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Abstract. Leighton’s Graph Covering Theorem states that if two finite graphs have the
same universal covering tree, then they also have a common finite degree cover. Bass and
Kulkarni gave an alternative proof of this fact using tree lattices. We give an example
of two graphs that admit a common finite cover which can not be obtained using tree
lattice techniques. If two groups embed as finite index subgroups, we say they are co-
commensurable. Our example comes from an explicit commensuration that cannot be
induced by a co-commensuration. Next we state and prove a general theorem that gives
necessary and sufficient conditions for when a commensuration can be induced by a co-
commensuration. The developed machinery is then used to show that normal virtual
retracts are virtual direct summands, answering a question of Merladet and Minasyan.
In an appendix, applications to commensurating graphs of groups, biautomaticity, and
hereditary conjugacy separability are given.

1. Introduction

Leighton’s Graph Covering Theorem [Lei82] asserts that if two finite graphs have the
same universal covering tree then they admit a finite common covering space, answering a
question posed in [AG81]. Since, there have been various extensions of this result. There
have been three proof strategies: constructing a finite cover by solving an integer program-
ming problem (for example [Lei82, Woo21]), using tree lattice techniques (for example
[BK90]), or using groupoids (for example [She22]). The theorem has also been generalized
to decorated graphs and cube complexes [Woo21, She22, Woo23, She24]. In [Neu10] and
[She22] different strategies are compared.

There have also been negative results giving the limitation to generalization such as
[BS22] that states, for example, that if two finite graphs are covered by a common regu-
lar quasitree, this pair of coverings may not factor through a finite graph. Other “non-
Leighton” examples have been constructed using non-positively curved square complexes
[Wis96, BM00] and there has also been work in finding minimal examples [JW09, DK23,
DK25]. This paper is concerned with a different question:

Question 1.1. Given two finite graphs X1, X2 with the same universal covers, does the
the tree-lattice approach in [BK90] give all possible common finite covers of X1 and X2?

We will now describe our approach to resolving this question, while also giving previously
known results. Two groups G1, G2 are commensurable if they have a common finite index
subgroup (up to isomorphism). In particular, any pair of topological spaces (that admit
well-defined fundamental groups) that have a common finite degree covering space will
have commensurable fundamental groups.

One way to show that two groups are commensurable is to show that they both em-
bed as finite index subgroups in a common overgroup. This second property is dual to
commensurability and we call it co-commensurability. This is the basis of the approach
to Leighton’s Theorem in [BK90]: if X1, X2 are finite graphs with the common universal
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cover T then actions by deck transformations of Γ1 “ π1pX1q and Γ2 “ π1pX2q on T give
embeddings Γ1,Γ2 ď IsompT q. While there is no reason a-priori to expect Γ1,Γ2 to have
non-trivial intersection in IsompT q, it is shown [BK90, Theorem 4.7] that there is a discrete
subgroup Φ ď IsompT q and g1, g2 P IsompT q such that rΦ : Γgi

i s ă 8, i “ 1, 2. This in turn
implies rΓgi

i : Γg1
1 X Γg2

2 s ă 8, i “ 1, 2. Thus, any two such Γ1,Γ2 are co-commensurable
and a common finite cover is obtained by taking the quotient T {pΓg1

1 X Γg2
2 q. In [Neu10],

so-called fat graphs are used to give discrete common finite index overgroups.
Co-commensurability easily implies commensurability and it is natural to ask whether

the converse is true. It turns out that there are commensurable groups that cannot be
embedded as finite index subgroups of a common overgroup.

The most well-known examples are non-conjugate maximal uniform lattices Γ1,Γ2 ď

IsompHnq, i.e. fundamental groups of hyperbolic orbifolds that cannot properly cover
other orbifolds, that are commensurable in IsompHnq, i.e. rΓi : Γ1 X Γ2s ă 8, i “ 1, 2,
but, by definition of maximal, cannot be both be contained in a common finite index
discrete subgroup of IsompHnq. In other words, for any subgroup Γ1,Γ2 ď H ď IsompHnq

we have rH : Γis “ 8. This phenomenon can occur for so-called arithmetic lattices (see
[Mar91, MR03]).

Now if we were able to find an “abstract” overgroup Γ1,Γ2 ď K that contained Γ1,Γ2

as finite index overgroups, then a result of Tukia [Tuk86, Tuk94] and Mostow rigidity
[Mos68] (see also [DK18, Chapters 23-24] for a contemporary and unified account) imply
that K can actually be embedded (modulo a finite kernel) as a subgroup of IsompHnq (in
fact a uniform lattice) containing Γ1,Γ2 as proper finite index subgroups, contradicting
maximality of Γ1,Γ2 as uniform lattices.

Commensurability therefore does not imply co-commensurability. Examples of groups
that are commensurable but not co-commensurable show that the co-commensurability
relation is not transitive (any group is trivially co-commensurable with its finite index
subgroups).

While the question of (co-) commensurability within the class of free groups is easily
settled (all finite rank nonabelian free groups embed as finite index subgroups of F2), the
more subtle question of whether a specific embedding of a group H as a finite index sub-
group of two free groups F1, F2 can be induced by an embedding into a common overgroup
K, i.e. where we have a commutative diagram of inclusions as finite index subgroups

H

F1 F2

K

ě
ď

ď
ě

,

was still unknown. It turns out that a necessary condition is that H contains a normal
subgroup N that is itself simultaneously normal in both F1 and F2. This property in turn
implies that the associated amalgamated free product F1 ˚H F2 admits a virtually free quo-
tient and therefore also a finite quotient (see Lemma 2.3). The amalgamated free products
of free groups constructed in [Bha94] give examples of free groups that can not be induced
by a co-commensuration (see Corollary 2.4.) This example still doesn’t settle Question 1.1.
Using the more refined constructions in [Rat07], we are able to show that there is a finite
graph Z that covers graphs X1 and X2 such that the induced commensuration cannot be
induced by a co-commensuration (see Theorem 3.1) thus:

The answer to Question 1.1 is “no”.
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Question 1.1 was motivated by the author’s attempts to generalize the approach in
[BK90] to other contexts in order to create common finite covers. Being able to do so
has been a key step in recent quasi-isometric rigidity results of graphs of groups such
as [SW22, MSSW23]. For example, although the preprint [TT23] was withdrawn due to
critical gap in the main argument, the authors (apparently correctly) applied the method
of [BK90] to show that if two groups Γ1,Γ2 acted freely, combinatorially, and cocompactly
on a so-called churro-waffle space X (i.e. they are uniform lattices in AutpXq) then can
both be virtually embedded as finite index subgroups of a group ∆. On the other hand,
while Leighton’s Theorem for “graphs with fins” was proved in [Woo21] using a linear
programming and Haar measure approach, attempts to apply the method of [BK90] have
been unsuccessful to date. This negative answer to Question 1.1 gives some indication as
to why this is the case.

To answer Question 1.1, we rely on a simple condition to exclude co-commensuration and
at this point it is natural to ask if this necessary condition, i.e. having a simultaneously
finite index normal subgroup, is sufficient to construct a co-commensuration. It turns
out there is another less obvious but nonetheless easy and natural condition we call out-
finiteness that is an additional necessary condition (see Proposition 4.1). We then show
that this additional condition is actually sufficient to construct a co-commensuration (see
Theorem 4.9), which immediately gives:

Theorem A. A commensuration between groups G1 and G2 over a group H is induced by
a co-commensuration if and only if H contains a subgroup N that embeds in both G1 and
G2 as a normal subgroup and such that corresponding commensuration over N is out-finite.

Out-finiteness, which is defined in Section 4, is immediately satisfied if the group N in
the statement of Theorem A has finite outer automorphisms group. Thus, for example, if
Γ is a one-ended word hyperbolic group, by combining [Lev05, Theorem 1.4] and the main
result of [Bow98], we have if the Gromov boundary of Γ has no cutpairs, i.e. pairs of points
whose removal disconnect, then OutpΓq must be finite and Theorem A immediately gives.

Corollary 1.2. If Γ1,Γ2 are word hyperbolic groups with connected and cutpair-free Gro-
mov boundaries, then Γ1,Γ2 can be embedded as finite index subgroups of a common over-
group if and only if they have a common finite index normal subgroup.

We will also use our method to show that the non-trivial semidirect products Z2 ¸ D4

and Z2 ¸D6 cannot be embedded into a common finite index over group (see Proposition
4.4.) The argument we give is elementary.

Here is an additional application of the techniques in this paper communicated by Ashot
Minasyan. A subgroup H ď G is said to be a virtual retract if there exists a finite index
subgroup K ď G containing H such that there is a map ρ : K ↠ H that restricts to the
identity on H. We have the following unexpected result.

Theorem B (Normal virtual retracts have normal virtual complements (see [MM25, Ques-
tion 4.9])). Let G be a group with a normal subgroup N�G such that N is a virtual retract
of G and G{N is finitely generated. Then for every finite index subgroup H ď G containing
N there exists a finitely generated normal subgroup M�G such that M Ď H, MXN “ t1u

and |G :MN | ă 8. In particular, M is a normal virtual complement to N in G, and the
mapping M ˆN Ñ MN given by pm,nq ÞÑ mn is an isomorphism.

Observe that in Theorem B, N – MN{M embeds as a finite index normal subgroup of
G{M and we have a natural injective homomorphism

G ãÑ G{N ˆG{M.

The image of G under this homomorphism is subdirect (i.e., it projects onto each factor)
and has finite index (see [Min17, Lemma 2.1]). From this we deduce the following.
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Corollary 1.3. Let N � G be a normal virtual retract of a group G such that G{N is

finitely generated. Then G embeds as a finite index subdirect product in rN ˆ G{N , where
rN is a finite index supergroup of N .

This paper is essentially self-contained. After all, Theorem A is a theorem about general
infinite groups, so one should not expect any specialized machinery. Although many argu-
ments are informed by Bass-Serre theory, we only use the amalgamated free products that
are naturally prescribed by a commensuration. The proof of Theorem 4.9, which involves
arbitrary abelian groups, also uses elementary Z-module theory.

Acknowledgments. The author wishes to thank Alex Taam, Sam Shepherd and MathOver-
flow user HJRW (Henry Wilton) for useful discussions. The author also wishes to thank
Adrien Le Boudec for diplomatically pointing out that one of the applications in a pre-
vious version of the paper was trivial, Ignat Soroko for providing useful feedback, and is
extra grateful to Ashot Minasyan for, among other things, providing Theorem B, discussing
further applications of the techniques of this paper, for giving excellent suggestions to clar-
ify the expostion, and for writing the appendix. The author is supported by an NSERC
Discovery Grant.

Ashot Minasyan would like to thank the Isaac Newton Institute for Mathematical Sci-
ences, Cambridge, for support and hospitality during the programme “Actions on graphs
and metric spaces”, where his work on the appendix to this paper was undertaken. This
work was supported by EPSRC grant EP/Z000580/1.

2. (co)commensuration

A commensuration is a pair of monomorphisms pi1, i2q that have a common domain and
whose images are finite index subgroups of their respective codomains. A commensuration
pi1, i2q is trivial if one of the monomorphisms is an isomorphism and non-trivial otherwise.
When we want to make the common domain of a commensuration explicit we will say
that pi1, i2q is a commensuration over Dompi1q “ Dompi2q and if we want to make the
codomains explicit we will say it is a commensuration between coDompi1q and coDompi2q.
A dual commensuration or a co-commensuration is a pair of monomorphisms pj1, j2q that
have a common codomain and whose images are finite index subgroups of this common
codomain. When we want to make the common codomain of a commensuration explicit
we will say that pj1, j2q is a co-commensuration into coDompi1q “ coDompi2q.

Groups G1, G2 are said to be commensurable if there exists a commensuration (i1, i2q

between G1, G2, i.e. we have

(1) G1
i1
Ðâ H

i2
ãÑ G2,

where i1pHq, i2pHq have finite index in G1, G2 respectively. Although the domains G1, G2

and the codomain H are already specified by the monomorphisms i1, i2 of a commensura-
tion, it will be convenient for us (and equivalent) to refer to commensurations by diagrams
such as the one given in (1).

We say G1, G2 are co-commensurable if they are the domains of the monomorphisms of a
co-comensuration, i.e. they can both be embedded as finite index subgroups of a common
overgroup. We say that a commensuration pi1, i2q is normal if the common domain of
i1, i2 maps to normal subgroups of the codomains G1, G2 respectively. We say that a
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commensuration pi1, i2q extends a commensuration ph1, h2q if we have commuting diagram

E

G1 H G2

h2ďh1

i1 i2

where E is a finite index subgroup of H. The following result follows easily from the
fact that if G1, G2 are finite index subgroups of a finitely generated group K, then their
intersection contains a subgroup H that is normal in K and therefore in G1, G2.

Proposition 2.1. If G1, G2 are co-commensurable then there exists a normal commensu-

ration G1
i1
Ðâ H

i2
ãÑ G2 between G1 and G2.

Thus co-commensurability implies commensurability, in fact it implies the existence of
a normal commensuration. We now investigate the converse. A completion of a commen-
suration pi1, i2q is a co-commensuration pj1, j2q making the following diagram commute

(2)

H

G1 G2

K

i2i1

j1 j2
.

Trivial commensurations obviously admit completions.

Lemma 2.2. If a commensuration pi1, i2q admits a completion then it extends a normal
commensuration.

Proof. Suppose that the commensuration pi1, i2q admitted a completion pj1, j2q with com-
mon codomain K. Then j1 ˝ i1pHq “ j2 ˝ i2pHq is a finite index subgroup of K and
therefore contains a finite index normal subgroup N . N is normal in j1pG1q and j2pG2q as
well. Taking E to be the subgroup the subgroup E “ i1|

´1
i1pHq

˝ j1|
´1
j1pG1q

pNq ď H gives the

required normal commensuration. □

Given a commensuration G1
i1
Ðâ H

i2
ãÑ G2 we can form the associated amalgamated

free product which we will denote as G1 ˚H G2. Given the commensuration pi1, i2q the
construction of the amalgamated free product is completely standard as a pushout, or
fibered coproduct, in the category of groups.

Symmetrically, given an amalgamated free product G1 ˚H G2 where the image of the
amalgamating subgroup is finite index in the factors G1 and G2, we can form the associated
commensuration. It is worth emphasizing that although our amalgamated free product
notation suppresses mention of the monomorphisms i1, i2, crucial properties ofG1˚HG2 will
depend not only on the triple of groups G1, H,G2 but also on the specific monomorphisms
i1, i2. We now give a first obstruction to completing a commensuration.

Lemma 2.3. Let G1, G2 be finitely generated groups. If a non-trivial commensuration

G1
i1
Ðâ H

i2
ãÑ G2 admits a completion then the induced amalgamated free product G1 ˚H G2

admits an infinite virtually free quotient. In particular, G1 ˚H G2 has a nontrivial finite
quotient.
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Proof. By Lemma 2.2 pi1, i2q extends a normal commensuration over some group N ď H.
Identifying H with its canonical image in G1 ˚H G2, we get that N ď G1 ˚H G2 is a finite
index subgroup. Now since, by definition of a normal commensuration, N is normal in
both G1 and G2 it is normalized by a generating set of G1 ˚H G2 and is therefore normal
in the entire amalgamated free product. Now it is easy to see that

pG1 ˚H G2q{N » pG1{Nq ˚H{N pG2{Nq

which by [KPS73, Theorem 1] is virtually free and therefore residually finite. In particular
G1 ˚H G2 admits a non-trivial finite quotient.

□

Corollary 2.4. There is a commensuration F3
i1
Ðâ F6

i2
ãÑ F3 where F3, F6 denote the free

groups of ranks 3,6 respectively that does not admit a completion.

Proof. In [Bha94] an amalgamated free product F3 ˚F6 F3 is constructed with the following
properties that, firstly, the subgroup F6 embeds as a finite index subgroup of each factor
groups and, secondly, that F3 ˚F6 F3 is nearly simple, which means that has not finite quo-
tients. Therefore, by Lemma 2.3, the commensuration associated to this this amalgamated
free product does not admit a completion. □

3. An incompletable commensuration from finite degree common covers

Any continuous function f : pX,xq Ñ pY, yq between path-connected based topological
spaces that admit a fundamental group gives rise to a homomorphism f7 : π1pX,xq Ñ

π1pY, yq of fundamental groups. Conversely, any homomorphism between finitely generated
groups can be realized by a continuous map between 2-complexes. It is not clear, however,
whether the incompletable commensuration given in Corollary 2.4 can be realized by a pair
of covering maps, which is a stronger geometric requirement. Such a pair can be found by
taking a close look at the construction in [Rat07].

Theorem 3.1. There exist finite graphs Z,X1, X2 and finite degree covering maps pi :
Z Ñ Xi, i “ 1, 2 such that the induced commensuration

π1pX1q
pp1q7
Ðâ π1pZq

pp2q7
ãÑ π1pX2q

does not admit a completion.

Proof. For this proof Fn shall denote the free group of rank n. In [Rat07] groups Λ1,Λ3

are constructed where Λ1 is simple and Λ3 has no finite quotients. Both groups decompose
as amalgamated free products F9 ˚F81 F9 where the amalgamating subgroup F81 embeds as
a finite index in both F9 factors. By Lemma 2.3 both of these amalgamated products are
associated to commensurations that do not admit completions. We will only consider Λ1,
the treatment of Λ3 being identical.

Λ1 is the fundamental group of a 2-complex X that is a degree 4 cover of a bouquet (or
wedge product) of 10 circles to which 25 square 2-cells are attached. X is a VH-complex,
i.e. a 2-complexes all of whose 2-cells are squares and whose edges can be partitioned into
vertical and horizontal edges. This partition is obtained closing the relation “two edges
have the same orientation if they are on opposite sides of a square” under reflexivity and
transitivity to an equivalence relation. The 1-skeleton X p1q of X (a degree 4 cover of the
bouquet of 10 circles), as well as one of the 2-cells is shown in Figure 1. The graphs X1, X2

are respectively the top and bottom horizontal graphs shown in Figure 1 with directed
edges labelled b1, . . . , b5. Now the 2-complex X has 100 squares, 4 for each of the relations
given in [Rat07, Table 1]. The graph Z Ă X is constructed as follows: its vertices are the

midpoints of the vertical edges in X p1q and the edges of Z are the segments in the squares
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Figure 1. The labeled 1-skeleton for X and a 2-cell corresponding to the
relator a1b1A2B2. An edge and two vertices of the graph Z are drawn in
the square.

obtained by joining these vertical edge midpoints. Such an edge is shown inside a square
in Figure 1. There is are mappings pi : Z Ñ Xi, i “ 1, 2 that can be defined on the edges
of Z as follows: an edge e P EpZq lying in a square σ is mapped to the top of σ, which lies
in X1 via p1 and to the bottom edge in X2 via p2. These mappings on edges assemble to
continuous maps pi : Z Ñ Xi (see [Wis96, §1.1] for more details and extended definitions.)

Cutting X along the graph Z and then regluing expresses

π1pX q » π1pX1q ˚π1pZq π1pX2q

by the Seifert-Van Kampen Theorem. The homomorphisms π1pZq ãÑ πpXiq are given by
ppiq7, i “ 1, 2. In particular in [Rat07] these mappings are verified to have finite index
images in their codomains. While it would be possible to go through the relations in
[Rat07, Table 1] and verify that the combinatorial maps pi : Z Ñ Xi are indeed covering
maps, we will give a less direct argument why this is true.

First note that Z has 20 vertices and 100 edges, therefore χpZq “ ´80 so π1pZq » F81

which means that pi is π1-injective. We also note that every vertex of Xi has degree exactly
10. pi is also injective when restricted to edges, in fact pi is a combinatorial map. Thus
if pi fails to be injective it will be at a vertex. We will first argue that pi must be locally
injective.

If pi isn’t locally injective then will factor through a folding Z Ñ Z 1 which is a surjective
combinatorial map to another graph Z 1 obtained by identifying two edges (see [Sta83]).
We can repeatedly apply folding moves until we get Z Ñ ZF such that pi factors as
Z Ñ ZF Ñ Xi and such that ZF Ñ Xi is locally injective combinatorial map. There are
100 edges in Z which together contribute 200 to the sum of vertex degrees and there are
20 vertices giving an average degree of 10. Whenever a folding of edges occurs either two
vertices get identified, or there were two edges with the same endpoints that get identified
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and the number of vertices is unchanged. In the latter case, a non-nullhomotopic cycle
gets killed, which is impossible due to π1-injectivity. This means that every folding move
decreases the number of vertices by 1 and decreases the sum of the degrees by 2. Now the
function

Apfq “
200 ´ 2f

20 ´ f

that gives the average degree of the vertices after f folds is strictly increasing for f P r0, 20q.
This means that ZF must have some vertex with degree greater than 10 contradicting the
fact that the map ZF Ñ Xi is locally injective.

It follows that pi must be locally injective, i.e. it does not factor through a folding map.
Furthermore it must be locally surjective, otherwise this means it will have a vertex of
degree less than 10, which because of the average degree of 10, implies that Z must have
some other vertex w with degree more than 10, but then pi couldn’t possibly be injective
at w. Since pi, i “ 1, 2 are locally bijective combinatorial maps, we conclude that they are
covering maps and this completes the proof. □

4. Necessary and sufficient conditions to complete a commensuration

So far we have been using Lemma 2.2 to produce commensurations that cannot be
completed. At this point it is natural to ask whether the converse of Lemma 2.2 holds.

Specifically, if given a commensuration G1
i1
Ðâ H

i2
ãÑ G2 does the existence of a finite index

subgroup N Ă H such that the images i1pNq ď G1 and i2pNq ď G2 are normal in their
respective overgroups imply that the commensuration is completable? In other words, does
a commensuration along normal subgroups guarantee that there is a completion?

It turns out that there is another important necessary condition that we will now present.
Recall that if N ď G is a normal subgroup then conjugation gives homomorphisms A : G Ñ

AutpNq and O : G{N Ñ OutpNq, where InnpNq denotes the group of inner automorphisms
and OutpNq “ AutpNq{InnpNq. In particular, we have the following commutative diagram

G AutpNq

G{N OutpNq

A

O

where the vertical arrows are the canonical quotient maps. We will abuse notation and also

write O : G Ñ OutpNq to mean the natural composition G Ñ G{N
O
Ñ OutpNq. If N ď G

is a finite index normal subgroup then the image of G, or G{N , in OutpNq is finite. Thus
given a normal commensuration pi1, i2q between G1 and G2 over a group H, the groups
OpGi{iipHqq ď OutpHq, must be finite for i “ 1, 2. Our second necessary condition is
given by the proposition below.

Proposition 4.1. If a normal commensuration G1
i1
Ðâ H

i2
ãÑ G2 admits a completion then

the subgroup

xOpG1{i1pHqq,OpG2{i2pHqqy ď OutpHq

is finite.

Proof. By hypothesis our commensuration admits a completion pj1, j2q as in (2). Replacing
K with xj1pG1q, j2pG2qy if necessary and identifying H,G1, G2 with their images in K we
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can assume that we have a subgroup inclusions

H

G1 G2

K

ě
ď

ď
ě

and that K “ xG1, G2y. Since H is normal in G1 and G2 we have that it is normal in K.
Since H ď Gi ď K we have a natural inclusions OpGi{Hq ď OpK{Hq, i “ 1, 2. Since H
has finite index in K we have that OpK{Hq ě xOpG1{Hq,OpG2{Hqy is finite. □

Using the notation from Propostion 4.1 above, we say that a normal commensuration is
out-finite if the subgroup xOpG1{i1pHqq,OpG2{i2pHqqy ď OutpHq is finite. It’s not hard
to see the following.

Lemma 4.2. If a commensuration admits a completion, then any normal commensuration
it extends must be out-finite.

While this next result is not difficult, it’s worth recording for completeness, especially
since no analogues come from the theory of lattices in IsompHnq.

Proposition 4.3. There are normal commensurations that are not out-finite.

Proof. Let G1 “ Z2 ¸ D4 and G2 “ Z2 ¸ D6 where the semidirect factors D4, D6 act
faithfully on Z2 normal factors. Consider any commensuration over the maximal Z2 factors
of G1, G2. Now

AutpZ2q “ OutpZ2q “ GL2pZq » D4 ˚D2 D6,

(see [DD89, §I.5.2]) where Dn is dihedral symmetry group of the n-gon (|Dn| “ 2n). Since
every finite subgroup of OutpZ2q must be isomorphic to a subgroup of D4 or D6, and
since D4 has no elements of order 6 and D6 has no elements of order 4 the subgroup
xOpD4q,OpD6qy ď OutpZ2q must be infinite. □

We can even get a stronger result:

Proposition 4.4. The semidirect products G1 “ Z2 ¸ D4 and G2 “ Z2 ¸ D6, where the
actions of D4 and D6 are faithful, are not co-commensurable.

Proof. Suppose towards a contradiction that G1 and G2 were co-commensurable into a
group K. Then by Proposition 2.1 there is a normal commensuration between G1 and G2

over some group H. H has a characteristic subgroup N that is isomorphic to Z2, so N will
also map to a normal subgroup of G1 and G2. Since N maps to a finite index subgroup of
the Z2 semidirect factors of G1 and G2, any linear non-trivial transformation of Z2 induced
by conjugation will restrict to a non-trivial linear transformation of N (otherwise it will
fix a pair of linearly independent vectors) so the restrictions of the actions of D6 and D4

on N will remain faithful so the argument of the proof of Proposition 4.3 goes through and
the result follows. □

Question 4.5. Are the groups F2 ¸D4 and F2 ¸D6 co-commensurable? Since OutpF2q »

OutpZ2q » GL2pZq, the exact same argument of Proposition 4.3 excludes the completion
of the obvious commensuration over F2. The argument of Proposition 4.4 however doesn’t
go through since finite index subgroups of free groups become increasingly complicated.
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We can now give, Theorem 4.9, the main technical positive result of this paper which is
essentially a converse to Propositions 2.1,4.1 and Lemma 4.2. Before proving stating and
proving this theorem we will fix some notation and give some auxiliary results. If N,K
are subgroups of some group G we will write NK “ N ˆ K if NK is a subgroup and the
map pn, kq ÞÑ nk gives an isomorphism N ˆ K

„
Ñ NK. Also, when convenient, we will

express elements of NK as pairs pn, kq and that we identify N,K with N ˆ t1u, t1u ˆ K
respectively.

Lemma 4.6 (Untwisting lemma (c.f. [MM25, Lemma 5.1])). Let N ď G be a normal
subgroup such that the image OpG{Nq ď OutpNq is finite and let J ď G be a finitely
generated free subgroup with J X N “ t1u. Then there is a subgroup K ď NJ such that
K XN “ t1u,

NK “ N ˆK,

and the composition
K

„
Ñ NK{N ď NJ{N

„
Ñ J

naturally maps K to a finite index subgroup of J , so that NK is a finite index subgroup of
NJ .

Proof. By hypothesis the image of J in OutpNq induced by conjugation, which is contained
in OpG{Nq, is finite. We may therefore take K 1 to be a finite index subgroup of J that
lies inside the kernel J Ñ OutpNq. Considering the quotient map NJ Ñ NJ{N – J , it is
clear that NK 1 ď NJ is a finite index subgroup.

Pick a finite basis tk1
1, . . . , k

1
nu of K 1. Triviality of the image of K 1 in OutpNq tells us

that for each k1
i, i “ 1, . . . , n there exists hi P N such that for every h P N

k1
ihk

1
i
´1

“ hihhi
´1.

We construct a new subgroup by modify the generating set, replacing k1
i with k

1
ih

´1
i “ ki,

and taking K 1 “ xk1, . . . , kny. We have the equality NK 1 “ NK but now K centralizes N .
To see that K XN “ t1u take an arbitrary product such that

kn1
i1

¨ ¨ ¨ knl
il

P N

Since N is normal we can expand kij “ k1
ij
hij and rewrite the product as

kn1
i1

¨ ¨ ¨ knl
il

“ pk1
i1qn1 ¨ ¨ ¨ pk1

il
qnlh.

K 1 X N “ t1u, we must have that pk1
i1

qn1 ¨ ¨ ¨ pk1
il

qnl is trivial and since tk1
1, . . . , k

1
nu is a

basis, this means that the original product kn1
i1

¨ ¨ ¨ knl
il

is trivial. Therefore, NK “ N ˆ K
and the result follows. □

Remark 4.7. Lemma 4.6 does not hold if we drop the hypothesis that J is free and allow
N to have non-trivial center. A counterexample is the group N ˙ Z2 where N “ xx, yy

is free nilpotent of of rank 2 and class 3, and Z2 “ xa, by acts as ana´1 “ xnx´1 and
bnb´1 “ yny´1 for all n P N .

The author thanks Ashot Minasyan for suggesting the following formulation of an in-
termediate step in an earlier proof of Theorem 4.9 that is useful in its own right. The
difficulties in this proof of this lemma comes from the fact that the centralizer ZpNq need
not be finitely generated and may contain torsion.

Theorem 4.8 (Normal virtual complement lemma). Let N ď G be a normal subgroup,
let K ď G be a finitely generated group such that NK “ N ˆ K, and NK ď G is a finite
index normal subgroup. Then there is a subgroup KΓ ď NK such that KΓ ď G is normal
in G and NKΓ ď G has finite index. Furthermore we have

NKΓ “ N ˆKΓ
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and the composition

KΓ
„
Ñ NKΓ{N ď NK{N

„
Ñ K

naturally embeds KΓ as finite index subgroup of K.

Proof. Since NK ď G is finite index and normal the image Γ “ OpG{NKq ď OutpNKq

is finite. We denote the conjugation maps by G Q g ÞÑ ϕg P AutpNKq and we denote by
Φg P Γ the image of the automorphism ϕg in OutpNKq. Since N is normal in G, these
automorphisms of NK leave N invariant, thus for any g P G and k P K we have

ϕgpkq “ gkg´1 “ kghk,g

for some hk,g P N and kg P K. Since gkg´1 must still commute with every element in N
we have that hk,g P ZpNq, i.e. it must be in the center of N . If N has trivial center then
gkg´1 “ kg P K ď NK for all k P K, g P G so K is normal in G. In this case we set
K “ KΓ and the claim holds.

Since ZpNq is characteristic in N , the hypotheses imply that

ZpNqK “ ZpNq ˆK

is a normal subgroup of G. To continue, we must focus on the case where is some k P K
and some g P G such that

gkg´1 “ ϕgpkq “ kghk,g R K.

We will perform a sequence of modifications to K to eventually get a normal subgroup
KΓ of G with the desired properties. On the one hand K is finitely generated and ZpNq

is an abelian group, or equivalently a Z-module. In particular, every automorphism of
ZpNqK descends to an automorphism of the abelianization

pZpNqKqab “ ZpNq ˆKab “ M,

where Kab “ K{rK,Ks. For the Z-module M we will use additive notation and denote by
0 the identity in ZpNq. We identify Kab with the submodule t0u ˆKab ď M .

For any element of g P ZpNqK we will denote by ḡ its image in M . Since AutpMq “

OutpMq we actually have a natural action of the finite group Γ on M , making M into a
ZΓ-module. This structure is capable of detecting the non-normality of K in G. Indeed, if
ϕgpkq “ kghk,g R K then Φg acts non-trivially on M since

Φg ¨ p0, k̄q “ p hk,g
loomoon

‰0

, k̄gq P pZpNq ˆKabq z pt0u ˆKabq .

Let ρ0 : ZpNq ˆ Kab ↠ ZpNq be the canonical projection onto the first factor, by
hypothesis ρ0 is not Γ-invariant since its kernel Kab isn’t. We now use a classical trick from
the representation theory of finite groups (see [FH04, §1.2]). Let

ρpvq “
ÿ

γPΓ

γ ¨ ρ0pγ´1 ¨ vq.

By hypothesis, ZpNq is Γ-invariant so ρ : ZpNq ˆKab Ñ ZpNq is a Γ-equivariant Z-linear
map to ZpNq that restricts on ZpNq to scalar multiplication by |Γ|. In particular ρ is
injective on set of infinite order elements of ZpNq and we have

ZpNq X kerpρq “ th P ZpNq : |Γ|h “ 0u.

Γ-equivariance of ρ implies that kerpρq is also Γ invariant. The goal is now to modify K so
that it maps to kerpρq and to get “something like” M “ ZpNq ˆ kerpρq.

There are two issues to overcome that stem from the fact that ZpNq could be any abelian
group. The first is that it is not clear from this construction thatM ď ZpNq `kerpρq. The
second issue is that even if M “ ZpNq `kerpρq, because the sumands may have non-trivial
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intersection, we could have M fi ZpNq ˆ kerpπq. We will overcome these issues by passing
to submodules. Consider first

|Γ|M “ tm` ¨ ¨ ¨ `m
loooooomoooooon

|Γ| terms

P M : m P Mu.

In this case, recalling that ρ restricted to ZpNq is scalar multiplication by |Γ|, since
ρp|Γ|Mq ď ρpZpNqq we can deduce the inclusion

(3) |Γ|M ď ZpNq ` kerpρq

as follows: let |Γ|m P |Γ|M be arbitrary. Then ρp|Γ|mq “ |Γ|ρpmq “ |Γ|hm for some
hm P ZpNq. Since ρp|Γ|m ´ hmq “ 0 we deduce that there is some z P kerpρq such that
|Γ|m “ hm ` z as required.

Now Kab X |Γ|M “ |Γ|Kab is a finite index normal subgroup of Kab and so we define
K 1

Γ ď K to be its preimage. As a finite index subgroup of the finitely generated group
K, K 1

Γ has a finite generating set tκ1
1, . . . , κ

1
mu and, since it’s normal in K, its image in

K 1
Γ{N ď G{N is normal so NK 1

Γ remains normal in G and we still have NKΓ “ NˆK 1
Γt1u.

We denote by K 1
Γ the image of K 1

Γ in the abelianization M . We note that K 1
Γ will not

necessarily be isomorphic to the abelianization of K 1
Γ as it will be a subgroup of K 1

ab ď M .

K 1
Γ lies in ZpNq ` kerpρq so we have decompositions

κ1
i “ h1

i ` z1
i, i “ 1, . . . ,m

with h1
i P ZpNq, z1

i P kerpρq.
In order to control torsion we will replace M by a finitely generated module as follows:

let

M 1 “ spanZΓth1
1, . . . , h

1
m, z

1
1, . . . , z

1
mu ě K 1

Γ

M2 “ spanZΓM
1 Y ρpK 1

abq.

M2 is a finitely generated ZΓ-module and, since Γ is finite, it is also finitely generated as
a Z-module. It follows by the basic theory of finitely generated Z-modules that there is a
period p P N such that pM2 is torsion-free.

We repeat the construction above to obtain the finite index subgroup K2
Γ ď K 1

Γ which
is the preimage of

pK 1
Γ “ pp|Γ|qKab ď pM2.

Note that K2
Γ ď K is again normal and finite index. Let k P pK 1

Γ “ K2
Γ. On the one hand

we have
ρpkq “ ρpp|Γ|mq “ p|Γ|ρpmq “ p|Γ|h

for some m P K 1
ab and some h P ZpNq X ρpK 1

abq ď ZpNq XM2. In particular we find that

k ´ ph “ z P kerpρq

and since k, ph P pM2 we have that z P pM2. From this we deduce

K2
Γ “ pp|Γ|qKab ď

`

ZpNq X pM2
˘

`
`

kerpρq X pM2
˘

.

By eliminating torsion we have ensured that pZpNq X pM2q and pkerpρq X pM2q have triv-
ial intersection. This means that if we take a generating set tκ2

1, . . . , κ
2
ru of K2

Γ and consider

their images κ2
i P pp|Γ|qKab ď pM2, i “ 1, . . . , r then for each i we have a unique decom-

position

κ2
i “ hi ` zi,

with hi P ZpNq X pM2 and zi P kerpρq X pM2.
We finally take KΓ ď ZpNqK2

Γ as the group with the generating set tκ1, . . . , κru where

κi “ κ2
ih

´1
i and κ2

i was a generator of K2
Γ given above. On the one hand, we still have
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ZpNqK2
Γ “ ZpNqKΓ. The abelianization map for ZpHqK 1 restricted to KΓ still maps KΓ

to M2 but now KΓ maps entirely to kerpρq X pM2, which is Γ-invariant.
We will now show that KΓ is normal in G. Suppose otherwise, then there is some basis

element κi and some g P G with gκig
´1 “ ϕgpκiq “ kg,ihgi with kg,i P KΓ, hg,i P ZpNqzt1u.

Then mapping toM we see that the image κi “ zi P kerpρqXpM2 and that ϕgpκiq “ Φg ¨zi “

kg,i ` hg,i. On the one hand kerpρq X pM2 is Γ-invariant so kg,i ` hg,i P kerpρq X pM2. On

the other hand, since KΓ ď kerpρq X pM2, we conclude that hg,i P kerpρq X pM2. Now
ZpNq X kerpρq consists of torsion elements, but pM2 is torsion-free which implies that
hg,i “ 0 contradicting the assumption that it is non-trivial.

Thus, KΓ is a normal subgroup of G. Furthermore noting that the generators of KΓ

were obtained by multiplying elements of K2
Γ ď K by elements of ZpNq we have that

NKΓ “ NK2
Γ. It remains to show that KΓ X N “ t1u. First note that KΓ ď CGpNq,

the centralizer of N , thus KΓ X N ď ZpNq. For the image in the abelian group M we
have KΓ X ZpNq “ t0u therefore KΓ X ZpNq ď rK,Ks, which is the kernel of the map
ZpNqK ↠ M , and since rK,Ks X ZpNq “ t1u we conclude KΓ X N “ KΓ X ZpNq “ t1u.
Therefore

NKΓ “ N ˆKΓ,

as required. In particular the natural embedding of KΓ as finite index normal subgroup of
K follows. □

Theorem 4.9. Suppose a commensuration pi1, i2q over a group H extends a normal com-
mensuration ph1, h2q over some group N . If ph1, h2q is out-finite then pi1, i2q admits a
completion.

Proof. Without loss of generality we can assume the commensuration is non-trivial, other-
wise the result holds immediately. By hypothesis we have the following diagram of finite
index inclusions with the image of N being normal in all codomains.

N

G1 H G2

h2ďh1

i1 i2

We form the associated amalgamated free product G1 ˚H G2 and we consider N and H
as subgroups of G1 and G2 and G1, G2 as subgroups of G1 ˚H G2. By hypothesis, N is a
normal subgroup of this amalgamated free product and the canonical quotient is the free
product

pG1 ˚H G2q{N » pG1{Nq ˚H{N pG2{Nq,

which, as an essential amalgamated product of finite groups, is virtually free by [KPS73,
Theorem 1]. This means that there is a finite index normal free subgroup J ď pG1{Nq˚H{N
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pG2{Nq. Consider the commuting following commutative diagram of short exact sequences

(4)

1

1 H π´1pJq J 1

1 H G1 ˚H G2 pG1{Nq ˚H{N pG2{Nq1 1

F

1

π|π´1pJq

ď

π

where hooked inclusion arrows (ãÑ) are inclusions of normal subgroups, two headed arrows
(↠) are canonical quotient maps, and F is a finite group. Now since J is a free group, the
top row of the diagram splits and we have the semidirect product

π´1pJq “ NĴ » N ¸ϕ Ĵ

where Ĵ is an isomorphic lift of J to π´1pJq ď G1 ˚H G2 and ϕ : Ĵ Ñ AutpNq is the

homomorphism induced by conjugation of Ĵ on H. Now by hypothesis

OppG1 ˚H G2q{Nq “ xOpG1{Nq,OpG2{Nqy Ă OutpNq

is finite, so Lemma 4.6 applies and we can find subgroup K 1 P NĴ such that NK 1 “ NˆK 1

and such that K 1 maps isomorphically via π to a finite index subgroup of J . Now there is
a finite index characteristic subgroup K ď J such that K ď πpK 1q. Let K “ π|K1

´1
pKq ď

K 1, then KN “ N ˆ K is the π-preimage of the normal subgroup K and is therefore a
normal subgroup of G1 ˚H G2.

This, however, is not enough to guarantee that K is normal in G1 ˚H G2. At this point,
however, we can apply Theorem 4.8 which gives a normal subgroup KΓ ď NK that is also
normal in G1 ˚H G2 and that maps via π to finite index subgroup of πpKq ď J . Since KΓ

is normal in G1 ˚H G2, its image is normal in the quotient pG1{Nq ˚H{N pG2{Nq.
We will now show that the desired completion is

(5)

H

G1 G2

pG1 ˚H G2q{KΓ

i2i1

j1 j2 .

First, looking at diagram (4), since πpKΓq ď J which is torsion-free, its image has trivial
intersection with the images of G1 and G2. So, since KΓXN “ t1u, we have that GiXKΓ “

t1u, i “ 1, 2. Thus G1, G2 are mapped injectively via the canonical quotient map G1 ˚H
G2 ↠ pG1 ˚H G2q{KΓ. We can therefore identify N,H,G1, G2 with their images in pG1 ˚H
G2q{KΓ. Finally since πpKΓq is a finite index normal subgroup of pG1{Nq ˚H{N pG2{Nq if
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we make an analogue of diagram (4) with πpKΓq in place of J . It is immediate that

ppG1 ˚H G2q{KΓq{N » pG1 ˚H G2q{π´1pπpKΓqq » ppG1{Nq ˚H{N pG2{Nqq{πpKΓq

is finite. So N , and therefore also G1, G2, are finite index subgroups of pG1 ˚H G2q{KΓ.
Thus pj1, j2q is the desired co-commensuration and the result follows. □

Next, we answer [MM25, Question 4.9].

Proof of Theorem B. Since N �G is a virtual retract of G, there is a finite index subgroup
G1 in G such that there is a retraction G1 ↠ N . The subgroup

G2 “
č

gPG

g´1pG1 XHqg

is a finite index normal subgroup of G containing N and contained in G1 XH; in particular,
it also retracts onto N . Thus there is a normal subgroup K �G2 such that K X N “ t1u

and G2 “ KN . Since K and N are both normal in G2 and intersect trivially, G2 is the
internal direct product K ˆN .

Note that K – KN{N embeds as a finite index subgroup in G{N , hence K is finitely
generated. Therefore, we can apply Theorem 4.8 to obtain a finitely generated subgroup
M ď KN where M is normal in G, MN “ N ˆ KΓ and KΓN ď G is a finite index
subgroup. Thus KΓ is normal virtual complement of the normal virtual retract N with the
desired properties. □

Appendix A. Normal virtual complements to normal virtual retracts

by Ashot Minasyan

In this appendix we give an alternative proof of Theorem 4.8 (see Proposition A.1), which
quickly implies the statement of Theorem B, as seen in Section 4. Our argument uses a
lemma about finitely generated virtually abelian groups from [Min21]. We then discuss
some applications of Theorem B to commensurating graphs of groups.

A.1. A shorter proof of Theorem 4.8.

Proposition A.1. Suppose a group G has a finite index normal subgroup G1 such that

(6) G1 “ N ˆK,

where N � G and K{rK,Ks is finitely generated. Then there exists K 1 ď G1 such that
K 1 �G, rK,Ks Ď K 1 and N ˆK 1 has finite index in G.

Here and below all the direct products of groups (and direct sums of modules) are
internal; e.g., by G1 “ N ˆK we mean that N,K �G1 and N XK “ t1u.

Lemma A.2. LetM be a module over a finite group S, with a submodule Z, such that there
is a finitely generated subgroup L ď M (not necessarily S-invariant) such that M “ Z `L
and Z X L “ t0u. Then there is a finitely generated S-submodule L1 Ď M such that L1 is
a virtual complement to Z (i.e., Z ‘ L1 has finite index in M).

Proof. Note that A “
ř

sPS s.L is a finitely generated submodule of M , and B “ Z XA is
an S-submodule of A. For a finite group S, every S-submodule B in a finitely generated
S-module A has a submodule that is a virtual complement: see [Min21, Lemma 4.2] and
its proof (to apply the statement of the lemma directly, one can note that the semidirect
product A¸ S is a finitely generated virtually abelian group and B is a normal subgroup,
hence, by [Min21, Lemma 4.2], B has a normal virtual complement which will be an S-
submodule of A). Let L1 be this submodule of A, so that B‘L1 has finite index in A. Then
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Z XL1 “ t0u and Z `L1 “ Z ‘L1 has finite index in Z `A “ M , so L1 is an S-submodule
of M that is a virtual complement to Z in M . □

Proof of Proposition A.1. Let Z “ ZpNq�G denote the center of N . Equation (6) imme-
diately implies that

ZK “ CGpNq XG1.

And since the centralizer CGpNq and G1 are both normal in G, we deduce that ZK “

Z ˆK �G. It follows that the derived subgroup rZK,ZKs “ rK,Ks is normal in G, and
we can work in the G-module

M “ pZKq{rZK,ZKs “ Z ˆK{rK,Ks.

Since bothN andK act trivially onM , this is actually an S-module, where S “ G{pNKq “

G{G1 is a finite group. By the assumptions, L “ K{rK,Ks is a finitely generated comple-
ment to Z in M (but L is not necessarily S-invariant), so we can apply Lemma A.2 to find
an S-submodule L1 such that Z ‘ L1 has finite index in M . Going back to treating M as
a G-module, we see that L1 is normal in G{rK,Ks, hence its full preimage K 1, under the
homomorphism G Ñ G{rK,Ks, is normal in G. Observe that

(i) ZK 1 has finite index in ZK (because ZK 1 is the full preimage of Z `L1, which has
finite index in M), and

(ii) Z XK 1 “ t1u in G (because Z X rK,Ks “ t1u in G and Z X L1 “ t0u in M).

From (i), it follows that ZK 1 contains a finite index subgroup ofK. Hence NK 1 “ NZK 1

has finite index in NK “ G1. Moreover, K 1 Ď ZK, so it centralizes N . Note that

N X ZK “ ZpN XKq “ Z, so N XK 1 “ Z XK 1 “ t1u,

by (ii). Therefore, NK 1 “ N ˆK 1, which completes the proof of the proposition. □

Note that Proposition A.1 is slightly stronger than Theorem 4.8, because the proposition
only requires the abelianization K{rK,Ks to be finitely generated.

A.2. Applications to commensurating graphs of groups. Below we will be using the
notation for graphs of groups from [MM25, Subsection 2.2].

Definition A.3. We will say that a finite graph of groups pG,Γq is commensurating if the
images of every edge group in its two vertex groups have finite indices. More precisely, for
each e P EΓ, we require that |Gαpeq : αepGeq| ă 8.

Specific examples of commensurating graphs of groups are free products with amalga-
mation A ˚C B, where the amalgamated subgroup C has finite index in the factors A and
B, and HNN-extensions A˚Bt“C , where the associated subgroups B, C have finite indices
in the base groups A. Another well-known class of examples is given by finite graphs of
groups where all vertex and edge groups are infinite cyclic and whose fundamental groups
are often called generalized Baumslag-Solitar groups. Commensurating graphs of groups
have been originally studied by Bass and Kulkarni in [BK90], who called them graphs of
groups of finite index.

Remark A.4. By Bass-Serre Theory, a group G splits as the fundamental group of a com-
mensurating graphs of groups if and only if G admits a cocompact action on a locally finite
simplicial tree T without edge inversions.

Remark A.5. Suppose that pG,Γq is a commensurating graph of groups with fundamental
group G. Definition A.3 easily implies that for any two vertices u, v P V Γ, the intersection
Gu X Gv has finite index in both Gu and Gv. Moreover, if H ď G is the image of any
vertex or edge group in G then G commensurates H, that is

|H : pH X gHg´1q| ă 8 and |gHg´1 : pH X gHg´1q| ă 8, for all g P G.
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Definition A.6. A commensurating graph of groups pG,Γq with fundamental group G
will be called tame (or, more specifically, tame over N) if there exists a normal subgroup
N �G such that the following conditions are satisfied:

(i) N is contained as a finite index subgroup in αepGeq in G, for each e P EΓ;
(ii) the natural map O : G Ñ OutpNq has finite image.

Examples of tame commensurating graphs of groups are given by unimodular Baumslag-
Solitar groups (see [Lev07, Section 2]), and by commensurating HNN-extensions of Zn

corresponding to finite order matrices from GLpn,Qq, see [LM21].
Observe that the subgroup N in Definition A.6 will have finite index in every vertex

group Gv, v P V Γ, because the graph of groups is commensurating.

Remark A.7. Let pG,Γq be a commensurating graph of groups with fundamental group G,
and let T be the corresponding locally finite Bass-Serre tree. The action of G on T gives
rise to a homomorphism

φ : G Ñ AutpT q,

where AutpT q is the automorphism group of T . Since T is locally finite, AutpT q can be
naturally topologized, giving it a structure of a locally compact group (see, for example,
[BK90, Section 3]). The existence of a normal subgroup N�G satisfying condition (i) from
Definition A.6 is equivalent to the condition that the image φpGq is a discrete subgroup
of AutpT q in this topology. The latter amounts to saying that for every vertex v in T the
φpGq-stabilizer of v is finite (see [BK90, Definitions 4.3]), and we can define N “ kerφ.

The next consequence of Theorem B, a strong generalization of [CSCF`15, Theorem 7.1],
is the reason why we are interested in the tameness of commensurating graphs of groups.

Corollary A.8. Suppose that G is the fundamental group of a commensurating graph of
groups pG,Γq. If this graph of groups is tame then

‚ there is a finitely generated free normal subgroup M �G such that Gv X M “ t1u

and |G : GvM | ă 8, for all v P V Γ; in particular, each Gv embeds as a finite index
subgroup in G{M ;

‚ G embeds as a finite index subdirect product in G{M ˆ F , where F is a finitely
generated virtually free group.

Proof. Assume that pG,Γq is tame over some N�G. Then N will fix every edge of the Bass-
Serre tree T forG, hence it acts trivially on T . SinceN has finite index in each vertex group,
F “ G{N acts on T cocompactly with finite vertex stabilizers, so it is finitely generated
and virtually free by the Structure Theorem of Bass-Serre Theory [Ser02, Section I.5.4]
and [KPS73, Theorem 1].

According to the assumptions, OpGq is finite subgroup of OutpNq, so we can apply
[MM25, Lemma 5.1] to conclude that N is a virtual retract of G. Now, since G{N is
virtually free, we can find a finite index subgroup H ď G such that N Ď H and H{N
is free. By Theorem B, there is a finitely generated normal subgroup M � G such that
M Ď H, M X N “ t1u and |G : MN | ă 8. It follows that M injects into H{N , so it
must be free. Since |Gv : N | ă 8, for each v P V Γ, we see that |G : GvM | ă 8 and
|Gv X M | “ t1u, as M is torsion-free. The second statement of the corollary can now be
deduced similarly to Corollary 1.3. □

The following corollary generalizes Theorem A. The fact that (a) implies (b) is given by
Corollary A.8 (take Q “ G{M); the proof if the opposite implication is left to the reader.

Corollary A.9. Let G be the fundamental group of a commensurating graph of groups
pG,Γq. Then the following are equivalent:
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(a) pG,Γq is tame;
(b) there exists a group Q and a homomorphism ψ : G Ñ Q such that ψ is injective on

each vertex group Gv and |Q : ψpGvq| ă 8 for all (equivalently, for some) v P V Γ.

The next proposition is an immediate consequence of the second claim of Corollary A.8.

Proposition A.10. Let (P) be a property of groups and let G be the fundamental group
of a tame commensurating graph of groups pG,Γq. Suppose that for some vertex v P V Γ
the following conditions hold:

‚ every finite index supergroup of Gv satisfies (P);
‚ every finitely generated virtually free group has (P);
‚ (P) is stable under taking direct products and finite index subgroups.

Then G has property (P).

Proposition A.10 is useful for properties (P) that are not always (or are unknown to be)
stable under commensurability. Hereditary conjugacy separability [Min17, Theorem 1.3]
and biautomaticity [ECH`92, Open Question 4.1.5] are two examples of such properties
(recall that a group G is hereditarily conjugacy separable if every finite index subgroup is
conjugacy separable). The claim about biautomaticity in the next corollary generalizes
one direction of [LM21, Theorem 8.3].

Corollary A.11. Let G be the fundamental group of a tame commensurating graph of
groups with a vertex group H. Suppose that H is (word) hyperbolic or finitely generated
virtually abelian. Then G is biautomatic. If, additionally, H is virtually compact special
(in the sense of Haglund and Wise [HW08]) then G is hereditarily conjugacy separable.

Proof. It is well-known that finite index supergroups of hyperbolic groups are hyperbolic;
in particular, this applies to finitely generated virtually free groups. Hyperbolic groups
and finitely generated virtually abelian groups are biautomatic, and biautomaticity is pre-
served under taking direct products and finite index subgroups [ECH`92]. Therefore, G is
biautomatic by Proposition A.10.

Now, assume that H is virtually compact special, then the same is true for any fi-
nite index supergroup of H. Virtually compact special hyperbolic groups (which include
finitely generated virtually free groups) are hereditarily conjugacy separable by [MZ16,
Theorem 1.1], and finitely generated virtually abelian groups are hereditarily conjugacy
separable by [Seg83, Proposition 1 in Section 4.C]. Hereditary conjugacy separability is
stable under direct products, by [MM12, Lemma 7.3], and under taking finite index sub-
groups, by definition. Thus Proposition A.10 allows us to conclude that G is hereditarily
conjugacy separable. □
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[DK18] Cornelia Druţu and Michael Kapovich. Geometric group theory, volume 63 of American Math-
ematical Society Colloquium Publications. American Mathematical Society, Providence, RI,
2018.

[DK23] Natalia S. Dergacheva and Anton A. Klyachko. Small non-Leighton two-complexes. Mathemat-
ical Proceedings of the Cambridge Philosophical Society, 174(2):385–391, 2023.

[DK25] Natalia S. Dergacheva and Anton A. Klyachko. Tiny non-Leighton complexes. Geometriae
Dedicata, 219(3):Paper No. 48, 8, 2025.

[ECH`92] David B. A. Epstein, James W. Cannon, Derek F. Holt, Silvio V. F. Levy, Michael S. Paterson,
and William P. Thurston. Word processing in groups. Jones and Bartlett Publishers, Boston,
MA, 1992.

[FH04] William Fulton and Joe Harris. Representation Theory, volume 129 of Graduate Texts in Math-
ematics. Springer New York, New York, NY, 2004.

[HW08] Frédéric Haglund and Daniel T. Wise. Special cube complexes. Geom. Funct. Anal., 17(5):1551–
1620, 2008.

[JW09] David Janzen and Daniel T. Wise. A smallest irreducible lattice in the product of trees. Alge-
braic & Geometric Topology, 9(4):2191–2201, 2009.

[KPS73] A. Karrass, A. Pietrowski, and D. Solitar. Finite and infinite cyclic extensions of free groups.
Journal of the Australian Mathematical Society, 16(4):458–466, December 1973. Publisher:
Cambridge University Press.

[Lei82] Frank Thomson Leighton. Finite common coverings of graphs. Journal of Combinatorial The-
ory. Series B, 33(3):231–238, 1982.

[Lev05] Gilbert Levitt. Automorphisms of Hyperbolic Groups and Graphs of Groups. Geometriae Ded-
icata, 114(1):49–70, August 2005.

[Lev07] Gilbert Levitt. On the automorphism group of generalized Baumslag-Solitar groups. Geom.
Topol., 11:473–515, 2007.

[LM21] Ian J. Leary and Ashot Minasyan. Commensurating HNN extensions: nonpositive curvature
and biautomaticity. Geom. Topol., 25(4):1819–1860, 2021.

[Mar91] G. A. Margulis. Discrete subgroups of semisimple Lie groups, volume 17 of Ergebnisse der Math-
ematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-
Verlag, Berlin, 1991.

[Min17] Ashot Minasyan. On conjugacy separability of fibre products. Proc. Lond. Math. Soc. (3),
115(6):1170–1206, 2017.

[Min21] Ashot Minasyan. Virtual retraction properties in groups. Int. Math. Res. Not. IMRN,
(17):13434–13477, 2021.

[MM12] Armando Martino and Ashot Minasyan. Conjugacy in normal subgroups of hyperbolic groups.
Forum Math., 24(5):889–910, 2012.

[MM25] Jon Merladet and Ashot Minasyan. Virtual retractions in free constructions, May 2025.
arXiv:2505.18054 [math].

[Mos68] G. D. Mostow. Quasi-conformal mappings in $n$-space and the rigidity of hyperbolic space
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