage when the error distributions are heavy-tailed and skewed. While at the normal
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model, since max1≤i≤n |εi| ∼ σ
√

2 log(2n) and the order of τ is roughly σ
√

(n/d), the adap-

tive Huber estimator is almost identical to the least squares estimator. Numerical results in

Section 4 provide strong support for the tail-adaptivity of the proposed data-driven Huber

regression.

3.2 Adaptive Huber regression in high dimensions

We now move to the high dimensional setting where d � n and β∗ = (β∗1 , . . . , β
∗
d)

ᵀ ∈ Rd

is sparse with ‖β∗‖0 :=
∑d

j=1 I(β∗j 6= 0) = s � n. Since the invention of the Lasso by

Tibshirani (1996), a verity of variable selection methods have been developed for finding a

small group of covariates that are associated with the response from a large pool. We refer

to Bühlmann and van de Geer (2011) and Hastie, Tibshirani and Wainwright (2015) for

comprehensive reviews along this line.

Given observations {(Yi,Xi)}ni=1, the Lasso is the solution to

β̂lasso(λ) ∈ argmin
β0∈R,β∈Rd

{
1

2n

n∑
i=1

(Yi − β0 −Xᵀ
i β)2 + λ‖β‖1

}
,

where λ > 0 is a regularization parameter. Thinking of the noise variable as being Gaussian,

this can be interpreted as a penalized maximum likelihood estimate, in which the `1-norm

penalizes the fitted coefficients to induce sparsity. However, least squares fitting is sensitive

to the tails of error distributions, particularly for ultra-high dimensional covariates as the

maximum spurious correlation between the covariates and the realized noise can be large,

and therefore is not an ideal choice in the presence of heavy-tailed noise.

Recently, Fan, Li and Wang (2017) modified Huber’s procedure (Huber, 1973) to obtain

an `1-regularized robust estimator which fulfills desirable concentration bounds under only

finite variance condition on the regression errors. According to the discussions in Section 3.1,

the intercept, albeit being often ignored in the literature, plays an important role in the study

of robust methods. To take into account the effect of intercept, we consider the regularized

Huber estimator of the form

θ̂H(τ, λ) ∈ argmin
θ=(β0,βᵀ)ᵀ∈Rd+1

{
Lτ (θ) + λ‖β‖1

}
, (25)

where Lτ (θ) := n−1
∑n

i=1 `τ (Yi − Z
ᵀ
i θ) = n−1

∑n
i=1 `τ (Yi − β0 −Xᵀ

i β), τ and λ denote the

robustification and regularization parameters, respectively.
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Provided finite variance of the distribution of εi, Theorem 5 below reveals that the `1-

regularized Huber regression with properly tuned (τ, λ) gives rise to statistically consistent

estimators with `1- and `2-errors scaling as s
√

log(d)/n and
√
s log(d)/n, respectively, under

the sample size scaling n & s log(d). These rates are exactly the minimax rates enjoyed by

the standard Lasso with sub-Gaussian errors.

Theorem 5. Assume Condition 1 holds and denote by λS the minimal eigenvalue of S.

Assume further that the unknown β∗ is sparse with s = ‖β∗‖0. Let σjj = E(X2
j ) for

j = 1, . . . , d. Then the estimator θ̂H(τ, λ) given in (25) with τ = σ
√
n/ log(d) and λ scaling

with A0 max1≤j≤d σ
1/2
jj σ

√
log(d)/n satisfies

‖θ̂H(τ, λ)− θ∗‖2 .
λ
√
s

λS

and ‖θ̂H(τ, λ)− θ∗‖1 .
λs

λS

(26)

with probability at least 1 − 5d−1 as long as n ≥ c1s log(d), where c1 > 0 is a constant

depending only on (A0,max1≤j≤d σjj, λS).

Remark 3. The main purpose of using Huber loss for data fitting is to gain robustness

against outliers from either contamination models (Huber, 1973) or heavy-tailed models

considered in this paper. For other purposes, different loss functions have been proposed

to replace the quadratic loss, such as the nonconvex Tukey and Cauchy losses, the quantile

loss and the asymmetric quadratic loss, among others. We refer to Loh (2017), Alquier,

Cottet and Lecué (2017) and Fan et al. (2018) for the most recent studies on regularized

M -estimators with general loss functions.

In practice, it is computationally demanding to choose the optimal values of tuning

parameters τ and λ by a two-dimensional grid search using cross-validation. Combining the

data-driven method in Section 3.1 and the refitted cross-validation (RCV) technique (Fan,

Guo and Hao, 2012), we consider the following procedure that estimates θ∗ and tunes τ

simultaneously. Given a random sample of size n, we first randomly split it to two subsamples

{(Y1i,X1i)}n1
i=1 and {(Y2i,X2i)}n2

i=1, where n1 = n2 = n/2 if n is even or n1 = (n + 1)/2,

n2 = (n−1)/2 otherwise. To begin with, we take cross-validated Lasso estimators computed

separately from the two subsamples as initial values. At the k-th iteration (k ≥ 1), using

the estimates θ̂
(k−1)
1 and θ̂

(k−1)
2 from the last iteration, we compute τ (k) which is the solution

15



to

1

2{n1 − ŝ(k−1)
2 }

n1∑
i=1

min{(Y1i −Zᵀ
1iθ̂

(k−1)
2 )2, τ 2}

τ 2

+
1

2{n2 − ŝ(k−1)
1 }

n2∑
i=1

min{(Y2i −Zᵀ
2iθ̂

(k−1)
1 )2, τ 2}

τ 2
=

log(nd)

n
, (27)

where ŝ
(k−1)
1 = ‖β̂(k−1)

1 ‖0 and ŝ
(k−1)
2 = ‖β̂(k−1)

2 ‖0. Next, take τ = τ (k) and compute θ̂
(k)
1 and

θ̂
(k)
2 as the solutions to the optimization problems

min
θ

{
1

n1

n1∑
i=1

`τ (Y1i −Zᵀ
1iθ) + λ1‖β‖1

}
and min

θ

{
1

n2

n2∑
i=1

`τ (Y2i −Zᵀ
2iθ) + λ2‖β‖1

}
,

(28)

respectively, where λ1, λ2 > 0 are chosen via cross-validation. Repeat the above two steps

until convergence or until the maximum number of iterations is reached. The resulting τ is

denoted by τ̂rcv. The final estimator is then defined as the solution to (25) with τ = τ̂rcv and

λ calibrated via cross-validation.

To implement the data-driven Huber regression in high dimensions, again, starting with

some initial guess we iteratively solve (27) and (28). For the convex optimization problems

in (28), the minimizer satisfies the Karush–Kuhn–Tucker conditions, and therefore can be

found by solving the following system of nonsmooth equations:
−n−1

∑
i ψτ (Yi −Z

ᵀ
i θ̂) = 0,

−n−1
∑

i ψτ (Yi −Z
ᵀ
i θ̂)Xij + λŝj = 0, j = 1, . . . , d

β̂j − S(β̂j + ŝj) = 0, j = 1, . . . , d

(29)

where θ̂ = (β̂0, β̂
ᵀ)ᵀ ∈ Rd+1 with β̂ = (β̂1, . . . , β̂d)

ᵀ, ŝj ∈ ∂|β̂j| and S(z) = sign(z)(|z| −
1)+ is the soft-thresholding operator. Instead of directly applying the Semismooth Newton

Algorithm (SNA) to the entire system of equations, we adapt the Semismooth Newton

Coordinate Descent (SNCD) algorithm proposed by Yi and Huang (2017), which combines

SNA with cyclic coordinate descent in solving (29). More specifically, in SNCD we divide

(29) into two parts in order to avoid cumbersome matrix operations as in solving the entire

system. In a cyclic fashion we update the intercept only using the first equation and update

the coefficients with its subgradients using the last two equations, therefore reducing the

computational cost from O(nd2) to O(nd) at each iteration. The computational scalability

and efficiency are gained especially when d is very large. After obtaining a solution path of

(28), we employ the cross-validation method to calibrate λ1 and λ2 and obtain the associated

θ̂
(k)
1 and θ̂

(k)
2 .
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Remark 4. The above regularized data-adaptive Huber regression method is a direct ex-

tension of the one-step method proposed in Section 3.1 to high dimensions. Also, note that

Proposition 5 also holds in high dimensions as long as the population Gram matrix S is

positive definite. Therefore, to further reduce the estimation bias of intercept, we suggest

a two-step procedure that estimates the regression coefficients using standard regularized

Huber regression and then estimates the intercept by applying the adaptive-Huber method

to fitted residuals as in (24). Section 4.1.3 provides numerical studies of both the one- and

two-step regularized adaptive Huber estimators.

4 Empirical analysis

4.1 Simulated examples

In this section, we examine numerically the finite sample performance of the proposed data-

adaptive Huber (DA-Huber) methods for mean estimation and linear regressions. We con-

sider the following four distribution settings to investigate the robustness and efficiency of

the proposed method in a wide variety of scenarios.

(1) Normal distribution N (0, σ2) with mean zero and variance σ2 > 0;

(2) Skewed generalized t distribution (Theodossiou, 1998) sgt(µ, σ2, λ, p, q), where we set

mean parameter µ = 0, variance parameter σ2 = q/(q−2) with q > 2, shape parameter

p = 2 and skewness parameter λ = 0.75;

(3) Lognormal distribution LN(µ, σ2) with the log location parameter µ = 0 and log shape

parameter σ > 0;

(4) Pareto distribution Par(xm, α) with scale parameter xm = 1 and shape parameter

α > 0.

Except the normal distribution, all the other three are skewed and heavy-tailed.

4.1.1 Mean estimation

For each setting, we generate an independent sample of size n = 100 and compute three

mean estimators: the sample mean, the Huber estimator with τ chosen via five-fold cross-

validation (CV-Huber), and the proposed DA-Huber mean estimator. Figure 1 displays the
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boxplots of the estimation error based on 2000 simulations, and Figure 2 illustrates the α-

quantile of the estimation error with α ranging from 0.5 to 1. The DA-Huber estimator and

sample mean perform almost identically for the normal model. For the heavy-tailed skewed

distributions, the deviation of the sample mean from the population mean grows rapidly

with the confidence level, which is in striking contrast to the CV- and DA-Huber estimators.

In Figure 3, we examine the 99%-quantile of the estimation error versus a distribution

parameter that measures the tail behavior. Namely, for normal distributions we let σ vary

between 1 and 4; for skewed generalized t distributions, we increase the shape parameter q

from 2.5 to 4; for lognormal and Pareto distributions, the shape parameters σ and α vary from

0.25 to 2 and 1.5 to 3, respectively. The Huber-type estimators show significant improvement

in deviations from the population mean as the tails become heavier. In summary, the most

attractive feature of our method is its adaptivity: (i) it is as efficient as the sample mean

for the normal model and is more robust for asymmetric and/or heavy-tailed data; (ii) it

performs as good as the cross-validation but with much less computational cost. The latter is

particularly important for large-scale inference with a myriad of parameters to be estimated

simultaneously.
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(b) sgt(0, 5, 0.75, 2, 2.5)
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(c) LN(0, 1.5)
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Figure 1: Estimation errors for the sample mean, CV-Huber and DA-Huber estimators under

different settings based on 2000 simulations.
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Figure 2: Estimation error versus confidence level for the sample mean, CV-Huber and

DA-Huber estimators based on 2000 simulations.

4.1.2 Linear regression

We generate data {(Yi,Xi)}ni=1 from linear model (14) with n = 500 and d = 5. The inter-

cept and vector of regression coefficients are taken to be β0 = 5 and β∗ = (1,−1, 1,−1, 1)ᵀ,

respectively. The covariates Xi are i.i.d. random vectors that consist of independent coor-

dinates from a uniform distribution Unif(−1.5, 1.5).

We compare the DA-Huber regression estimator with the ordinary least squares (OLS)

estimator and classical robust M -estimators with Huber loss `τ (·) as in (1) and Tukey’s

biweight loss

`T
τ (x) =

{
1− (1− x2/τ 2)3 if |x| ≤ τ,

1 if |x| > τ.

The tuning parameter τ in `T
τ (·) and `τ (·) is taken to be 4.685 and 1.345, respectively, accord-

ing to the asymptotic 95% efficiency rule. We carry out 1000 Monte Carlo simulations to: (1)

evaluate the overall performance of the DA-Huber methods comparing with three competing

methods, labeled as OLS, Tukey and Huber; see Figures 4 and 5, and (2) demonstrate the

robustness of different methods with varying degrees of heavy-tailedness and skewness; see
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Figure 3: Empirical 99%-quantile of the estimation error versus distribution parameter (that

measures tails) for the sample mean, CV-Huber and DA-Huber estimators.

Figures 6 and 7.

Figures 4 and 5 display the boxplots of the estimation error of intercept |β̂0−β∗0 | and the

total `2-error ‖θ̂−θ∗‖2
2, respectively, for a fixed distribution parameter as did in Section 4.1.1.

Both the one-step and two-step DA-Huber estimators outperform the other methods across

all examples. For estimating the intercept, the DA-Huber rectifies the nonnegligible bias in

classical robust M -estimators, as predicted by theory. In the normal case, the DA-Huber

estimator performs almost identically with the OLS and is therefore highly efficient. The

`2-error of OLS tends to spread out (due to outliers) and thus is not reported in Figure 5.

Figures 6 and 7 illustrate, respectively, the average estimation error of intercept and the total

`2-error versus the distribution parameter that controls the shape of tails. In the normal

case, the one-step DA-Huber and OLS slightly outperform the others; with heavy-tailed and

skewed errors, the DA-Huber methods enjoy notable advantage and the two-step approach

is most desirable since it strikes the perfect balance between bias and robustness. Overall,

the numerical results indicate that the proposed methods have substantial advantages in the

presence of asymmetric and heavy-tailed errors, while maintaining high efficiency for the

normal model.
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Figure 4: Estimation errors of intercept under different settings.
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Figure 5: Total `2-errors under different settings.
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Figure 6: Average estimation error of intercept versus distribution parameters controlling

tails for the OLS estimator, standard Tukey’s and Huber’s estimators, and data-adaptive

Huber estimators (one-step and two-step).

4.1.3 Sparse linear regression

Now we consider the sparse linear regression model

Yi = β∗0 +Xᵀ
i β
∗ + εi, i = 1, . . . , n,

where β∗ ∈ Rd is sparse with s = ‖β∗‖0 � n and d � n. In the examples below, we

take n = 250, d = 1000 and s = 20. We set β∗0 = 3 and β∗ = (3, . . . , 3, 0, . . . , 0)ᵀ, where

the first s = 20 elements of β∗ all equal 3 and the rest are zero. As before, the covariates

Xi are i.i.d. random vectors that consist of independent coordinates from Unif(−1.5, 1.5),

and the regression errors are generated from one of the four distributions: normal, skewed

generalized t, lognormal and Pareto.

To implement the iterative procedure proposed in Section 3.2, at the k-th iteration,

we use the five-fold cross-validation to choose regularization parameters λ
(k)
1 and λ

(k)
2 in the

optimization programs in (28), producing θ̂
(k)
1 and θ̂

(k)
2 . We evaluate the proposed regularized

DA-Huber estimators by the following measurements.
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Figure 7: Average `2-errors versus distribution parameters controlling tails for the OLS

estimator, standard Tukey’s and Huber’s estimators, and data-adaptive Huber estimators

(one-step and two-step).

(1) RG, the relative gain of the DA-Huber estimator with respect to the Lasso in terms of

`1- and `2-errors:

RG1 =
‖θ̂H − θ‖1

‖θ̂lasso − θ‖1

and RG2 =
‖θ̂H − θ‖2

‖θ̂lasso − θ‖2

;

(2) FP, the number of false positives (the number of noise covariates that are selected);

(3) FN, the number of false negatives (the number of signal covariates that are missing).

Table 1 summaries the relative gains of the DA-Huber estimators under `1- and `2-errors

and the numbers of false positive and false negative discoveries. Across all the four models,

both one- and two-step DA-Huber estimators outperform the Lasso with smaller `1-errors

and fewer false positive discoveries, therefore are less greedy in model selection. For the

normal model, the proposed robust methods and Lasso perform equally well; while in the

presence of heavy-tailed skewed errors, the DA-Huber methods lead to remarkably better

outputs in regard of both estimation and model selection. Similar phenomenon can also be
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observed from Figure 8, which displays the empirical distributions of the `2-errors of the

Lasso and DA-Huber estimators.

Lasso DA-Huber DA-Huber

(one-step) (two-step)

RG1 1 0.934 0.914

Normal RG2 1 1.003 1.027

N (0, 1) FP 87.9 77.6 73.5

FN 0 0 0

RG1 1 0.875 0.862

Skewed generalized t RG2 1 0.983 0.981

sgt(0, 5, 0.75, 2, 2.5) FP 86.1 63.1 60.7

FN 0 0 0

RG1 1 0.347 0.227

Lognormal RG2 1 0.495 0.305

LN(0, 1.5) FP 80.8 21.9 26.6

FN 0.26 0 0

RG1 1 0.653 0.417

Pareto RG2 1 0.845 0.512

Par(1, 2) FP 85.1 34.5 44.2

FN 0 0 0

Table 1: RG, FP and FN of the Lasso and DA-Huber estimators under different models.

The results are based on 200 simulations.

4.2 Real data examples

In this section, using three real data sets, we demonstrate the desirable performance of the

proposed DA-Huber methods in terms of prediction accuracy.

Liu and Rubin (1995) reported a data collected from a clinical trial on endogenous cre-

atinine clearance of 34 male patients where 28 samples are free from missing data. For the

four recorded variables, it is known that the level of serum creatinine is closely related to

the endogenous creatinine clearance with the body weight and age properly adjusted. Linear
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Figure 8: Distritbuions of the `2-errors of the Lasso and DA-Huber estimators.

model (14) is a natural preliminary fit to the data. In addition, we observe that the empirical

kurtosis of the level of serum creatinine is 19.66, which hints potential heavy-tailedness in

the data. The second example is the hedonic housing crime data (Harrison and Rubinfeld,

1978), which was originally used to study the association between housing market and local

air quality. Interestingly, this data also provides some insights on how crime rates vary with

respect to house-economics features, such as the proportion of residential land zoned for

lots greater than 25, 000 square feet, the proportion of non-retail business within a town,

proportion of owner units built prior to 1940, proportion of adults without high school edu-

cation, median value of owner-occupied homes, average number of rooms in owner units, and

distance to five employment centers in Boston region. This data set contains 506 locations

and the empirical kurtosis of the crime rate is 39.75. The last data set is the well-known

G-Econ data reported by Nordhaus et al. (2006), which was used to show the dependence

of gross cell product (GCP) on geographical variables measured on a spatial scale of one

degree. The original data contains 27, 445 terrestrial grid cells and 47 predictors, and varies

abruptly across different latitude and longitude. For example, the sizes of grid cell may

change substantially from the equator to the poles. Similar to Nordhaus et al. (2006), we

focus on regions from 35 to 50 latitudes (parallel north) that contain a large number of
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major economic centers, such as Tokyo, New York, Paris and London. Excluding cells with

empty inputs, 808 observations remain for studying the relationship between the GCP (in

USD) in 1990 and ten explanatory variables as discussed in Nordhaus et al. (2006), includ-

ing distance to coast, distance to major navigable lakes, distance to major navigable rivers,

distance to ice-free ocean, elevation, standard deviation of elevations, elevation from shuttle

radar topography mission data, latitude, average precipitation, and average temperature.

The empirical kurtosis of the GCP is 256.58, suggesting strong heavy-tailedness.
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Figure 9: Comparison of the quantiles of mean absolute prediction errors for the OLS (black

diamonds), one-step DA-Huber (blue circles), and two-step DA-Huber (red triangles). The

results are based on 100 random splittings.
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From the simulation studies in Section 4.1 we see that both the one-step and two-step

DA-Huber estimators outperform the OLS in terms of estimation accuracy. For the real

data, we focus on the prediction accuracy by investigating the mean absolute prediction

errors. Specifically, upon splitting the data into K = 7 groups randomly, we predict the

responses of one group using the regression coefficients estimated from the other K − 1

groups. Various quantile levels of the K mean absolute prediction errors were computed

for different estimators. We repeat the random splitting 100 times. Figure 9 displays the

empirical medians of α-quantiles of the mean absolute prediction errors for the three data

sets, where α ranges from 0.1 to 0.9. The two data-adaptive Huber estimators substantially

outperform the OLS with smaller prediction errors. When heavy-tailedness prevails and the

intercept is nonnegligible, such as the GCP in G-Econ data, the two-step estimator displays

the best performance. In general, the one- and two-step methods perform comparably well.

For the endogenous creatinine data, the 0.9-quantiles of the mean absolute prediction errors

of the three methods are comparable, which is possibly due to the small sample size (n = 28).

To sum up, the data-adaptive Huber methods provide notably better predictions than the

least squares for these three real data examples.

5 Summary

Balancing bias and robustness, the robustification parameter plays the central role in re-

cent development on robust estimation and inference for heavy-tailed data. In this paper,

we have proposed a new principle to choose the robustification parameter adaptively from

data for a variety of fundamental statistical problems, including mean estimations, linear

regression and the sparse regression in high dimensions. Inspired by the censored moment

equation approach, the proposed principle is genuinely tuning-free and data-adaptive. It

is conceptually different from the traditional practice on selecting the robustification pa-

rameter based on cross-validation, which is not only computationally demanding but also

lacks of the underpinning mathematical guarantees. The proposed principle is guided by

non-asymptotic deviation analysis and paves a unified pathway for choosing robustification

parameter for robust estimation and inference in general, particularly for M -estimations. In

light of numerical evidences from both synthetic and real data, our proposal outperforms

those widely known robust estimation procedures in terms of estimation, variable selection,

and prediction.
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Appendix

A Proofs of Results in Section 2

A.1 Preliminaries

We first introduce some useful notions of the distribution of a random variable. Let X be

a non-degenerate real-valued random variable with finite variance. For t ≥ 0, we define the

tail probability of |X|, the second moments of truncated and censored versions of X by

G(t) = P(|X| > t), P (t) = E{X2I(|X| ≤ t)} and Q(t) = E{ψt(X)}2, (30)

respectively, where ψt(x) = (|x| ∧ t) sign(x) for x ∈ R. Moreover, for t > 0, we define

p(t) = t−2P (t) and q(t) = t−2Q(t). (31)

By definition, it is straightforward that Q(t) = P (t) + t2G(t) and q(t) = p(t) + G(t). The

following result provides some useful connections among these functions. See (2.3) and (2.4)

in Hahn, Kuelbs and Weiner (1990). We reproduce them here for the sake of readability.

Lemma 1. Let functions G,Q, p and q be given in (30) and (31).
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(i) For any t > 0, we have

Q(t) = 2

∫ t

0

yG(y) dy, q′(t) = −2t−1p(t), (32)

and

q(t) = P(X 6= 0)− 2

∫ t

0

y−1p(y)dy. (33)

In addition, function Q : [0,∞)→ R is non-decreasing with limt→∞Q(t) = E(X2).

(ii) Function q : (0,∞) → R is non-increasing and positive everywhere with q(0+) :=

lims↓0 q(s) = P(X 6= 0). Moreover,

q(s) = P(X 6= 0) for all 0 ≤ s ≤ ∆ := inf{y > 0 : G(y) < P(X 6= 0)}, (34)

q(s) decreases strictly and continuously on (∆,∞), and limt→∞ q(t) = 0.

Proof of Lemma 1. Notice Q(t) = E{(|X| ∧ t)2} and it holds almost surely that

(|X| ∧ t)2 = 2

∫ t

0

I(|X| > t)y dy + 2

∫ |X|
0

I(|X| ≤ t)y dy

= 2

∫ t

0

I(|X| > t)y dy + 2

∫ t

0

I(|X| > y)I(|X| ≤ t)y dy

= 2

∫ t

0

I(|X| > y)y dy.

Taking expectations on both sides implies Q(t) = E{(|X| ∧ t)2} = 2
∫ t

0
P(|X| > y)y dy =

2
∫ t

0
yG(y)dy, as stated. Hence, Q′(t) = 2tG(t). In (31), taking derivatives with respect to t

on both sides gives 2tq(t) + t2q′(t) = 2tG(t) = 2t{q(t)− p(t)}. The second equation in (32)

therefore follows. To prove (33), note that, for any 0 < s < t, q(t) = q(s) − 2
∫ t
s
p(y)y−1dy.

On event {|X| > 0}, it holds almost surely that

0 <
(|X| ∧ s)2

s2
≤ 1, and

(|X| ∧ s)2

s2
→ 1 as s→ 0.

By the dominated convergence theorem,

q(s) = E{s−2(|X| ∧ s)2} = E{s−2(|X| ∧ s)2I(|X| > 0)} → P(|X| > 0) as s→ 0.

Then, in q(t) = q(s)−2
∫ t
s
p(y)y−1dy for all 0 < s < t, letting s tend to zero yields (33). The

monotonicity of Q follows directly from (32) and the limit of Q(t) derives from the monotone

convergence theorem. These complete the part (i) of Lemma 1.
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We now show the remaining properties of function q in the part (ii). By the definition of

∆ in (34), we have P(0 < |X| ≤ y) = 0 and thus p(y) = 0 for all 0 < y < ∆. This, together

with (33), implies q(s) = P(X 6= 0) > 0 for all 0 ≤ s ≤ ∆. It is easy to see that p(y) > 0 for

any y > ∆, and therefore q(·) is strictly decreasing on (∆,∞). Finally, note that

0 <
(|X| ∧ s)2

s2
≤ 1, and

(|X| ∧ s)2

s2
→ 0 as s→∞

almost surely. The dominated convergence theorem leads to limt→∞ q(t) = 0.

A.2 Proof of Proposition 1

Note that the truncated mean mτ can be written as mτ = τn−1
∑n

i=1 ψ1(Xi/τ), where it can

be easily verified that − log(1 − u + u2) ≤ ψ1(u) ≤ log(1 + u + u2) for all u ∈ R. For any

y > 0, it follows that

P

[
n∑
i=1

{τψ1(Xi/τ)− µ} ≥ y

]
≤ exp{−(y + nµ)/τ}E

[
exp

{ n∑
i=1

ψ1(Xi/τ)

}]

= exp{−(y + nµ)/τ}
n∏
i=1

E exp{ψ1(Xi/τ)}

≤ exp{−(y + nµ)/τ}
n∏
i=1

E exp{log(1 +Xi/τ +X2
i /τ

2)}

= exp{−(y + nµ)/τ}
n∏
i=1

E(1 +Xi/τ +X2
i /τ

2)

≤ exp{−(y + nµ)/τ}
n∏
i=1

exp{µ/τ + E(X2
i )/τ 2}

≤ exp(−y/τ + nv2/τ 2)

= exp

{
nv2

(
1

τ
− y

2nv2

)2

− y2

4nv2

}
.

Similarly,

P

[
n∑
i=1

{τψ1(Xi/τ)− µ} ≤ −y

]
≤ exp

{
nv2

(
1

τ
− y

2nv2

)2

− y2

4nv2

}
.

In particular, taking τ = 2v2n/y gives

P
[∣∣∣∣ n∑

i=1

{τψ1(Xi/τ)− µ}
∣∣∣∣ ≥ y

]
≤ 2 exp

(
− y2

4nv2

)
.

This proves Part (i) by taking y = 2v(nz)1/2.

Part (ii) can be proved similarly. We therefore omit the details.
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A.3 Proof of Proposition 2

Proof of (i). Using the notation in Section A.1, equation (6) can be written as q(τ) = z/n.

By Lemma 1, the function q satisfies maxt≥0 q(t) = limt→0 q(t) = P(|X| > 0), limt→∞ q(t) = 0

and is strictly decreasing on (∆,∞). Provided z/n < P(|X| > 0), equation (6) has a unique

solution that lies in (∆,∞).

By definition, this unique solution τz satisfies

τ 2
z = E(X2 ∧ τ 2

z )
n

z
≤ E(X2)

n

z
. (35)

On the other hand, note that E(X2 ∧ τ 2) ≥ τ 2P(|X| > τ) for any τ > 0. It follows

that P(|X| > τz) ≤ z/n, which implies τz ≥ qz/n. Substituting this into (35) gives τ 2
z ≥

E(X2 ∧ q2
z/n)(n/z).

Proof of (ii). Recall that q(τz) = z/n. Since z/n→ 0 and q(t) strictly decreases to zero as

t→∞, we have τz →∞ and therefore E(X2 ∧ τ 2
z )→ E(X2) as n→∞. The stated results

follow immediately.

A.4 Proof of Proposition 3

Define

Gn(t) =
1

n

n∑
i=1

I(|Xi| > t), qn(t) =
1

n

n∑
i=1

X2
i ∧ t2

t2
, t > 0,

and ∆n = inf{y > 0 : Gn(y) < Gn(0)}, which are the sample versions of G(t), q(t) and ∆

given in (30), (31) and (34), respectively. A sample version of Lemma 1 prevails, implying

that qn(t) = Gn(0) for 0 ≤ t ≤ ∆n and qn(·) strictly decreases to zero on (∆n,∞). Therefore,

equation (4) has a unique solution on (∆n,∞) if and only if z/n < Gn(0).

A.5 Proof of Theorem 1

Keep the notation used in the proof of Proposition 3. Recall that τ̂z is uniquely determined

and positive on the event {z < Gn(0)}. Under the condition P(X = 0) = 0, it follows that

P{Gn(0) < 1} = 0 and therefore τ̂z is positive with probability one. We divide the rest of

the proof into four steps.
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Step 1 (Preliminaries). Define the function

pn(t) =
1

n

n∑
i=1

X2
i I(|Xi| ≤ t)

t2
for t > 0.

Applying Lemma 1 to pn and qn, we see that q′n(t) = −2t−1pn(t). It follows that

qn(τz)− qn(τ̂z) = 2

∫ τ̂z

τz

pn(t)

t
dt = 2

∫ (τ̂z−τz)/τz

0

pn(τz + τzu)

1 + u
du

by change of variables u = (t − τz)/τz. By definition, qn(τ̂z) = z/n = q(τz). This, together

with the last display, delivers

qn(τz)− q(τz) = 2

∫ (τ̂z−τz)/τz

0

pn(τz + τzu)

1 + u
du.

For any r ∈ (0, 1), it holds on the event {(τ̂z − τz)/τz ≥ r} that

qn(τz)− q(τz) ≥ 2

∫ r

0

pn(τz + τzu)

1 + u
du

= 2

∫ r

0

pn(τz + τzu)− p(τz + τzu)

1 + u
du+ 2

∫ r

0

p(τz + τzu)

1 + u
du

= 2

∫ r

0

pn(τz + τzu)− p(τz + τzu)

1 + u
du+ {q(τz)− q(τz + τzr)}

=: R1 +D1.

Similarly, on the event {(τ̂z − τz)/τz ≤ −r}, it holds

qn(τz)− q(τz)

≤− {q(τz − τzr)− q(τz)} − 2

∫ 0

−r

pn(τz + τzu)− p(τz + τzu)

1 + u
du

=:−D2 +R2.

Putting the above calculations together, we arrive at

P(|τ̂z/τz − 1| ≥ r) ≤ P{qn(τz)− q(τz) ≥ D1 +R1}+ P{qn(τz)− q(τz) ≤ −D2 +R2}. (36)

Set ζi = (X2
i ∧ τ 2

z )/τ 2
z for i = 1, . . . , n such that qn(τz) − q(τz) = n−1

∑n
i=1{ζi − E(ζi)}.

Note that ζi’s are bounded random variables satisfying 0 ≤ ζi ≤ min{1, (|Xi| ∧ τz)/τz} and

E(ζ2
i ) ≤ E(X2

i ∧ τ 2
z )/τ 2

z = z/n. By Bernstein’s inequality, for any u > 0 it holds

P{qn(τz)− q(τz) ≥ u/n} ≤ exp{−u2/(2z + 2u/3)}. (37)
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On the other hand, applying Theorem 2.19 in de la Peña, Lai and Shao (2009) with Xi = ζi/n

therein gives that, for any 0 < u < z,

P{qn(τz)− q(τz) ≤ −u/n} ≤ exp{−u2/(2z)}. (38)

Step 2 (Controlling R1 and R2). Note that R1 and R2 can be written, respectively, as

R1 = 2n−1
∑n

i=1{ξi − E(ξi)} and R2 = −2n−1
∑n

i=1{ηi − E(ηi)}, where

ξi =

∫ r

0

X2
i I{|Xi| ≤ τz(1 + u)}

τ 2
z (1 + u)3

du and ηi =

∫ 0

−r

X2
i I{|Xi| ≤ τz(1 + u)}

τ 2
z (1 + u)3

du

are bounded, nonnegative random variables satisfying

ξi ≤
∫ r

0

du

1 + u
≤ r, ηi ≤

∫ 0

−r

du

1 + u
≤ r

1− r
.

In addition,

E(ξ2
i ) ≤

E[X2
i I{|Xi| ≤ τz(1 + r)}]

τ 2
z

{∫ r

0

du

(1 + u)2

}2

≤ q(τz + τzr)r
2 ≤ q(τz)r

2,

and

E(η2
i ) ≤

E{X2
i I(|Xi| ≤ τz)}

τ 2
z

{∫ 0

−r

du

(1 + u)2

}2

≤ q(τz)r
2

(1− r)2
.

Again it follows from Theorem 2.19 in de la Peña, Lai and Shao (2009) that, for any v > 0,

P(R1 ≤ −2rv/n) ≤ exp{−v2/(2z)} (39)

and P{R2 ≥ 2rv/(1− r)n} ≤ exp{−v2/(2z)}. (40)

Step 3 (Bounding D1 and D2). By Lemma 1 we have

D1 = q(τz)− q(τz + τzr) = 2

∫ τz(1+r)

τz

P (u)

u3
du ≥ 2P (τz)

∫ τz(1+r)

τz

1

u3
du =

r2 + 2r

(1 + r)2

P (τz)

τ 2
z

.

(41)

Similarly,

D2 = q(τz − τzr)− q(τz) = 2

∫ τz

τz(1−r)

P (u)

u3
du ≥ 2r − r2

(1− r)2

P (τz − τzr)
τ 2
z

. (42)

Step 4. Together, (36) and (39)–(42) imply that, for any 0 < r < 1 and v > 0,

P(|τ̂z/τz − 1| ≥ r)

≤ P
{
qn(τz)− q(τz) ≥

r2 + 2r

(1 + r)2

P (τz)

τ 2
z

− 2rv

n

}
(43)

+ P
{
qn(τz)− q(τz) ≤ −

2r − r2

(1− r)2

P (τz − τzr)
τ 2
z

+
2rv

(1− r)n

}
+ 2 exp{−v2/(2z)}.
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Note that
r2 + 2r

(1 + r)2

P (τz)

τ 2
z

− 2rv

n
=

{
P (τz)

Q(τz)

2 + r

(1 + r)2
z − 2v

}
r

n

and

2r − r2

(1− r)2

P (τz − τzr)
τ 2
z

− 2rv

(1− r)n
=

{
P (τz − τzr)
Q(τz)

2− r
1− r

z − 2v

}
r

(1− r)n
.

Taking v = (a1 ∧ a2)z/2 for a1 and a2 as in (8), the right-hand side of (43) can further be

bounded by

P
{
qn(τz)− q(τz) ≥

a1rz

n

}
+ P

{
qn(τz)− q(τz) ≤ −

a2rz

n

}
+ 2 exp{−v2/(2z)}.

Combining this with (37), (38) and (43) proves the stated result.

A.6 Proof of Theorem 2

We start with making a finite approximation of the interval [1/2, 3/2] using a sequence

{ck}nk=1 of equidistant points ck = 1/2 + k/n. Then for any τ ∗z /2 ≤ τ ≤ 3τ ∗z /2 with τ ∗z =

v2

√
n/z, there exists some 1 ≤ k ≤ n such that |τ − τ ∗z,k| ≤ v2(nz)−1/2, where τ ∗z,k :=

ckv2

√
n/z. It follows that

sup
τ∗z /2≤τ≤3τ∗z /2

|mτ − µ| ≤ max
1≤k≤n

|mτ∗z,k
− µ|+ v2√

nz
. (44)

For 1 ≤ k < n/2 so that 1/2 ≤ ck < 1, by Proposition 1–(ii) we have |mτ∗z,k
− µ| ≤

2(v2/ck)
√
z/n with probability at least 1 − 2e−z/c

2
k ; for n/2 ≤ k ≤ n so that 1 ≤ ck ≤ 3/2,

from Proposition 1–(i) it follows that |mτ∗z,k
− µ| ≤ 2ckv2

√
z/n with probability at least

1− 2e−z. Apply the union bound over 1 ≤ k ≤ n to see that

max
1≤k≤n

|mτ∗z,k
− µ| ≤ 4v2

√
z

n
(45)

with probability at least 1− 2ne−z. Together, (44) and (45) prove (9).

Taking z = 2 log n in Proposition 2, Theorem 1 and Remark 1, we find that τ ∗z /2 ≤ τ̂z ≤
3τ ∗z /2 with probability at least 1− 4n−c for all sufficiently large n. The desired result then

follows from (9).
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B Proofs of Results in Section 3.1

B.1 Proof of Proposition 5

Define functions G(θ) = G(β0,β) = E{`τ (Y −Zᵀθ)} = E{`τ (Y − β0 −Xᵀβ)} and h(α) =

E{`τ (ε− α)}. By the definition and uniqueness of ατ , for any θ = (β0,β
ᵀ)ᵀ we have

G(θ) = E{`τ (ε− (β0 − β∗0)− 〈X,β − β∗〉)}

= E[E{`τ (εi − (β0 − β∗0)− 〈X,β − β∗〉)|X}]

≥ E{`τ (ε− ατ )} = G(θ̃∗τ ),

where θ̃∗τ := (β∗0 + ατ ,β
∗ᵀ)ᵀ ∈ Rd+1. This implies that G(β∗0 + ατ ,β

∗) = minθ∈Rd+1 G(θ).

Moreover, consider the Hessian matrix ∇2G(θ) = E{I(|Y − Zᵀθ| ≤ τ)ZZᵀ}, θ ∈ Rd+1.

By (17), ∇2G(θ̃∗τ ) = P(|ε− ατ | ≤ τ)E(ZZᵀ) is positive definite, such that θ̃∗τ is the unique

minimizer of the function θ 7→ G(θ). This enforces β∗0,τ = β∗0 + ατ and β∗τ = β∗.

Next we prove (19). By the optimality of ατ and the mean value theorem, we have

h′(ατ ) = dh(α)/dα|α=ατ = 0 and

h′′(α̃τ )ατ = h′(ατ )− h′(0) = −h′(0) = E{`′τ (ε)}. (46)

where α̃τ = λ0 + (1− λ)ατ for some 0 ≤ λ ≤ 1. Note that

h′′(α̃τ ) = 1− P(|ε− α̃τ | > τ). (47)

By the convexity of h, h(α̃τ ) ≤ λh(0) + (1− λ)h(ατ ) ≤ h(0) ≤ σ2/2. On the other hand,

h(α) ≥ E(τ |ε− α| − τ 2/2)I(|ε− α| > τ) for all α ∈ R.

Together, the upper and lower bounds on h(α̃τ ) yield

τE|ε− α̃τ |I(|ε− α̃τ | > τ) ≤ τ 2

2
P(|ε− α̃τ | > τ) +

σ2

2
.

Further, by Markov’s inequality,

P(|ε− α̃τ | > τ) ≤ τ−1E|ε− α̃τ |I(|ε− α̃τ | > τ) ≤ 1

2
P(|ε− α̃τ | > τ) +

σ2

2τ 2
,

implying P(|ε− α̃τ | > τ) ≤ τ−2σ2. Substituting this into (47) to reach

h′′(α̃τ ) ≥ 1− τ−2σ2. (48)

For the right-hand side of (46), we have

|E{`′τ (ε)}| ≤ E(|ε| − τ)I(|ε| > τ) ≤ 1

2τ
E(ε2 − τ 2)I(|ε| > τ) =

σ2

2τ
− E{ψ2

τ (ε)}
2τ

where ψτ (x) = `′τ (x). Combined with (46) and (48), this proves (19) as long as τ > σ.
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B.2 Proof of Theorem 3

Without loss of generality, we assume 2e−z ≤ 1 throughout the proof. For some r > 0 to be

determined, define the local neighborhood

Θr =
{
θ ∈ Rd+1 : ‖θ − θ∗‖S,2 ≤ r

}
, (49)

where ‖·‖S,2 denotes the rescaled `2-norm ‖u‖S,2 = ‖S1/2u‖2 for u ∈ Rd+1. If θ̂τ /∈ Θr, there

exists some η ∈ (0, 1) such that θ̂τ,η = θ∗ + η(θ̂τ − θ∗) ∈ Θr; otherwise if θ̂ ∈ Θr, we can

simply take η = 1. By the optimality of θ̂τ , we have ∇Lτ (θ̂τ ) = 0. Applying Lemma A.1 in

Sun, Zhou and Fan (2017) to Lτ (θ) = n−1
∑n

i=1 `τ (Yi −Z
ᵀ
i θ) gives〈

∇Lτ (θ̂τ,η)−∇Lτ (θ∗), θ̂τ,η − θ∗
〉
≤ η
〈
∇Lτ (θ̂τ )−∇Lτ (θ∗), θ̂τ − θ∗

〉
= η
〈
−∇Lτ (θ∗), θ̂τ − θ∗

〉
≤ ‖S−1/2∇Lτ (θ∗)‖2 × ‖θ̂τ,η‖S,2. (50)

In what follows, we bound the left-hand and right-hand sides of (50) separately, staring with

the former. Proposition 6 below shows that Lτ is strictly convex on Θr with high probability.

Proposition 6. Assume that E〈u,Z〉4 ≤ κ4〈u,Su〉2 for all u ∈ Rd+1 and some κ > 0. Let

τ, r > 0 satisfy

τ ≥ max(4σ, 8κ2r) and n ≥ c0(τ/r)2(d+ z), (51)

where c0 > 0 is an absolute constant. Then with probability at least 1− e−z,

〈∇Lτ (θ)−∇Lτ (θ∗),θ − θ∗〉 ≥
1

4
‖θ − θ∗‖2

S,2 uniformly over θ ∈ Θr. (52)

Since θ̂τ,η ∈ Θr by construction, it holds under the scaling (51) that〈
∇Lτ (θ̂τ,η)−∇Lτ (θ∗), θ̂τ,η − θ∗

〉
≥ 1

4
‖θ̂τ,η − θ∗‖2

S,2 (53)

with probability at least 1− e−z.

Next we bound the quadratic form ‖S−1/2∇Lτ (θ∗)‖2, which is bounded by∥∥∥∥ 1

n

n∑
i=1

{
ξizi − E(ξizi)

}∥∥∥∥
2

+

∥∥∥∥ 1

n

n∑
i=1

E(ξizi)

∥∥∥∥
2

, (54)

where ξi = `′τ (εi) and zi = S−1/2Zi. For the first term in (54), define γ = n−1
∑n

i=1{ξizi −
E(ξizi)}. To bound ‖γ‖2 = supu∈Sd u

ᵀγ, by a standard covering argument, we can find a
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1/2-net N1/2 of Sd with |N1/2| ≤ 5d+1 such that ‖γ‖2 ≤ 2 maxu∈N1/2
|uᵀγ|. For every u ∈ Sd,

note that |uᵀγ| = |
∑n

i=1{ξiuᵀzi − Eξiuᵀzi}|. Under Condition 1, it holds

E|uᵀzi|k ≤ Ak0 kΓ(k/2) for all k ≥ 1. (55)

If k = 2` for some ` ≥ 1, E|uᵀzi|k ≤ 2Ak0(k/2)!; otherwise if k = 2`+ 1 for some ` ≥ 1,

E|uᵀzi|k ≤ kAk0 Γ(`+ 1/2) = k
√
πAk0

(2`)!

4``!
= 2
√
πAk0

k!

2k`!
.

Putting the above calculations together to reach

E(ξiu
ᵀzi)

2 = E{E(ξ2
i |zi)(uᵀzi)

2} ≤ σ22A2
0,

and E|ξiuᵀzi|k ≤
k!

2
σ22A2

0(A0τ/2)k−2 for all k ≥ 3.

By Bernstein’s inequality,

P
(
|uᵀγ| ≥ 2A0σ

√
x

n
+
A0

2

τx

n

)
≤ 2e−x for any x > 0.

Taking the union bound over all vectors u ∈ N1/2, we obtain that with probability at least

5d+1 · 2e−x, ‖γ‖2 ≤ 2 maxu∈N1/2
|uᵀγ| ≤ 4σA0

√
x/n + A0τx/n. Taking x = 2(d + 1 + z) ≥

log(5d+1) + 2z, we arrive at

P
{
‖γ‖2 ≥ 4

√
2A0σ

√
d+ 1 + z

n
+ 2A0τ

d+ 1 + z

n

}
≤ 2e−2z ≤ e−z.

For the deterministic part ‖E(ξizi)‖2 in (54), it holds

‖E(ξizi)‖2 = sup
u∈Sd

E(ξiu
ᵀzi) ≤ σ2τ−1.

Putting the above calculations together yields that with probability greater than 1− e−z,

‖S−1/2∇Lτ (θ∗)‖2 ≤ r0 := (1 + 4
√

2A0)σ

√
d+ 1 + z

n
+ 2A0τ

d+ 1 + z

n
. (56)

Finally, in view of (53) and (56), we take r = τ/(8κ2). It then follows that with prob-

ability greater than 1− 2e−z, ‖θ̂τ,η − θ∗‖S,2 ≤ 4‖S−1/2∇Lτ (θ∗)‖2 ≤ 4r0 under the assumed

scaling (51). Provided n & A0κ
2(d+ z) so that 4r0 < r, the intermediate estimator θ̂τ,η will

lie in the interior of Θr, which enforces η = 1 and θ̂τ,η = θ̂τ (otherwise θ̂τ,η will lie on the

boundary). Putting together the pieces, we arrive at the desired result.
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B.3 Proof of Theorem 4

In view of the proof of Theorem 3, lying in the heart of the arguments is the restricted strong

convexity (52) and the deviation bound (56) for a random quadratic form. In the following,

we will establish similar results to (52) and (56) when τ is set as a constant rather than a

function of (n, d). Since the target parameter now is θ∗τ , we slightly change the notation and

set

θ̃τ,η = θ∗τ + η(θ̂τ − θ∗τ ) and Θ̃r = {θ ∈ Rd+1 : ‖θ − θ∗τ‖S,2 ≤ r}

to be the intermediate estimator and the parameter set, respectively.

We start with the deviation bound. Recalling θ∗τ = argminθ∈Rd+1

∑n
i=1 E`τ (Yi −Z

ᵀ
i θ), it

follows from Proposition 5 that

0 = ∇ELτ (θ∗τ ) = E∇Lτ (θ∗τ ) = − 1

n

n∑
i=1

E{`′τ (εi − ατ )Zi},

where Lτ (θ) = n−1
∑n

i=1 `τ (Yi −Z
ᵀ
i θ). Let zi = S−1/2Zi such that

‖S−1/2∇Lτ (θ∗τ )‖2 =

∥∥∥∥ 1

n

n∑
i=1

`′τ (εi − ατ )zi
∥∥∥∥

2

. (57)

Since E{`′τ (εi − ατ )} = 0 and by the optimality of ατ ,

var(`′τ (εi − ατ )) = E{`′τ (εi − ατ )}2

= E(εi − ατ )2I(|εi − ατ | ≤ τ) ≤ 2E`τ (εi − ατ ) ≤ 2E`τ (ε) ≤ σ2.

Following the same argument as in the proof of Theorem 3, it can be shown that with

probability at least 1− 2 · 5d+1e−x,∥∥∥∥ 1

n

n∑
i=1

`′τ (εi − ατ )zi
∥∥∥∥

2

≤ 4A0σ

√
x

n
+ A0τ

x

n
.

Taking x = 2(d+ 1 + z) in the last display, we obtain from (57) that

‖S−1/2∇Lτ (θ∗τ )‖2 ≤ r1 := 4
√

2A0σ

√
d+ 1 + z

n
+ 2A0τ

d+ 1 + z

n
(58)

with probability at least 1− e−z.

The next proposition provides the restricted strong convexity around θ∗τ when τ is treated

as a constant.
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Proposition 7. Assume that E〈u,Z〉4 ≤ κ4〈u,Su〉2 for all u ∈ Rd+1 and some κ > 0. Let

r > 0 satisfy

r ≤ 1

8
ρ1/2
τ κ−2τ and n ≥ c0ρ

−2
τ (τ/r)2(d+ z), (59)

where c0 > 0 is an absolute constant. Then with probability at least 1− e−z,

〈∇Lτ (θ)−∇Lτ (θ∗τ ),θ − θ∗τ 〉 ≥
ρτ
4
‖θ − θ∗τ‖2

S,2 uniformly over θ ∈ Θ̃r. (60)

According to (58) and (60), we take r = ρ
1/2
τ κ−2τ/8 so that with probability at least

1− 2e−z, ‖θ̃τ,η − θ∗τ‖S,2 ≤ 4ρ−1
τ ‖S−1/2∇Lτ (θ∗τ )‖2 ≤ 4ρ−1

τ r1 under the scaling (59). Provided

n & ρ−3
τ (A0κ

2)2(d+ z) so that 4ρ−1
τ r1 < r = ρ

1/2
τ κ−2τ/8, the intermediate estimator θ̃τ,η will

lie in the interior of Θ̃r, which enforces η = 1 and θ̃τ,η = θ̂τ , as desired.

B.4 Proof of Proposition 6

Since the Huber loss is convex and differentiable, we have

T (θ) := 〈∇Lτ (θ)−∇Lτ (θ∗),θ − θ∗〉

=
1

n

n∑
i=1

{
`′τ (Yi −Z

ᵀ
i θ
∗)− `′τ (Yi −Z

ᵀ
i θ)
}
Zᵀ
i (θ − θ∗)

≥ 1

n

n∑
i=1

{
`′τ (εi)− `′τ (Yi −Z

ᵀ
i θ)
}
Zᵀ
i (θ − θ∗)IEi , (61)

where IEi is the indicator function of the event

Ei :=
{
|εi| ≤ τ/2

}
∩
{
|〈Zi,θ − θ∗〉|
‖θ − θ∗‖S,2

≤ τ

2r

}
, (62)

on which |Yi − Zᵀ
i θ| ≤ τ for all θ ∈ Θr. Also, recall that `′′τ (u) = 1 for |u| ≤ τ . For any

R > 0, define functions

ϕR(u) =



u2 if |u| ≤ R
2
,

(u−R)2 if R
2
≤ u ≤ R,

(u+R)2 if −R ≤ u ≤ −R
2
,

0 if |u| > R,

and ψR(u) = I(|u| ≤ R).

In particular, ϕR is R-Lipschitz and satisfies

u2I(|u| ≤ R/2) ≤ ϕR(u) ≤ u2I(|u| ≤ R). (63)
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It then follows that

T (θ) ≥ g(θ) :=
1

n

n∑
i=1

ϕτ‖θ−θ∗‖S,2/(2r)(〈Zi,θ − θ∗〉)ψτ/2(εi). (64)

To bound the right-hand side of (64), consider the supremum of a random process indexed

by Θr:

∆r := sup
θ∈Θr

|g(θ)− Eg(θ)|
‖θ − θ∗‖2

S,2

. (65)

For any θ fixed, write δ = θ − θ∗. By (63),

Eg(θ) ≥ E〈Zi, δ〉2 − E
{
〈Zi, δ〉2I

(
|〈Zi, δ〉| ≥

τ

4r
‖δ‖S,2

)}
− E

{
〈Zi, δ〉2I(|εi| > τ/2)

}
≥ ‖δ‖2

S,2 −
4

τ 2

(
4r2

‖δ‖2
S,2

E〈Zi, δ〉4 + E〈Zi, δ〉2ε2
i

)
. (66)

Recall that E〈u,Zi〉4 ≤ κ4‖δ‖4
S,2 for all u ∈ Rd+1. Joint with (66), this implies

Eg(θ) ≥ ‖δ‖2
S,2 − ‖δ‖2

S,2

(
σ2 + 4κ4r2

) 4

τ 2
≥ 1

2
‖δ‖2

S,2 for all θ ∈ Θr, (67)

where the last inequality holds if τ ≥ max(4σ, 8κ2r). By (64), (65) and (67),

T (θ)

‖θ − θ∗‖2
S,2

≥ 1

2
−∆r for all θ ∈ Θr. (68)

The following lemma provides an upper bound on the stochastic term ∆r.

Lemma 2. For any x > 0,

∆r ≤ E∆r +

{
(E∆r)

1/2 τ

2r
+
√

2κ2

}√
x

n
+

τ 2

16r2

x

3n

with probability at least 1− e−x. Moreover,

E∆r ≤
√

2π

n

(
2τ

r

√
d+ 1 + 1

)
.

Substituting this into Lemma 2, we obtain that with probability at least 1− e−z,

T (θ)

‖θ − θ∗‖2
S,2

≥ 1

4
uniformly over θ ∈ Θr

for all sufficiently large n that scales as (τ/r)2(d+z) up to an absolute constant. This proves

(52).
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B.5 Proof of Proposition 7

Following the proof of Proposition 6, now we have

〈∇Lτ (θ)−∇Lτ (θ∗τ ),θ − θ∗τ 〉

≥ 1

n

n∑
i=1

{
`′τ (Yi −Z

ᵀ
i θ
∗
τ )− `′τ (Yi −Z

ᵀ
i θ)
}
Zᵀ
i (θ − θ∗τ )IEi,τ ,

where

Ei,τ =
{
|εi − ατ | ≤ τ/2

}
∩
{
|〈Zi,θ − θ∗τ 〉|
‖θ − θ∗τ‖S,2

≤ τ

2r

}
On Ei,τ , |Yi − Zᵀ

i θ
∗
τ | = |εi + β∗0 − β∗0,τ | = |εi − ατ | ≤ τ and |Yi − Zᵀ

i θ| ≤ τ for all θ ∈ Θ̃r.

Moreover, let g(θ) be as in (64) except with θ∗ replaced by θ∗τ . By (22) and Markov’s

inequality, we obtain that for every θ ∈ Θ̃r,

Eg(θ) ≥
(
ρτ − 16κ4r2τ−2

)
‖θ − θ∗τ‖2

S,2 ≥
3

4
ρτ‖θ − θ∗τ‖2

S,2,

provided r ≤ ρ
1/2
τ κ−2τ/8. Keep all other statements the same, we then get the desired

result.

B.6 Proof of Lemma 2

For g(θ) given in (64), we write g(θ) = n−1
∑n

i=1 gi(θ). Observing that 0 ≤ ϕR(u) ≤ R2/4

and 0 ≤ ψR(u) ≤ 1 for all u ∈ R, we have

0 ≤ gi(θ) ≤ τ 2

16r2
‖θ − θ∗‖2

S,2.

It then follows from Theorem 7.3 in Bousquet (2003), a variant of Talagrand’s inequality,

that for any x > 0,

∆r ≤ E∆r + (E∆r)
1/2 τ

2r

√
x

n
+ σn

√
2x

n
+

τ 2

16r2
× x

3n
(69)

with probability at least 1−e−x, where σ2
n := supθ∈Θr

Eg2
i (θ)/‖θ−θ∗‖4

S,2. By (63), Eg2
i (θ) ≤

E〈Zi,θ − θ∗〉4 ≤ κ4(δᵀSδ)2 with δ = θ − θ∗, which implies σ2
n ≤ κ4.

It remains to bound the expectation E∆r. Applying the symmetrization inequality for

empirical processes, and by the connection between Gaussian complexity and Rademacher

complexity, we obtain E∆r ≤ 2
√
π/2E(supθ∈Θr

|Gθ|), where

Gθ :=
1

n

n∑
i=1

gi
‖θ − θ∗‖2

S,2

ϕτ‖θ−θ∗‖S,2/(2r)(〈Zi,θ − θ∗〉)ψτ/2(εi),
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and gi are i.i.d. standard normal random variables that are independent of the observed

data. For any θ0 ∈ Θr, it holds

E∗
(

sup
θ∈Θr

|Gθ|
)
≤ E∗|Gθ0|+ 2E∗

(
sup
θ∈Θr

Gθ
)
, (70)

where E∗ denotes the conditional expectation given {(Yi,Xi)}ni=1. Taking the expectation

with respect to {(Yi,Xi)}ni=1 on both sides, we see that (70) remains valid with E∗ replaced

by E. For E|Gθ0 |, we take θ0 = (β∗0 + r,β∗ᵀ)ᵀ ∈ Θr such that 〈Zi,θ0 − θ∗〉 = r and

Gθ0 =
ϕτ/2(r)

r2n

n∑
i=1

giψτ/2(εi).

Then it follows from (63) that E|Gθ0| ≤ n−1/2. As in the proof of Lemma 11 in Loh and

Wainwright (2015), we use the Gaussian comparison theorem to bound the expectation of

the (conditional) Gaussian supremum E∗(supΘr
Gθ).

Let var∗ be the conditional variance given {(Yi,Xi)}ni=1. For θ,θ′ ∈ Θr, write δ = θ−θ∗

and δ′ = θ′ − θ∗. Then

var∗(Gθ −Gθ′) ≤
1

n2

n∑
i=1

ψ2
τ/2(εi)

{
ϕτ‖δ‖S,2/(2r)(Z

ᵀ
i δ)

‖δ‖2
S,2

−
ϕτ‖δ′‖S,2/(2r)(Z

ᵀ
i δ
′)

‖δ′‖2
S,2

}2

.

Note that ϕcR(cu) = c2ϕR(u) for any c > 0. In particular, taking R = τ‖δ′‖S,2/(2r) and

c = ‖δ‖S,2/‖δ′‖S,2 delivers

ϕτ‖δ′‖S,2/(2r)(Z
ᵀ
i δ
′) =

‖δ′‖2
S,2

‖δ‖2
S,2

ϕτ‖δ‖S,2/(2r)

(
‖δ‖S,2
‖δ′‖S,2

Zᵀ
i δ
′
)
.

Putting the above calculations together, we obtain

var∗(Gθ −Gθ′)

≤ 1

n2

n∑
i=1

1

‖δ‖4
S,2

{
ϕτ‖δ‖S,2/(2r)(Z

ᵀ
i δ)− ϕτ‖δ‖S,2/(2r)

(
‖δ‖S,2
‖δ′‖S,2

Zᵀ
i δ
′
)}2

≤ 1

n2

n∑
i=1

1

‖δ‖4
S,2

τ 2‖δ‖2
S,2

4r2

(
Zᵀ
i δ −

‖δ‖S,2
‖δ′‖S,2

Zᵀ
i δ
′
)2

≤ 1

n2

n∑
i=1

τ 2

4r2

(
Zᵀ
i δ

‖δ‖S,2
− Zᵀ

i δ
′

‖δ′‖S,2

)2

. (71)

Next, define another (conditional) Gaussian process indexed by θ:

Zθ :=
τ

2rn

n∑
i=1

g′i
Zᵀ
i (θ − θ∗)
‖θ − θ∗‖S,2

,

45



where g′i are i.i.d. standard normal random variables that are independent of all other

random variables. By (71), var∗(Gθ−Gθ′) ≤ var∗(Zθ−Zθ′). Using the Gaussian comparison

inequality (Ledoux and Talagrand, 1991) yields

E∗
(

sup
θ∈Θr

Gθ
)
≤ 2E∗

(
sup
θ∈Θr

Zθ
)
≤ τ

r
E∗
∥∥∥∥ 1

n

n∑
i=1

gi S
−1/2Zi

∥∥∥∥
2

.

Combining this with the unconditional version of (70), we obtain

E∆r ≤
√

2π

(
2τ

r
E
∥∥∥∥ 1

n

n∑
i=1

gizi

∥∥∥∥
2

+
1√
n

)
≤
√

2π

n

(
2τ

r

√
d+ 1 + 1

)
,

which, together with (69), proves the stated results.

C Proof of Theorem 5

This proof is based on an argument similar to that used in the proof of Theorem 3. For

simplicity, we write θ̂ = (β̂0, β̂
ᵀ)ᵀ = θ̂H(τ, λ) ∈ Rd+1. For some r > 0 to be specified, we use

Θr and ‖ · ‖S,2 to denote the local neighborhood and rescaled `2-norm as in (49). As before,

let θ̂η (0 < η ≤ 1) be an intermediate estimator satisfying (i) θ̂η ∈ Θr, (ii) θ̂η lies on the

boundary of Θr with η ∈ (0, 1) if θ̂ /∈ Θr, and (iii) θ̂1 = θ̂. Moreover, θ̂ and θ̂η fulfill

〈∇Lτ (θ̂η)−∇Lτ (θ∗), θ̂η − θ∗〉 ≤ η〈∇Lτ (θ̂)−∇Lτ (θ∗), θ̂ − θ∗〉. (72)

Write δ̂ = (v̂0, v̂
ᵀ)ᵀ = θ̂−θ∗ and denote by S ⊆ {1, . . . , d} the the support of β∗. Define

the cone C ⊆ Rd+1 as

C =
{
θ ∈ Rd+1 : ‖vSc‖1 ≤ 3‖vS‖1 + |v0| for (v0,v

ᵀ)ᵀ = θ − θ∗
}
.

It can be shown that the optimal solution θ̂ to program (25) satisfies

θ̂ ∈ C on the event
{
λ ≥ 2‖∇Lτ (θ∗)‖∞

}
, (73)

from which it follows

‖δ̂‖1 = |v̂0|+ ‖v̂S‖1 + ‖v̂Sc‖1 ≤ 2|v̂0|+ 4‖v̂S‖1 ≤ 4
√
s+ 1 ‖δ̂‖2. (74)

By necessary conditions of extrema in the convex optimization problem (25),

〈∇Lτ (θ̂) + λẑ, θ̂ − θ∗〉 ≤ 0,
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where ẑ = (0, ûᵀ)ᵀ with û ∈ ∂‖β̂‖1 satisfies 〈ẑ,θ∗ − θ̂〉 ≤ ‖β∗‖1 − ‖β̂‖1. Under the scaling

λ ≥ 2‖∇Lτ (θ∗)‖∞, it holds

〈∇Lτ (θ̂)−∇Lτ (θ∗), θ̂ − θ∗〉 ≤ λ
(
‖β∗‖1 − ‖β̂‖1

)
+
λ

2
‖θ̂ − θ∗‖1

≤ λ
(
‖v̂S‖1 − ‖v̂Sc‖1

)
+
λ

2
‖θ̂ − θ∗‖1 ≤

λ

2

(
3‖v̂S‖1 − ‖v̂Sc‖1

)
+
λ

2
|v̂0|.

Together with (72), this implies

〈∇Lτ (θ̂η)−∇Lτ (θ∗), θ̂η − θ∗〉 ≤
1

2
λη
(
3‖v̂S‖1 − ‖v̂Sc‖1

)
+

1

2
λη|v̂0|. (75)

Moreover, we introduce δ̂η = θ̂η − θ∗ and note that δ̂η = ηδ̂. By (73), we also have θ̂η ∈ C
under the assumed scaling.

To bound the left-hand side of (75), the following proposition reveals that under proper

scaling, the Huber loss satisfies the restricted strong convexity condition over Θr ∩ C with

high probability. It is a straightforward extension of Proposition 6. We leave the proof to

Section C.2.

Proposition 8. Assume that E〈u,Z〉4 ≤ κ〈u,Su〉2 for all u ∈ Rd+1 and some κ > 0. Let

τ, r > 0 satisfy

τ ≥ max(4σ, 8κ2r) and n ≥ c0λ
−1
S A2

0 (τ/r)2 max
1≤j≤d

σjj s log d, (76)

where c0 > 0 is an absolute constant. Then with probability at least 1− d−1,

〈∇Lτ (θ)−∇Lτ (θ∗),θ − θ∗〉 ≥
1

4
‖θ − θ∗‖2

S,2 uniformly over θ ∈ Θr ∩ C. (77)

Let Ωr be the event on which (77) holds. Then P(Ωc
r) ≤ d−1 under the scaling (76) and

it holds on Ωr ∩ {λ ≥ 2‖∇Lτ (θ∗)‖∞} that

〈∇Lτ (θ̂η)−∇Lτ (θ∗), θ̂η − θ∗〉 ≥
1

4
‖δ̂η‖2

S,2 ≥
1

4
λ

1/2
S ‖δ̂η‖2‖δ̂η‖S,2.

Substituting this lower bound into (75) yields

1

4
λ

1/2
S ‖δ̂η‖2‖δ̂η‖S,2 ≤

1

2
λη
(
|v̂0|+ 3‖v̂S‖1

)
≤ 3

2
λ
√
s+ 1 ‖ηδ̂‖2 =

3

2
λ
√
s+ 1 ‖δ̂η‖2.

Canceling ‖δ̂η‖2 on both sides delivers

‖δ̂η‖S,2 ≤
6λ

λ
1/2
S

√
s+ 1 and ‖δ̂η‖1 ≤

24λ

λS

(s+ 1), (78)

under the assumed scaling λ ≥ 2‖∇Lτ (θ∗)‖∞ and (76) .

It remains to tune the parameters τ, λ and r. The following result provides a concentra-

tion inequality for ‖∇Lτ (θ∗)‖∞.
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Proposition 9. Assume Condition 1 holds and let τ = σ
√
n/t for some t > 0. Then with

probability at least 1− 2(d−1 + e−t),

‖∇Lτ (θ∗)‖∞ ≤ max
1≤j≤d

σ
1/2
jj σ

(
2
√

2A0

√
log d

n
+ A0

log d√
nt

+

√
t

n

)∨
2σ

√
t

n
. (79)

Applying Proposition 9 with t = log d, we see that

‖∇Lτ (θ∗)‖∞ ≤ c1A0 max
1≤j≤d

σ
1/2
jj σ

√
log d

n

with probability at least 1−4d−1, where c1 > 0 is an absolute constant. We therefore choose

λ = c2A0 max1≤j≤d σ
1/2
jj σ

√
log(d)/n for some constant c2 ≥ 2c1, such that λ ≥ 2‖∇Lτ (θ∗)‖∞

with high probability. According to (76), we take r = τ/(8κ2). Putting the above calculations

together, we conclude that

‖θ̂η − θ∗‖S,2 ≤ 6c2λ
−1/2
S A0 max

1≤j≤d
σ

1/2
jj σ

√
(s+ 1) log d

n
< r

with probability at least 1−5d−1, assuming the scaling n & A2
0κ

4λ−1
S max1≤j≤d σjj s log d. By

the construction of θ̂η, with the same probability we must have η = 1 and therefore θ̂ = θ̂η.

The stated result (26) then follows from (78).

C.1 Proof of (73)

From the optimality of θ̂ we see that

Lτ (θ̂)− Lτ (θ∗) ≤ λ
(
‖β∗‖1 − ‖β̂‖1

)
.

By direct calculation, we have

‖β̂‖1 − ‖β∗‖1 ≥ ‖β∗S + v̂Sc‖1 − ‖β∗Sc‖1 − ‖v̂S‖1 −
(
‖β∗S‖1 + ‖β∗Sc‖1

)
≥ ‖v̂Sc‖1 − ‖v̂S‖1.

By the convexity of Lτ and the Cauchy-Schwarz inequality,

Lτ (θ̂)− Lτ (θ∗) ≥ 〈∇Lτ (θ∗), δ̂〉 ≥ −‖∇Lτ (θ∗)‖∞‖δ̂‖1

≥ −λ
2

(
|v̂0|+ ‖v̂Sc‖1 + ‖v̂S‖1

)
.

Putting the above calculations together delivers

0 ≤ λ

2

(
|v̂0|+ 3‖v̂S‖1 − ‖v̂Sc‖1

)
,

from which the conclusion follows.
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C.2 Proof of Proposition 8

The proof is almost identical to that of Proposition 6. With slight abuse of notation, define

the supremum of a random process indexed by Θr ∩ C:

∆r := sup
θ∈Θr∩C

|g(θ)− Eg(θ)|
‖θ − θ∗‖2

S,2

.

Provided τ ≥ max(4σ, 8κ2r), it can be shown that

T (θ)

‖θ − θ∗‖2
S,2

≥ 1

2
−∆r for all θ ∈ Θr ∩ C. (80)

The following lemma is a slight modification of Lemma 2.

Lemma 3. Let Gn = n−1
∑n

i=1 giZi, where g1, . . . , gn are i.i.d. standard normal random

variables that are independent of {(Xi, εi)}ni=1. Then for any x > 0,

∆r ≤ E∆r +
{

(E∆r)
1/2τ/(2r) +

√
2κ2
}√x

n
+

τ 2

48r2

x

n

with probability at least 1− e−x, and

E∆r ≤
√

2π ·
{

8λ
−1/2
S (τ/r)(s+ 1)1/2E‖Gn‖∞ + n−1/2

}
.

Write Zi = (Zi0, Zi1, . . . , Zid)
ᵀ such that ‖ 1

n

∑n
i=1 giZi‖∞ = max0≤j≤d | 1n

∑n
i=1 giZij|.

By the sub-Gaussianity of Z, Lemma 5.5 in Vershynin (2012) and the Legendre duplica-

tion formula, i.e. Γ(s)Γ(s + 1/2) = 21−2s
√
π Γ(2s), we calculate that for j = 0, 1, . . . , d,

E(giZij)
2 = σjj with σ00 = 1, and for k ≥ 3,

E|giZij|k ≤ 2k/2
Γ(k+1

2
)

√
π
· Ak0σ

k/2
jj kΓ(k/2)

= 2Ak0σ
k/2
jj

(k − 1)!

2k/2
≤ m!

2
A2

0σjj

(
A0

√
σjj
2

)k−2

.

Then it follows from Lemma 14.12 in Bühlmann and van de Geer (2011) that

E
(

max
0≤j≤d

∣∣∣∣ 1n
n∑
i=1

giZij

∣∣∣∣) ≤ A0 max
0≤j≤d

σ
1/2
jj

{√
2 log(d+ 2)

n
+

log(d+ 2)

n

}
.

Substituting this into Lemma 2 and taking x = log d, we obtain that with probability at

least 1− d−1,

T (θ)

‖θ − θ∗‖2
S,2

≥ 1

4
uniformly over θ ∈ Θr ∩ C

for all sufficiently large n that scales as A2
0 λ
−1
S (τ/r)2 max1≤j≤d σjj s log d up to an absolute

constant. This proves (77).
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C.3 Proof of Proposition 9

To begin with, write ∇Lτ (θ∗) = n−1
∑n

i=1 ξiZi such that

‖∇Lτ (θ∗)‖∞ = max
1≤j≤d

∣∣∣∣ 1n
n∑
i=1

ξiXij

∣∣∣∣∨ ∣∣∣∣ 1n
n∑
i=1

ξi

∣∣∣∣,
where ξi = `′τ (εi) are i.i.d. bounded random variables with |ξi| ≤ min(τ, |εi|). To bound

|n−1
∑n

i=1 ξi|, it follows immediately from Proposition 1 that |n−1
∑n

i=1 ξi| ≤ 2σ
√
t/n with

probability at least 1− 2e−t.

Next we use the union bound and Bernstein’s inequality to bound the maximum. For

every 1 ≤ j ≤ d,

|E(ξiXij)| = |E{E(ξi|Xij)Xij}| ≤ E|Xij|σ2τ−1 ≤ σ
1/2
jj σ

2τ−1

and E(ξiXij)
2 = E{(ξ2

i |Xij)X
2
ij} ≤ σjjσ

2.

By the sub-Gaussianity of Xi and Lemma 5.5 in Vershynin (2012), we find that

E|Xij|k ≤ Ck
j kΓ(k/2) for all k ≥ 2,

where Cj = A0σ
1/2
jj . Using the same argument that leads to (56), it can be derived that

E|ξiXij|k ≤ k!σ2C2
j (Cjτ/2)k−2 for all k ≥ 3. Then it follows from Bernstein’ inequality that,

for any x > 0, ∣∣∣∣ 1n
n∑
i=1

(ξiXij − EξiXij)

∣∣∣∣ ≤ 2σCj

√
x

n
+ Cj

τx

2n

with probability at least 1 − 2e−x. Putting together the pieces and taking x = 2 log d, we

arrive at the stated result.

C.4 Proof of Lemma 3

Reviewing the proof of Lemma 2, we only need to bound the expectation E∆r. To this end,

it suffices to focus on the (conditional) Gaussian process

Zθ =
τ

2rn

n∑
i=1

g′i
Zᵀ
i (θ − θ∗)
‖θ − θ∗‖S,2

, θ ∈ Θr ∩ C,

where g′i are i.i.d. standard normal random variables that are independent of all other

random variables. For every θ ∈ Θr ∩ C, similarly to (74) it holds

‖θ − θ∗‖1 ≤ 4
√
s+ 1 ‖θ − θ∗‖2 ≤ 4λ

−1/2
S

√
s+ 1 ‖θ − θ∗‖S,2,
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implying

sup
θ∈Θr∩C

Zθ ≤ 2λ
−1/2
S

√
s+ 1

τ

r

∥∥∥∥ 1

n

n∑
i=1

giZi

∥∥∥∥
∞
.

Keep all other statements the same, we obtain

E∆r ≤
√

2π

(
8λ
−1/2
S

√
s+ 1

τ

r
E
∥∥∥∥ 1

n

n∑
i=1

giZi

∥∥∥∥
∞

+
1√
n

)
,

and then get the desired result.
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