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Web-based Supplementary Materials for “Simulation-Based Hypothesis

Testing of High Dimensional Means Under Covariance Heterogeneity”,

by Jinyuan Chang, Chao Zheng, Wen-Xin Zhou and Wen Zhou

This supplementary material includes technical proofs and additional numerical studies. Section A intro-

duces notations and important auxiliary lemmas. In Section B, we report the derivations of theoretical

justifications for the proposed tests for one-sample problems. The derivations of theoretical justification

for the proposed two-sample testing procedures are given in Section C. The theoretical justification of the

proposed two-step procedures, the proposed tests with screening, are displayed in Section D. In Section

E, more simulations studies are reported. Section F presents more results for the analysis of the acute

lymphoblastic leukemia data recorded in Chiaretti et al. (2004).

A Preliminaries

Throughout, we use C and c to denote positive constants that are independent of (n,m, p), which may

take different values at each occurrence.

The proposed simulation-based procedures for testing the equality of means are founded on the idea

of Gaussian approximation. In this section, we state some useful results on high dimensional Gaussian

approximations recently established by Chernozhukov, Chetverikov and Kato (2013) with some discussions.

In line with Section 2, let X,X1, . . . ,Xn ∈ Rp be independent and identically distributed random vectors

with mean µ1 and covariance matrix Σ1 = (σ1,k`). Write X = (X1, . . . , Xp)
′, Xi = (Xi1, . . . , Xip)

′ and

define

T0 = max
1≤k≤p

√
nX̄k with X̄k = n−1

n∑
i=1

Xik.

Moreover, let {Gi = (Gi1, . . . , Gip)
′}ni=1 be a sequence of independent centred Gaussian random vectors in

Rp with covariance matrix Σ1. The Gaussian analogue of T0 can be defined as

Z0 = max
1≤k≤p

n−1/2
n∑
i=1

Gik.

For k = 1, . . . , p, let σ21k = var(Xk) = σ1,kk and for r ≥ 1, define the moments

µr(X) =
(
E|U|r∞

)1/r
, νr(X) = max

1≤k≤p

(
E|Uk|r

)1/r
, (A.1)

where U = U(X) = (U1, . . . , Up)
′ = D

−1/2
1 X and D1 = diag(Σ1). These quantities will play an important
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role in our theoretical analysis. For every 0 < t < 1, set u(t) = max{uX(t), uG(t)}, where uX(t) and uG(t)

are the (1 − t)-quantiles of max1≤i≤n |Ui|∞ for Ui = D
−1/2
1 Xi and max1≤i≤n |D−1/21 Gi|∞, respectively.

Further, for r ≥ 4 as in condition (M1), we write

ϑn,p = ϑn,p(r) = pn1−r/2. (A.2)

Lemmas 1 and 2 below are Theorem 2.2 and Lemma 3.1 in Chernozhukov, Chetverikov and Kato

(2013).

Lemma 1. Assume that σ1,kk is bounded away from 0 and ∞. Then for any 0 < t < 1,

sup
x∈R
|P(T0 ≤ x)− P(Z0 ≤ x)|

≤ C
[(
ν
3/4
3 ∨ ν1/24

)
n−1/8{log(pn/t)}7/8 + u(t)n−1/2{log(pn/t)}3/2 + t

]
, (A.3)

where C > 0 is a constant independent of n, p and t.

Lemma 2. Assume that there exist constants C > c > 0 such that for every 1 ≤ k ≤ p, c ≤ σ1,kk, σ2,kk ≤ C.

Then

sup
x∈R

∣∣∣∣P( max
1≤k≤p

Xk ≤ x
)
− P

(
max
1≤k≤p

Yk ≤ x
)∣∣∣∣ ≤ C ′∆1/3 {1 ∨ log (p/∆)}2/3 ,

where C ′ > 0 is a constant depending only on c and C and ∆ := ‖Σ1 −Σ2‖∞.

Remark: The upper bound given in (A.3) can be simplified under conditions (M1) and (M2), respectively.

By Markov’s inequality, we have for all u > 0,

P
(

max
1≤i≤n

|D−1/2Gi| > u

)
≤ 2pn{1− Φ(u)} ≤ u−1 exp{log(pn)− u2/2}.

This implies that for every 0 < t < 1, uG(t) ≤
√

2 log(pn/t). Under condition (M1), once again using

Markov’s inequality yields, for every u > 0,

P
(

max
1≤i≤n

|Ui|∞ > u

)
≤ u−r E

(
max
1≤i≤n

|Ui|r∞
)

= u−rµrn,r,

where µn,r := {E(max1≤i≤n |Ui|r∞)}1/r. For 0 < t < 1, it follows directly from the definition that uX(t) ≤
t−1/rµn,r. In particular, taking

t = min

{
1,
[
µn,rn

−1/2{log(pn)}3/2
]r/(r+1)

}
in (A.3) implies by the inequality µn,r = {E(max1≤i≤n |Ui|r∞)}1/r ≤ (pn)1/rνr that the upper bound on
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the right side of (A.3) is of order

n−1/8{log(pn)}7/8 + ϑ1/(r+1)
n,p {log(pn)}3/2, (A.4)

where ϑn,p = pn1−r/2 is as in (A.2).

On the other hand, if condition (M2) holds, then it is easy to see that uX(t) can be bounded by some

multiple of {log(pn/t)}1/γ . Taking t = n−1/2 gives the optimal rate of convergence in (A.3) which is of

order

n−1/8{log(pn)}7/8 + n−1/2{log(pn)}3/2+1/γ . (A.5)

In the proofs below, (A.4) and (A.5) will be applied directly.

Recall that Σ̂1 = (σ̂1,k`) with σ̂1,k` = n−1
∑n

i=1(Xik − X̄k)(Xi` − X̄`) and σ̂21k = σ̂1,kk. Furthermore,

denote by R1 = (r1,k`) the correlation matrix of X and its sample analogue is given by R̂1 = (r̂1,k`) with

r̂1,k` =

∑n
i=1(Xik − X̄k)(Xi` − X̄`)√∑n

i=1(Xik − X̄k)2
∑n

i=1(Xi` − X̄`)2
.

The following lemma provides non-asymptotic bounds on the differences Σ̂1 − Σ1 and R̂1 − R1 in the

elementwise `∞-norm.

Lemma 3 (Probabilistic estimates). Suppose that n, p ≥ 2 and log(p) ≤ n.

(i) Assume that condition (M1) holds. Then there exist constants C1, C2 > 0 independent of n and p

such that, with probability at least 1− C1{n−1 + ϑ
2/(r+2)
n,p },

max
(∣∣D−1/21 Σ̂1D

−1/2
1 −R1

∣∣
∞,
∣∣R̂1 −R1

∣∣
∞

)
≤ C2

[
ν24 n

−1/2{log(pn)}1/2 + ν2r ϑ
2/(r+2)
n,p + ν2r ϑ

2/r
n,p log(p)

]
. (A.6)

(ii) Assume that condition (M2) holds. Then there exist constants C3, C4 > 0 independent of n and p

such that, with probability at least 1− C3n
−1,

max
(∣∣D−1/21 Σ̂1D

−1/2
1 −R1

∣∣
∞,
∣∣R̂1 −R1

∣∣
∞

)
≤ C4

[
n−1/2{log(pn)}1/2 + n−1{log(pn)}2/γ

]
. (A.7)

(iii) Assume that ν4 in (A.1) is uniformly bounded. Then for 0 < t ≤
√
n,

P
{√

n
∣∣D̂−1/21 (µ̂1 − µ1)

∣∣
∞ ≥ t

}
≤ Cp exp(−ct2) + n−1, (A.8)
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where D̂1 = diag (σ̂211, . . . , σ̂
2
1p), µ̂1 = (X̄1, . . . , X̄p)

′ and C, c > 0 are constants independent of n and

p.

Proof: Recall that for i = 1, . . . , n, Ui = (Ui1, . . . , Uip)
′ with Uik = (Xik − µ1k)/σ1k and define Skn =∑n

i=1 Uik and Vkn = (
∑n

i=1 U
2
ik)

1/2. First, observe that

σ̂1,k`
σ1kσ1`

= n−1
n∑
i=1

(Uik − n−1Skn)(Ui` − n−1S`n) = n−1
n∑
i=1

UikUi` − n−2SknS`n. (A.9)

Moreover, put tkn = n−1/2Skn/Vkn for k = 1, . . . , p, such that the sample correlations can be expressed as

r̂1,k` =

∑n
i=1 UikUi`
VknV`n

{
(1− t2kn)(1− t2`n)

}−1/2 − tknt`n{(1− t2kn)(1− t2`n)
}−1/2

. (A.10)

By (A.9) and (A.10), lying in the heart of the proof is a careful analysis of the following quantity:

∆1 = max
1≤k≤`≤p

∣∣∣∣∣n−1
n∑
i=1

UikUi` − r1,k`

∣∣∣∣∣ . (A.11)

Case 1. Assume that condition (M1) holds. We follow a standard procedure: first show ∆1 is concentrated

around its expectation E∆1, and then upper bound the expectation. Note that, U1, . . . ,Un are independent

and identical distributed random vectors in Rp with mean zero and covariance matrix R1. Applying

Theorem 3.1 in Einmahl and Li (2008) with s = 1
2r and ‖ · ‖ = ‖ · ‖∞ yields, for every t > 0,

P
(
∆1 ≥ 2E∆1 + t

)
≤ exp{−(nt)2/(3ν44n)}+ C t−r/2n1−r/2 max

1≤i≤n
E
(

max
1≤k≤`≤p

|UikUi`|r/2
)

≤ exp{−(nt)2/(3ν44n)}+ C t−r/2n1−r/2 max
1≤i≤n

E
(

max
1≤k≤p

|Uik|r
)

≤ exp{−nt2/(3ν44)}+ C t−r/2νrr pn
1−r/2, (A.12)

where by Lemma A.1 in Chernozhukov, Chetverikov and Kato (2013),

E∆1 ≤ C
[
n−1/2{log(p)}1/2

{
max

1≤k≤`≤p

n∑
i=1

E(UikUi`)
2

}1/2

+ n−1 log(p)

{
E

(
max
1≤i≤n

max
1≤k≤`≤p

U2
ikU

2
i`

)}1/2 ]
≤ C

[
ν24n

−1/2{log(p)}1/2 + ν2r p
2/rn−1+2/r log(p)

]
. (A.13)
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Together, (A.13) and (A.12) imply by taking t = max[ν24 n
−1/2{log(n)}1/2, ν2r ϑ

2/(r+2)
n,p ] that

P
[
∆1 > C

{
ν24 n

−1/2{log(pn)}1/2 + ν2r ϑ
2/(r+2)
n,p + ν2r ϑ

2/r
n,p log(p)

}]
≤ C

{
n−1 + ϑ2/(r+2)

n,p

}
. (A.14)

Next we focus on the self-normalized sums tkn in the second term on the right side of (A.10). Using

Theorem 2.19 in de la Peña, Lai and Shao (2009) to the non-negative random variables U2
ik gives, for every

0 < ε < 1,

P
{
V 2
kn ≤ (1− ε)n

}
≤ exp

{
−nε2/(2EU4

ik)
}
≤ exp

{
−nε2/(2ν44)

}
. (A.15)

Moreover, it follows from Lemma 6.4 in Jing, Shao and Wang (2003) that for t > 0,

P
{
|Skn| ≥ t(4

√
n+ Vkn)

}
≤ 4 exp(−t2/2). (A.16)

Then it is concluded from (A.15) and (A.16) that, with probability at least 1− 4 exp(−t2/2)− exp(−cn),

|tkn| ≤ t(n−1/2 + 4V −1n,k ) ≤ 7tn−1/2. Taking t = {2 log(pn)}1/2 we obtain that

P
{

max
1≤k≤p

|tkn| > Cn−1/2{log(pn)}1/2
}
≤ Cn−1.

The last display, joint with (A.10) and (A.14) proves the bound for ‖R̂1 −R1‖∞ in (A.6).

Let ∆2 = max1≤k≤p |n−1Skn|. The arguments leading to (A.13) and (A.14) can be used to prove that,

respectively, E∆2 ≤ C[n−1/2{log(p)}1/2 + νr p
1/rn−1+1/r] and for t > 0,

P
(
∆2 ≥ 2E∆2 + t

)
≤ exp(−nt2/3) + C t−rνrr pn

1−r.

This completes the proof of (A.6) in view of (A.9) and (A.14).

Case 2. Under condition (M2), it follows from Theorem 6 in Delaigle, Hall and Jin (2011) that for all

y > 0 and 1 ≤ k ≤ ` ≤ p,

P

{∣∣∣∣∣
n∑
i=1

(
UikUi` − EUikUi`

)∣∣∣∣∣ > y

}
≤ 2 exp

{
−y2/(4n)

}
+ C exp(−cyγ/2),

where C, c > 0 are constants depending only on K1, K2 and γ in (M2). This, combined with a union

bound yields

P
(

∆1 > C
[
n−1/2{log(pn)}1/2 + n−1{log(pn)}2/γ

])
≤ Cn−1,

where ∆1 is as in (A.11). A completely analogous argument leads to

P
(

∆2 > C
[
n−1/2{log(pn)}1/2 + n−1{log(pn)}1/γ

])
≤ Cn−1.
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Assembling the above calculations completes the proof of (A.7).

Finally we prove (A.8). It is well-known the t-statistic can be expressed as

√
n(X̄k − µ1k)

σ̂1k
=

Skn/Vkn
{1− n−1(Skn/Vkn)2}1/2

. (A.17)

Let εn = min[12 , ν
2
4 n
−1/2{2 log(pn)}1/2]. Inequalities (A.15) and (A.16) imply, for 0 < t ≤

√
n,

P
{√

n |D̂−1/21 (µ̂1 − µ1)|∞ ≥ t
}

= P
{

max
1≤k≤p

√
n(X̄k − µ1k)

σ̂1k
≥ t
}

≤ p max
1≤k≤p

P
{
Skn/Vkn ≥ t(1 + t2n−1)−1/2

}
≤ p max

1≤k≤p

[
P
{
Skn ≥

t(4
√
n+ Vkn)

(1 + 4
√

2)(1 + t2n−1)1/2

}
+ P

{
V 2
kn ≤ (1− εn)n

}]
≤ 3p exp(−ct2) + n−1.

A completely analogous argument will lead to the same bound for P
{√

n |D̂−1/21 (µ̂1 − µ1)|∞ ≤ −t
}
, and

hence completes the proof of Lemma 3.

B Proof of the asymptotic null properties: one-sample case

B.1 Proof of Proposition 1

We first introduce a proposition that gives non-asymptotic bounds on the distributional error between the

one-sample test statistic T (I)
ν and its Gaussian analogue under the null hypothesis for ν ∈ {ns, s}. We then

turn to a proof of Theorem 1.

Proposition 1. Let ν ∈ {ns, s}, Θ(I)
ns = |Σ̃1 −Σ1|∞ and Θ(I)

s = |R̃1 −R1|∞. The estimator Σ̃1 of Σ1 is

such that diag (Σ̃1) = diag (Σ̂1).

(i) Assume that (M1) holds. Then under H (I)

0 ,

sup
x≥0

∣∣P{T (I)
ν > x

}
− P

{
|W(I)

ν |∞ > x|Xn
}∣∣

≤ C1

[
{Θ(I)

ν }1/3{log(pn)}2/3 + n−1/8{log(pn)}7/8 + ϑ1/(r+1)
n,p {log(pn)}3/2

]
,

where ϑn,p = pn1−r/2.
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(ii) Assume that (M2) holds. Then under H (I)

0 ,

sup
x≥0

∣∣P{T (I)
ν > x

}
− P

{
|W(I)

ν |∞ > x|Xn
}∣∣

≤ C2

[
{Θ(I)

ν }1/3{log(pn)}2/3 + n−1/8{log(pn)}7/8 + n−1/2{log(pn)}3/2+1/γ
]
.

The constants C1, C2 > 0 are independent of n, p, r and γ.

Proof. For the sake of clarity we give the proof only for the studentized statistic Ts := T (I)
s , as the non-

studentized statistic T (I)
ns can be dealt with in a similar way. To begin with, observe that for every x ∈ R,

|x| = max(x,−x). Therefore, for t > 0,

P
(
Ts > t

)
= P

{
max
1≤k≤p

max

(√
nX̄k

σ̂1k
,−
√
nX̄k

σ̂1k

)
> t

}
. (B.18)

Define a new sequence of dilated random vectors Xext
1 , . . . ,Xext

n taking values in R2p, given by Xext
i =

(Xext
i,1 , . . . , X

ext
i,2p)

′ = (X′i,−X′i)
′. In this notation, we have P(Ts > t) = P(T ext

s > t), where

T ext
s =

√
n max

1≤k≤2p

X̄ext
k

σ̂extk

with X̄ext
k = n−1

n∑
i=1

Xext
i,k , (σ̂extk )2 = n−1

n∑
i=1

(Xext
i,k − X̄ext

k )2.

Hence, we only need to focus on T+
s :=

√
nmax1≤k≤p X̄k/σ̂1k without loss of generality.

Recall that, conditional on {X1, . . . ,Xn}, W(I)
s = (W (I)

s,1, . . . ,W
(I)
s,p)′ is a centred Gaussian random vector

with covariance matrix R̃1. Put

Z+
s = max

1≤k≤p
W (I)

s,k. (B.19)

We shall show that, with high probability, the distribution of T+
s and the conditional distribution of Z+

s

given Xn are close enough so that the conditional quantiles of Z+
s given Xn provide reasonable estimates

of the quantiles of T+
s . For this purpose, we introduce the following random variables that serve as

intermediate approximations.

Let {Gi = (Gi1, . . . , Gip)
′}ni=1 be independent p-variate centered Gaussian random vectors with covari-

ance matrix R1, and define

Z∗s = max
1≤k≤p

n−1/2
n∑
i=1

Gik, T ∗s = max
1≤k≤p

n−1/2
n∑
i=1

Uik, (B.20)

where Uik = (Xik − µ1k)/σ1k. For the random variables Z∗s and T ∗s , by Lemma 1 we have the following

Berry-Esseen type bound:

dn := sup
x∈R

∣∣P(T ∗s ≤ x)− P
(
Z∗s ≤ x

)∣∣, (B.21)

where the order of dn depends on the moment conditions imposed on Xi as described in (A.4) and (A.5).
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Further, applying Theorem 3 in Chernozhukov, Chetverikov and Kato (2015) to Z∗s gives, for any ε > 0,

sup
x∈R

P
(
|Z∗s − x| ≤ ε

)
≤ 4ε

[
1 + {2 log(p)}1/2

]
. (B.22)

On the other hand, we see that under H (I)

0 , T ∗s =
√
nmax1≤k≤p X̄k/σ1k and hence

∣∣T+
s − T ∗s

∣∣ ≤ max
1≤k≤p

∣∣∣∣ σ̂1kσ1k
− 1

∣∣∣∣ · max
1≤k≤p

√
n|X̄k|
σ̂1k

≤ max
1≤k≤p

∣∣∣∣ σ̂1kσ1k
− 1

∣∣∣∣ · √n∣∣D̂−1/21 µ̂1

∣∣
∞. (B.23)

For t > 0, define the event

E0(t) =

{
max
1≤k≤p

|σ̂1k/σ1k − 1| ≤ t
}
. (B.24)

On this event, we have |T+
s − T ∗s | ≤ t

√
n|D̂−1/21 µ̂1|∞. Together with (iii) in Lemma 3, this yields for any

ε > 0 that

P
(
|T+

s − T ∗s | > ε
)
≤ Cp exp{−c(ε/t)2}+ P{E0(t)c}, (B.25)

where Ec0 denotes the complimentary set of E0.

For the two Gaussian maxima Z+
s and Z∗s given in (B.19) and (B.20), respectively, it follows from

Lemma 2 that

d̂n := sup
x∈R

∣∣P(Z∗s ≤ x)− P
(
Z+
s ≤ x|Xn

)∣∣ ≤ CΘ1/3
s {1 + log(p/Θs)}2/3, (B.26)

where Θs = Θ(I)
s = ‖R̃1 −R1‖∞.

Consequently, combination of inequalities (B.21), (B.22), (B.25) and (B.26) gives, for every x ∈ R and

t, ε > 0,

P
(
T+
s > x

)
≤ P

(
T ∗s > x− ε

)
+ P

(
|T+

s − T ∗s | > ε
)

≤ P
(
Z∗s > x− ε

)
+ dn + P

(
|T+

s − T ∗s | > ε
)

≤ P
(
Z∗s > x

)
+ Cε{log(p)}1/2 + dn + P

(
|T+

s − T ∗s | > ε
)

≤ P
(
Z+
s > x|Xn

)
+ Cε{log(p)}1/2 + dn + d̂n + Cp exp{−c(ε/t)2}+ P{E0(t)c}.

A similar argument leads to the reverse inequality, which together the previous display implies by taking

ε = Ct{log(pn)}1/2 that

sup
x∈R

∣∣P(T+
s ≤ x

)
− P

(
Z+
s ≤ x|Xn

)∣∣ ≤ dn + d̂n + C
{
t log(pn) + n−1

}
+ P{E0(t)c}, (B.27)

where dn and d̂n are as in (B.21) and (B.26), respectively.
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In the case where condition (M1) holds, by (i) in Lemma 3, taking t � ν24 n
−1/2{log(pn)}1/2 +

ν2r ϑ
2/(r+2)
n,p + ν2r ϑ

2/r
n,p log(p) in (B.27) yields that P{E0(t)c} ≤ C{n−1 + ϑ

2/(r+2)
n,p }. Substituting this into

(B.27) proves the first assertion of the proposition in view of (A.4).

Finally, when condition (M2) holds, (ii) in Lemma 3 implies by taking t � n−1/2{log(pn)}1/2 +

n−1{log(pn)}2/γ in (B.27) that P{E0(t)c} ≤ Cn−1. Together with (A.5) and (B.27), this completes the

proof of the second assertion of the proposition.

B.2 Proof of Theorem 1

We now prove Theorem 1. As before, we only give the proof for the test that is based on the studentized

statistic. For α ∈ (0, 1) given, recall that cv(I)
s,α is the conditional (1−α)-quantile of W(I)

s ∼ N(0, R̂1) given

Xn = {Xi}ni=1. Then it follows from (i), Proposition 1 and Lemma 3 that, under condition (M1),∣∣∣P
H

(I)
0

{
Ψ(I)

s,α = 1
}
− P

(
|W(I)

s |∞ > cv(I)
s,α|Xn

)∣∣∣ P−→ 0,

as n→∞. Applying Theorem 3 in Chernozhukov, Chetverikov and Kato (2015) and Comment 5 after it

to |W(I)
s |∞ implies by (??) that

α ≥ P
(
|W(I)

s |∞ > cv(I)
s,α|Xn

)
≥ P

(
|W(I)

s |∞ > cv(I)
s,α − n−1|Xn

)
− P

(
cv(I)

s,α − n−1 ≤ |W(I)
s |∞ ≤ cv(I)

s,α|Xn
)

≥ α− Cn−1E
(
|W(I)

s |∞|Xn
)
≥ α− Cn−1{log(p)}1/2.

The last two displays jointly complete the proof of the theorem.

B.3 Proof of Theorem 2

As in the proof of Proposition 1, we start with Ts = T (I)
s . A standard result on Gaussian maximum yields

E
(
|W(I)

s |∞|Xn
)
≤ {2 log(p)}1/2 + {2 log(p)}−1/2 ≤ [1 + {2 log(p)}−1]{2 log(p)}1/2, (B.28)

where Xn = {Xi}ni=1. The following fundamental result (Borell, 1975) shows the concentration of |W(I)
s |∞

around its mean E(|W(I)
s |∞|Xn) that for every u > 0,

P
{
|W(I)

s |∞ ≥ E
(
|W(I)

s |∞|Xn
)

+ u
∣∣Xn} ≤ exp(−u2/2)
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Together with (B.28), this implies

cv(I)
s,α ≤ [1 + {2 log(p)}−1]

√
2 log(p) +

√
2 log(1/α). (B.29)

Next, recall that Ts = max1≤k≤p max
(√
nX̄k/σ̂1k,−

√
nX̄k/σ̂1k

)
, and let E0(t) be as in (B.24) for some

0 < t ≤ 1
2 . Set k0 = arg max1≤k≤p |µ1k|/σ1k, and assume without loss of generality that µ1k0 > 0. Then,

on the event E0(t),

Ts ≥
√
nX̄k0

σ̂1k0
=

√
n(X̄k0 − µ1k0)

σ̂1k0
+

√
nµ1k0
σ̂1k0

≥
√
n(X̄k0 − µ1k0)

σ̂1k0
+ (1 + t)−1

√
nµ1k0
σ1k0

.

By condition (M1) with p = O(nr/2−1−δ), we have ϑn,p = O(n−δ). This, together wiht Lemma 3

implies by taking t � n−2δ/(r+2) that P{E0(t)c} ≤ C{n−1 + n−2δ/(r+2)}. Further, choose u = un,p in such

a way that (1 + t)
[
1 + {log(p)}−1 + u

]
= 1 + εn, for εn > 0 satisfying that εn → 0 and εn

√
log(p) → ∞.

Consequently,

max
1≤k≤p

√
n|µ1k|
σ1k

≥ (1 + t)
[
1 + {log(p)}−1 + u

]
λ(p, α),

where λ(p, α) is as in Theorem 2. The last display together with Lemma 3 yields, as n, p→∞,

P
(
Ts > cv(I)

s,α

)
≥ P

(
T+
s > [1 + {log(p)}−1]λ(p, α)

)
≥ P

(
T+
s > [1 + {log(p)}−1]λ(p, α), E0(t)

)
≥ 1− P

{√
n(X̄k0 − µ1k0) < −uλ(p, α)σ̂1k0

}
− P

{
E0(t)c

}
≥ 1− n−1 − C exp{−cu2λ2(p, α)} − P

{
E0(t)c

}
≥ 1− n−1 − C exp{−cu2 log(p)} − P

{
E0(t)c}

→1.

(B.30)

Under condition (M2), taking t � n−1/2{log(pn)}1/2+n−1{log(pn)}2/γ instead gives P{E0(t)c} ≤ Cn−1.
Then the conclusion follows directly from (B.29) and (B.30).

Next we consider the statistic Tns = T (I)
ns without studentization. Analogously to (B.28) and the

concentration inequality after it, now we have for W(I)
ns ,

E
(
|W(I)

ns |∞
∣∣Xn) ≤ max

1≤k≤p
σ̂1k · [1 + {2 log(p)}−1]{2 log(p)}1/2

and for every u > 0,

P
{
|W(I)

ns |∞ ≥ E
(
|W(I)

ns |∞|Xn
)

+ u
∣∣Xn} ≤ exp

(
− u2

2 max1≤k≤p σ̂
2
1k

)
,
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The last two displays joint imply that on the event E0(t),

cv(I)
ns,α ≤ (1 + t) max

1≤k≤p
σ1k

(
[1 + {2 log(p)}−1]{2 log(p)}1/2 + {2 log(1/α)}1/2

)
. (B.31)

Following the same argument that leads to (B.30), it suffices to estimate the probability that P{
√
n(X̄k−

µ1k) > y} for y > 0. Assuming the uniform boundedness of fourth moments, put X̂ik = (Xik−µ1k)I{|Xik−
µ1k| ≤ σ1k

√
n}, such that |EX̂ik − µ1k| ≤ σ1kν44 n−3/2. Then it follows from Bernstein’s inequality that for

y > 2σ1kν
4
4 n
−1,

P

{
1√
n

n∑
i=1

(Xik − µ1k) > y

}

≤ P

{
1√
n

n∑
i=1

(
X̂ik − EX̂ik

)
>
y

2

}
+ n max

1≤i≤n
P
(
|Xik − µ1k| > σ1k

√
n
)

≤ exp

{
− 1

C
min

(
y2

σ21k
,
y

σ1k

)}
+ ν44 n

−1.

The rest of the proof is similar to that for T (I)
s and thus is omitted. The proof of Theorem 2 is then

complete.

C Proof of the asymptotic null properties: two-sample case

C.1 Proof of Theorem 3

Recall that n = min(n,m) and λ = n/m. The following result extends Proposition 1 and provides a non-

asymptotic error bound between the distribution of the two-sample test statistic and that of its Gaussian

analogue under the null hypothesis. Throughout the following, we write Xn = {Xi}ni=1 and Ym = {Yj}mj=1.

Proposition 2. Let ν ∈ {ns, s}, Θ(II)
ns = ‖Σ̃1,2 −Σ1,2‖∞ and Θ(II)

s = ‖R̃1,2 −R1,2‖∞. The estimators Σ̃1

and Σ̃2 of Σ1 and Σ2, respectively, are such that diag (Σ̃1) = diag (Σ̂1) and diag (Σ̃2) = diag (Σ̂2).

(i) Assume that (M1) holds. Then under H (II)

0 ,

sup
x≥0

∣∣P{T (II)
ν > x

}
− P

{
|W(II)

ν |∞ > x|Xn,Ym
}∣∣

≤ C1

[
(Θ(II)

ν )1/3{log(pn)}2/3 + n−1/8{log(pn)}7/8 + ϑ1/(r+1)
n,p {log(pn)}3/2

]
for ϑn,p as in (A.2).
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(ii) Assume that (M2) holds. Then under H (II)

0 ,

sup
x≥0

∣∣P{T (II)
ν > x

}
− P

{
|W(II)

ν |∞ > x|Xn,Ym
}∣∣

≤ C2

[
(Θ(II)

ν )1/3{log(pn)}2/3 + n−1/8{log(pn)}7/8 + n−1/2{log(pn)}3/2+1/γ
]
.

The constants C1, C2 > 0 and independent of n,m, p, r and γ.

As a direct consequence of Proposition 2, the proof for the validity of the two-sample tests based on

the statistics T (II)
ns and T (II)

s is almost identical to that of Theorem 1, and hence is omitted.

Proof of Proposition 2. The basic idea is essentially in line with that for proving Proposition 1, and we

shall only focus on the studentized test statistic Ts = T (II)
s with slight abuse of notation. First, define a

pooled sequence of random vectors {ξi = (ξi1, . . . , ξip)
′}Ni=1 as follows:

ξik =

{
Xik − µ1k, 1 ≤ i ≤ n,
−λ(Yi−n,k − µ2k), n+ 1 ≤ i ≤ N,

for N = n+m and λ = n/m as specified in Section 2. It is easy to see that Eξi = 0 and

E(ξiξ
′
i) =

{
Σ1, 1 ≤ i ≤ n,
λ2Σ2, n+ 1 ≤ i ≤ N.

Moreover, define weighted versions of ξi:

ξ̃i = (ξ̃i1, . . . , ξ̃ip)
′ = D−1/2ξi and ξ̂i = (ξ̂i1, . . . , ξ̂ip)

′ = D̂−1/2ξi,

where D = diag(s21, . . . , s
2
p) and D̂ = diag(ŝ21, . . . , ŝ

2
p) with

s2k =
n

N

(
σ21k + λσ22k

)
and ŝ2k =

n

N

(
σ̂21k + λσ̂22k

)
. (C.32)

In the above notation, we have under H (II)

0 , Ts = T (II)
s = N−1/2 max1≤k≤p |

∑N
i=1 ξ̂ik|. According to the

discussions below (B.18), it is sufficient to focus on on the following statistic:

T+
s = max

1≤k≤p
N−1/2

N∑
i=1

ξ̂ik.

In the definition of T+
s , replacing the variance estimates ŝ2k with their population analogues leads to

T ∗s = N−1/2 max1≤k≤p
∑N

i=1 ξ̃ik, satisfying

∣∣T+
s − T ∗s

∣∣ ≤ max
1≤k≤p

∣∣∣∣ ŝksk − 1

∣∣∣∣√n ∣∣∣D̂−1/21,2 (µ̂1 − µ̂2)
∣∣∣
∞
,
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where D̂1,2 = diag (Σ̂1 + λΣ̂2). For 0 < t ≤ 1
2 , define the subset

En,m(t) =

{
max
1≤k≤p

∣∣∣∣ σ̂2νkσ2νk
− 1

∣∣∣∣ ≤ t, ν = 1, 2

}
. (C.33)

On this event, we have 1 − t ≤ (ŝk/sk)
2 ≤ 1 + t for all k = 1, . . . , p. By (C.32), we apply the inequality

1 + 1
2u−

1
2u

2 ≤ (1 + u)1/2 ≤ 1 + 1
2u that holds for all u ≥ −1 to obtain

En,m(t) ⊆
{

max
1≤k≤p

∣∣∣∣ ŝksk − 1

∣∣∣∣ ≤ t(1 + t)

2

}
.

Next, let {(Gi1, . . . , Gip)′}Ni=1 be independent centred Gaussian random vectors with the same covariance

matrix as ξ̃i, and define

Z∗s = max
1≤k≤p

N−1/2
N∑
i=1

Gik. (C.34)

Observe that for each k, N−1
∑N

i=1 Eξ̃2ik = 1. Hence we use Lemma 1 to bound the Kolmogorov distance

between T ∗s and Z∗s , i.e.

dn,m = sup
x∈R

∣∣P(T ∗s ≤ x)− P
(
Z∗s ≤ x

)∣∣,
and the anti-concentration inequality (B.22) holds for Z∗s given in (C.34).

Conditional on Xn and Ym, the p-vector W(II)
s = (W (II)

s,1 , . . . ,W
(II)
s,p )′ is centred Gaussian with covariance

matrix R̃1,2 = D̃
−1/2
1,2 (Σ̃1 + λΣ̃2)D̃

−1/2
1,2 , where D̃1,2 = diag (Σ̃1 + λΣ̃2) = diag (Σ̂1 + λΣ̂2) = D̂1,2. Note

that Z∗s given in (C.34) is the maximum of the p coordinates of a centred Gaussian random vector with

covariance matrix R1,2. Once again, using Lemma 2 gives

d̂n,m = sup
x∈R

∣∣P(Z∗s ≤ x)− P
(
Z+
s ≤ x|Xn,Ym

)∣∣ ≤ CΘ1/3
s {1 + log(p/Θs)}2/3,

where Z+
s = max1≤k≤pW

(II)

s,k and Θs = Θ(II)
s = |R̃1,2 −R1,2|∞.

The rest of the proof is similar to the one-sample case and thus is omitted.

C.2 Proof of Theorem 4

To begin with, we note that inequality (B.29) holds for cv(II)
s,α, the conditional (1 − α)-quantile of W(II)

s .

Define k0 = arg max1≤k≤p σ
−1
k |µ1k −µ2k| with σ2k = σ21k/n+ σ22k/m. Put σ̂2k = σ̂21k/n+ σ̂22k/m, and assume
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without loss of generality that µ1k0 > µ2k0 . Then on the event En,m(t) given in (C.33) for 0 < t ≤ 1
2 ,

T (II)
s ≥ (X̄k0 − µ1k0)− (Ȳk0 − µ2k0)

σ̂k0
+
µ1k0 − µ2k0

σ̂k0

≥ (X̄k0 − µ1k0)− (Ȳk0 − µ2k0)

σ̂k0
+ (1 + t/2)−1

µ1k0 − µ2k0
σk0

.

A chain of inequalities that are similar to those in (B.30) hold for P
{
T (II)
s > cv(II)

s,α

}
, and thus the conclusion

in (ii) follows.

For the non-studentized statistic T (II)
ns , an argument similar to that leading to (B.31) implies cv(II)

ns,α ≤
[1 + {log(p)}−1]

√
nλ(p, α) ·max1≤k≤p σ̂k. The rest of the proof is almost immediate.

D Proof of Theorem 5

Let % =
√

2 +
√
2

2 log p +
√

2 log(1/α)
log p . First we prove the limiting null property for Ψf,(I)

s,α . To begin with, define

the event E1n = {Ŝ1 = {1, . . . , p}} and observe that under H (I)

0 , P
H

(I)
0

(
Ec1n
)
≤ P

H
(I)
0

{
T (I)
s > %

√
log(p)

}
.

This, together with (B.29) and Theorem 1, implies lim supn→∞ P
H

(I)
0

(
Ec1n
)
≤ α. On the other hand, it is

easy to see that Ψf,(I)
ν,α = 0 on the event E1n for ν ∈ {s,ns}. Together with the inequality P

H
(I)
0

{
Ψf,(I)
ν,α =

1
}
≤ P

H
(I)
0

{
Ψf,(I)
ν,α = 1, E1n

}
+ P

H
(I)
0

(
Ec1n
)
, this completes the proof of (i).

Next we study the power of Ψf,(I)
s,α under H (I)

1 . Let T̂ (I)
s = max

k/∈Ŝ1
√
n|X̄k|/σ̂1k and define the event

E2n =
{
T (I)
s = T̂ (I)

s

}
. By (B.29) and (B.30), we have limn→∞ P

H
(I)
1

{
T (I)
s > %

√
log(p)

}
→ 1, which further

implies

lim
n→∞

P
H

(I)
1

(
Ec2n
)

= 0. (D.35)

Further, since Ŝ1 ⊆ {1, . . . , p}, P
{

max
k/∈Ŝ1 |W

(I)

s,k| > cv(I)
s,α

}
≤ P

{
|W(I)

s |∞ > cv(I)
s,α

}
≤ α, and hence

cv(I)
s,α(Ŝ1) ≤ cv(I)

s,α. Together with (D.35), this leads to

P
H

(I)
1

{
Ψf,(I)

s,α = 1
}
≥ P

H
(I)
1

{
Ψf,(I)

s,α = 1, E2n
}

≥ P
H

(I)
1

{
T (I)
s > cv(I)

s,α, E2n
}

≥ P
H

(I)
1

{
T (I)
s > cv(I)

s,α

}
− P

H
(I)
1

(
Ec2n
)

→ 1

as n → ∞. Similarly, we can construct the result for its non-studentized analogue Ψf,(I)
ns,α. Hence, we

completes the proof of Theorem 5.
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E Proof of Theorem 6

The proof of Theorem 6 is almost identical to that of Theorem 5, and therefore is omitted.

F More simulation results

F.1 Additional Models

In the section, we introduce two addtional models for both one-sample and two-sample cases, which will

be considered in simulations in the following sections.

One-Sample models:

(a) Model 4(I) (Block diagonal Σ1): σ1,kk are independent and identically drawn from Unif(2, 3), σ1,k` =

0.7 for 10(t− 1) + 1 ≤ k 6= ` ≤ 10t, where t = 1, . . . , bp/10c, and σ1,k` = 0 otherwise.

(b) Model 5(I) (Moving average process with Beta distributed innovations): For i = 1, . . . , n and k =

1, . . . , p, we considered Xik = ρ1Zi,k + ρ2Zi,k+1 + · · ·+ ρpZi,k+p−1 +µk where ρ` are independent and

identically drawn from 0.6Unif(−1, 1) + 0.4δ0 for ` = 1, . . . , p, where δ0 is the point mass at 0 and

{Zi,k} are independent random variables with a common centered Beta(2, 1) distribution.

Two-samples models:

(a) Model 4(II) (Long range dependence): Let θ11, . . . , θ1p, θ21, . . . , θ2p be independent and identically

drawn from Unif(1, 2); for q = 1, 2, we took σq,kk = θqk and σq,k` = ρα(|k − `|) for k 6= `, where

ρα(e) = 1
2{(e+ 1)2H + (e− 1)2H − 2e2H} with H = 0.9.

(b) Model 5(II) (Moving average process with Gamma distributed innovations): Generate Xik = ρ1,1Zi,k+

ρ1,2Zi,k+1 + · · ·+ ρ1,pZi,k+p−1 + µ1k and Yjk = ρ2,1Z̃j,k + ρ2,2Z̃j,k+1 + · · ·+ ρ2,pZ̃j,k+p−1 + µ2k, where

ρ1,` are i.i.d. drawn from 0.6Unif(−1, 1) + 0.4δ0 and ρ2,` are i.i.d. drawn from 0.8Unif(−1, 1) + 0.2δ0

for ` = 1, . . . , p, where δ0 is the point mass at 0, {Zi,k} and {Z̃j,k} are independent random variables

with a common centered Gamma(1, 4) and Gamma(4, 1) distributions, respectively.

F.2 More results on empirical size

In this subsection, we report the empirical size (Table S1 to S3) of the proposed tests at the 0.05 nominal

level the for p = 120, 360 and 1080, along with those of the competing tests. Table S1 and S2 presents the

empirical size under the additional models in Section F.1 and Table S3 presents the empirical size with

larger sample size (n = 200).
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Model 4(I) Model 5(I)

tests / p 120 360 1080 120 360 1080

n = 40

Ψns,α 0.035 0.033 0.020 0.044 0.023 0.023

Ψs,α 0.094 0.114 0.216 0.094 0.190 0.252

Ψf
ns,α 0.041 0.045 0.030 0.055 0.030 0.032

Ψf
s,α 0.093 0.152 0.226 0.095 0.205 0.305

ZCX 1 1 1 0.389 1 1

HC 0.128 0.240 0.315 0.142 0.232 0.329

n = 80

Ψns,α 0.043 0.032 0.025 0.034 0.039 0.036

Ψs,α 0.073 0.092 0.091 0.083 0.090 0.125

Ψf
ns,α 0.053 0.043 0.034 0.046 0.054 0.045

Ψf
s,α 0.088 0.091 0.106 0.091 0.098 0.157

ZCX 1 1 1 0.593 1 1

HC 0.082 0.127 0.128 0.072 0.119 0.139

Table S1: Empirical sizes of the proposed tests (non-studentized without screening Ψns,α, studentized

without screening Ψs,α, non-studentized with screening Ψf
ns,α, and studenzied with screening Ψf

s,α) for
the one-sample problem (1.1), along with those of the tests by Zhong, Chen and Xu (2013) (ZCX), and
Donoho and Jin (2004) (HC) at 5% nominal significance. Models with Gaussian data and block diagonal,
and the moving average model with Beta distributed innovations are considered when n = 40, 80 and
p = 120, 360, 1080.

F.3 Empirical power of one-sample case

In this subsection, we report the empirical powers (Figures S1 to S5) of the proposed tests against different

alternatives in Model 1(I) to Model 5(I) for p = 120, 360, along with those of the test by Zhong, Chen

and Xu (2013) (ZCX). We also show the power performance (Figure S6) for p = 1080 with the additional

one-sample models in Section F.1 .

F.4 Empirical power of two-sample case

In this subsection, we report the empirical powers of the proposed tests (Figures S7 to S11) against

different alternatives in Model 1(II) to Model 5(II) for p = 120, 360, along with those of the tests by Chen

and Qin (2010) (CQ), Cai, Liu and Xia (2014) (CLX) at 5% nominal significance. We also show the power

performance (Figure S12) for p = 1080 with the additional two-sample models in Section F.1.
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Model 4(II) Model 5(II)

tests / p 120 360 1080 120 360 1080

(n,m) = (40, 40)

Ψns,α 0.051 0.036 0.030 0.034 0.030 0.032

Ψs,α 0.096 0.095 0.130 0.094 0.141 0.158

Ψf
ns,α 0.063 0.045 0.044 0.044 0.038 0.045

Ψf
s,α 0.092 0.093 0.160 0.092 0.174 0.180

HC 0.086 0.157 0.191 0.108 0.191 0.219

CQ 0.046 0.059 0.051 0.046 0.047 0.051

CLX 0.085 0.093 0.116 0.081 0.127 0.157

(n,m) = (80, 80)

Ψns,α 0.042 0.038 0.049 0.041 0.036 0.035

Ψs,α 0.064 0.071 0.090 0.070 0.090 0.097

Ψf
ns,α 0.052 0.044 0.063 0.046 0.056 0.045

Ψf
s,α 0.073 0.084 0.093 0.086 0.092 0.099

HC 0.066 0.083 0.115 0.065 0.100 0.109

CQ 0.038 0.044 0.049 0.051 0.053 0.053

CLX 0.058 0.060 0.083 0.059 0.087 0.098

Table S2: Empirical sizes of the proposed tests (non-studentized without screening Ψns,α, studentized

without screening Ψs,α, non-studentized with screening Ψf
ns,α, and studenzied with screening Ψf

s,α) for the
two-sample problem (1.2), along with those of the tests by Donoho and Jin (2004) (HC), Chen and Qin
(2010) (CQ), and Cai, Liu and Xia (2014) (CLX) at 5% nominal significance. Models with Gaussian data
and long range dependence covariance matrices, and the moving average processes model with Gamma
distributed innovations are considered when n = m = 40, 80 and p = 120, 360, 1080.

F.5 Numerical experiments on perfect correlated variables

We conducted extra numerical experiments to demonstrate that the proposed tests can be applied to

perfectly correlated variables. We have the results summarized in Tables S4 and S5. The model under

considerations are as following, where the settings are similar to Section 4.

(i) (One-sample problem): We considered independent random variables Xi = ΓZi with ΓΓ′ = Σ1 where

Zi consists of p independent centred Gamma(4, 1) random variables. For the covariance matrix Σ1 =

(σ1,k`)1≤k,`≤p, let σ1,kk = 1; randomly drew an index set J = {s1, · · · , sbp/20c} ⊂ {1, . . . , bp/10c}, let

σ1,k` = 1 for 10(t−1)+1 ≤ k 6= ` ≤ 10t given t ∈ J and let σ1,k` = 0.7 for 10(t−1)+1 ≤ k 6= ` ≤ 10t

when t ∈ {1, . . . , bp/10c} \ J ; and σ1,k` = 0 otherwise.
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Model 1(I)/ 1(II) Model 4(I)/ 2(II)

tests / p 120 360 1080 120 360 1080

One Sample Tests

Ψns,α 0.051 0.045 0.046 0.062 0.057 0.051
Ψs,α 0.071 0.077 0.082 0.079 0.085 0.084

Ψf
ns,α 0.038 0.031 0.039 0.051 0.045 0.043

Ψf
s,α 0.057 0.060 0.067 0.066 0.073 0.063

ZCX 0.077 0.068 0.084 1 1 1

[0.5ex] HC 0.045 0.063 0.075 0.056 0.080 0.071

Two Sample Tests

Ψns,α 0.061 0.067 0.066 0.053 0.072 0.056
Ψs,α 0.076 0.079 0.71 0.075 0.073 0.077

Ψf
ns,α 0.051 0.049 0.049 0.042 0.052 0.045

Ψf
s,α 0.063 0.067 0.058 0.063 0.063 0.065

HC 0.054 0.073 0.061 0.047 0.065 0.062
CQ 0.056 0.043 0.047 0.055 0.050 0.062

CLX 0.078 0.103 0.117 0.055 0.067 0.064

Table S3: Empirical sizes of the proposed tests (non-studentized without screening Ψns,α, studentized

without screening Ψs,α, non-studentized with screening Ψf
ns,α, and studenzied with screening Ψf

s,α) for
the one-sample and two-sample problems, along with those of the tests by Zhong, Chen and Xu (2013)
(ZCX), Donoho and Jin (2004) (HC), Chen and Qin (2010) (CQ), and Cai, Liu and Xia (2014) (CLX) at
5% nominal significance. Models with block diagonal and non-sparse covariance matrices are considered,
where n = 200 or (n,m) = (200, 200) and p = 120, 360, 1080.

(ii) (Two-sample problem): We considered independent and identically distributed p-variate random

vectors Xi ∼ tω1(µ1,Σ1),Yj ∼ tω2(µ2,Σ2) for i = 1, · · · , n and j = 1, · · · ,m, where tω1(µ1,Σ1)

and tω2(µ2,Σ2) are the non-central multivariate t-distributions with non-central parameters µ1,µ2,

degree freedoms ω1 = 5, ω2 = 7. For the covariance matrices Σ1 = (σ1,k`)1≤k,`≤p and Σ2 =

(σ2,k`)1≤k,`≤p, we randomly drew an index set J = {s1, · · · , sbp/20c} ⊂ {1, . . . , bp/10c}, and let

σ1,kk = σ2,kk = 1, let σ1,k` = σ2,k` = 1 for 10(t− 1) + 1 ≤ k 6= ` ≤ 10t given t ∈ J and let σ1,k` = 0.7

and σ2,k` = 0.85 for 10(t− 1) + 1 ≤ k 6= ` ≤ 10t when t ∈ {1, . . . , bp/10c} \ J , and σ1,k` = σ2,k` = 0

otherwise.

The alternatives for examining the empirical powers were similar to those in Sections 4.1 and 4.2. That

is, under the alternative, there were bkprc coordinates presenting signals whose strengths are {2βσ1,`` log(p)/n}1/2

for the one-sample problem and {2βσ`` log(p)(1/n+1/m)}1/2 with σ`` the `th diagonal entry of the pooled

covariance Σ1,2. Particularly, we considered four alternatives: r = 0 (with k = 8) with β = 0.2, 0.6 and

β = 0.01 with r = 0.5, 0.85. From these simulation studies, we observe that the proposed tests are ap-



SUPPLEMENTARY MATERIAL 19

plicable to variables with perfect correlations and the empirical performance are consistent with results

reported in Section 4.

p Ψns,α Ψs,α Ψf
ns,α Ψf

s,α

Size β = 0

120 0.048 0.054 0.058 0.100

360 0.038 0.044 0.086 0.134

1080 0.036 0.048 0.098 0.152

Power

β = 0.01, r = 0.85

120 0.056 0.102 0.152 0.214

360 0.038 0.088 0.116 0.248

1080 0.060 0.150 0.146 0.320

β = 0.01, r = 0.5

120 0.044 0.088 0.148 0.241

360 0.050 0.108 0.136 0.234

1080 0.024 0.148 0.122 0.334

β = 0.2, r = 0 (k = 8)

120 0.090 0.118 0.214 0.272

360 0.084 0.136 0.206 0.288

1080 0.046 0.164 0.178 0.400

β = 0.6, r = 0 (k = 8)

120 0.292 0.330 0.506 0.530

360 0.242 0.308 0.470 0.530

1080 0.186 0.278 0.416 0.518

Table S4: Empirical performance of the proposed tests (non-studentized without screening Ψns,α, studen-

tized without screening Ψs,α, non-studentized with screening Ψf
ns,α, and studenzied with screening Ψf

s,α) for
perfectly correlated variables in one-sample problems H (I)

0 : µ1 = 0 versus H (I)

1 : µ1 6= 0. The empirical
powers are against the alternatives with different levels of the signal strength (β) and sparsity (1 − r) at
5% nominal significance. In the simulation, n = 80.

F.6 Numerical experiments on utilizing regularized covariance estimations

Though the proposed tests can directly employ the sample covariance matrices without any structural

assumptions, they may still benefit from using regularized covariance estimations when the covariance

matrices do have special structures such as banding or sparsity. We illustrate this by conducting two small

simulations, which are displayed in Tables S6 and S7, where we considered the Model(I) with banding

structures. It can be conclude from the results that using the banding estimator for the covariance matrices

in the proposed tests will increase the performace of empirical sizes.
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p Ψns,α Ψs,α Ψf
ns,α Ψf

s,α

Size β = 0

120 0.040 0.070 0.052 0.078

360 0.040 0.050 0.048 0.086

1080 0.042 0.090 0.060 0.094

Power

β = 0.01, r = 0.85
120 0.056 0.094 0.074 0.088

360 0.042 0.084 0.062 0.070

β = 0.01, r = 0.5
120 0.060 0.082 0.052 0.060

360 0.052 0.070 0.046 0.060

β = 0.2, r = 0 (k = 8)
120 0.092 0.128 0.140 0.198

360 0.084 0.114 0.132 0.182

β = 0.6, r = 0 (k = 8)
120 0.472 0.564 0.536 0.588

360 0.416 0.520 0.514 0.548

Table S5: Empirical performance of the proposed tests (non-studentized without screening Ψns,α, studen-

tized without screening Ψs,α, non-studentized with screening Ψf
ns,α, and studenzied with screening Ψf

s,α)
for perfectly correlated variables in two-sample problems H (II)

0 : µ1 = µ2 versus H (II)

1 : µ1 6= µ2. The
empirical powers are against the alternatives with different levels of the signal strength (β) and sparsity
(1− r) at 5% nominal significance. In the simulation, n = m = 80.

Non-Banding Banding

tests / p 400 800 400 800

n = 40

Ψns,α 0.022 0.034 0.024 0.034
Ψs,α 0.218 0.300 0.168 0.186

Ψf
ns,α 0.010 0.020 0.020 0.018

Ψf
s,α 0.178 0.264 0.146 0.156

n = 80

Ψns,α 0.054 0.038 0.046 0.042
Ψs,α 0.086 0.130 0.074 0.080

Ψf
ns,α 0.042 0.028 0.044 0.036

Ψf
s,α 0.072 0.108 0.064 0.056

Table S6: Empirical sizes of the proposed tests (non-studentized without screening Ψns,α, studentized

without screening Ψs,α, non-studentized with screening Ψf
ns,α, and studenzied with screening Ψf

s,α) for the
one-sample problems under the Model 1(I) (sparse covariance) with sample covariance matrices and its
banding estimates, where n = 40, 80 and p = 400, 800.
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Non-Banding Banding

tests / p 120 360 1080 120 360 1080

Ψns,α 0.051 0.045 0.046 0.048 0.052 0.0480
Ψs,α 0.071 0.077 0.082 0.066 0.074 0.0680

Ψf
ns,α 0.038 0.031 0.039 0.040 0.040 0.044

Ψf
s,α 0.057 0.060 0.067 0.052 0.054 0.058

Table S7: Empirical sizes of the proposed tests (non-studentized without screening Ψns,α, studentized

without screening Ψs,α, non-studentized with screening Ψf
ns,α, and studenzied with screening Ψf

s,α) for the
one-sample problems under the Model 1(I) (sparse covariance) with sample covariance matrices and its
banding estimates, where n = 200 and p = 120, 360, 1080. at 5% nominal significance.

G More results on real data analysis

In the following tables, for the ALL data, we display the top 15 gene-sets in the CC and MF categories that

were identified to te the diseases associated by our propose two-step test without studentization, Ψf
ns,α,

but not by the test in Chen and Qin (2010).

GO ID GO term description

GO:0000323 lytic vacuole
GO:0005758 mitochondrial intermembrane space
GO:0009295 nucleoid
GO:0030863 cortical cytoskeleton
GO:0032991 macromolecular complex
GO:1990234 transferase complex
GO:0005765 lysosomal membrane
GO:0009898 cytoplasmic side of plasma membrane
GO:0016529 sarcoplasmic reticulum
GO:0044439 peroxisomal part
GO:0048770 pigment granule
GO:0045178 basal part of cell
GO:0005768 endosome
GO:0009986 cell surface
GO:0031907 microbody lumen

Table S8: Top 15 gene-sets in the CC category that were identified to be BCR/ABL associated by the

proposed two-step test, Ψf
ns,α, but not by the test by Chen and Qin (2010). The significance level was at

0.05 and the FDR was controlled at 0.015.
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Figure S1: Empirical powers of the proposed tests (non-studentized without screening Ψns,α, studentized

with screening Ψs,α, non-studentized with screening Ψf
ns,α, and studenzied with screening Ψf

s,α) against
alternatives with different levels of signal strength (β) and sparsity (1 − r) for the one-sample problem
(1.1), along with the power of the test by Zhong, Chen and Xu (2013) (ZCX) at 5% nominal significance
for the Gaussian data and bandable covariance matrices in Model 1(I) when n = 80 and p = 120, 360.
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Figure S2: Empirical powers of the proposed tests (non-studentized without screening Ψns,α, studentized

without screening Ψs,α, non-studentized with screening Ψf
ns,α, and studenzied with screening Ψf

s,α) against
alternatives with different levels of the signal strength (β) and sparsity (1− r) for the one-sample problem
(1.1) at 5% nominal significance for the Gaussian data and long range dependence covariance matrices in
Model 2(I). For simulations when n = 80 and p = 120, 360.
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Figure S3: Empirical powers of the proposed tests (non-studentized without screening Ψns,α, studentized

without screening Ψs,α, non-studentized with screening Ψf
ns,α, and studenzied with screening Ψf

s,α) against
alternatives with different levels of the signal strength (β) and sparsity (1 − r) for the one-sample prob-
lem (1.1) at 5% nominal significance for the autoregressive process model, Model 3(I), with t-distributed
innovations when n = 80 and p = 120, 360.
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Figure S4: Empirical powers of the proposed tests (non-studentized without screening Ψns,α, studentized

with screening Ψs,α, non-studentized with screening Ψf
ns,α, and studenzied with screening Ψf

s,α) against
alternatives with different levels of the signal strength (β) and sparsity (1− r) for the one-sample problem
(1.1), along with the power of the test by Zhong, Chen and Xu (2013) (ZCX) at 5% nominal significance
for the Gaussian data and bandable covariance matrices in Model 4(I) when n = 80 and p = 120, 360.
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Figure S5: Empirical powers of the proposed tests (non-studentized without screening Ψns,α, studentized

without screening Ψs,α, non-studentized with screening Ψf
ns,α, and studenzied with screening Ψf

s,α) against
alternatives with different levels of the signal strength (β) and sparsity (1− r) for the one-sample problem
(1.1) at 5% nominal significance for the moving average process with Beta distributed innovations in Model
5(I) when n = 80 and p = 120, 360.
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f02

(a) Model 2(I) (b) Model5(I)

Figure S6: Empirical powers of the proposed tests (non-studentized without screening Ψns,α, studentized

without screening Ψs,α, non-studentized with screening Ψf
ns,α, and studenzied with screening Ψf

s,α) against
alternatives with different levels of the signal strength (β) and sparsity (1− r) for the one-sample problem
(1.1) when n = 80 and p = 1080 at 5% nominal significance for the Gaussian data and block diagonal
covariance in Model 4(I)( column (a)), and the moving average model with Beta distributed innovations in
Model 5(I) (column (b)).
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Figure S7: Empirical powers of the proposed tests (non-studentized without screening Ψns,α, studentized

without screening Ψs,α, non-studentized with screening Ψf
ns,α, and studenzied with screening Ψf

s,α) against
the alternatives with different levels of the signal strength (β) and sparsity (1 − r) for the two-sample
problem (1.2), along of those of the tests by Chen and Qin (2010) (CQ) and Cai, Liu and Xia (2014)
(CLX) at 5% nominal significance for the Gaussian data and block diagonal covariances in Model 1(II)

when n = m = 80 and p = 120, 360.
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Figure S8: Empirical powers of the proposed tests (non-studentized without screening Ψns,α, studentized

with screening Ψs,α, non-studentized with screening Ψf
ns,α, and studenzied with screening Ψf

s,α) against
alternatives with different levels of the signal strength (β) and sparsity (1− r) for the two-sample problem
(1.2), along of those of the tests by Chen and Qin (2010) (CQ), Cai, Liu and Xia (2014) (CLX) and Delaigle,
Hall and Jin (2011) (HC2) at 5% nominal significance for the Gaussian data and non-sparse covariances
in Model 2(II) when n = m = 80 and p = 120, 360.
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Figure S9: Empirical powers of the proposed tests (non-studentized without screening Ψns,α, studentized

without screening Ψs,α, non-studentized with screening Ψf
ns,α, and studenzied with screening Ψf

s,α) against
alternatives with different levels of the signal strength (β) and sparsity (1− r) for the two-sample problem
(1.2), along of those of the test by Chen and Qin (2010) (CQ) at 5% nominal significance for the autore-
gressive process model, Model 3(II), with t-distributed innovations when n = m = 80 and p = 120, 360.
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Figure S10: Empirical powers of the proposed tests (non-studentized without screening Ψns,α, studentized

without screening Ψs,α, non-studentized with screening Ψf
ns,α, and studenzied with screening Ψf

s,α) against
alternatives with different levels of the signal strength (β) and sparsity (1− r) for the two-sample problem
(1.2), along of those of the tests by Chen and Qin (2010) (CQ) and Cai, Liu and Xia (2014) (CLX) at
5% nominal significance for the Gaussian data and long range dependence covariances in Model 4(II) when
n = m = 80 and p = 120, 360.
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Figure S11: Empirical powers of the proposed tests (non-studentized without screening Ψns,α, studentized

without screening Ψs,α, non-studentized with screening Ψf
ns,α, and studenzied with screening Ψf

s,α) against
alternatives with different levels of the signal strength (β) and sparsity (1− r) for the two-sample problem
(1.2), along of those of the tests by Chen and Qin (2010) (CQ) and Cai, Liu and Xia (2014) (CLX) at 5%
nominal significance for the moving average process with Gamma distributed innovations in Model 5(II)

when n = m = 80 and p = 120, 360.
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(a) Model 3(II) (b) Model 5(II)

Figure S12: Empirical powers of the proposed tests (non-studentized without screening Ψns,α, studentized

without screening Ψs,α, non-studentized with screening Ψf
ns,α, and studenzied with screening Ψf

s,α) against
alternatives with different levels of the signal strength (β) and sparsity (1− r) for the two-sample problem
(1.2) when n = 80 and p = 1080 at 5% nominal significance for the Gaussian data and long range
dependence covariance matrices in Model 4(II) (column (a)), and the moving average processes model with
Gamma distributed innovations in Model 5(II) (column (b)).
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