ON PRODUCTS OF QUASICONVEX SUBGROUPS IN HYPERBOLIC GROUPS

Ashot Minasyan

Abstract
An interesting question about quasiconvexity in a hyperbolic group concerns finding classes of quasiconvex subsets that are closed under finite intersections. A known example is the class of all quasiconvex subgroups [1]. However, not much is yet learned about the structure of arbitrary quasiconvex subsets. In this work we study the properties of products of quasiconvex subgroups; we show that such sets are quasiconvex, their finite intersections have a similar algebraic representation and, thus, are quasiconvex too.

0. Introduction
Let \(G \) be a hyperbolic group, \(\Gamma(G, A) \) – its Cayley graph corresponding to a finite symmetrized generating set \(A \) (i.e., for each element \(a \in A \), \(a^{-1} \) also belongs to this set). A subset \(Q \subseteq G \) is said to be \(\varepsilon \)-quasiconvex, if any geodesic connecting two elements from \(Q \) belongs to a closed \(\varepsilon \)-neighborhood \(O_\varepsilon(Q) \) of \(Q \) in \(\Gamma(G, A) \) for some \(\varepsilon \geq 0 \). \(Q \) will be called quasiconvex if there exists \(\varepsilon > 0 \) for which it is \(\varepsilon \)-quasiconvex.

In [4] Gromov proves that the notion of quasiconvexity in a hyperbolic group does not depend on the choice of a finite generating set (it is easy to show that this is not true in an arbitrary group).

If \(A, B \subseteq G \) then their product is a subset of \(G \) defined by \(A \cdot B = \{ab \mid a \in A, b \in B\} \).

Proposition 1. If the sets \(A_1, \ldots, A_n \subseteq G \) are quasiconvex then their product set \(A_1 A_2 \cdot \cdot \cdot A_n = \{a_1 a_2 \cdot \cdot \cdot a_n \mid a_i \in G_i\} \subset G \) is also quasiconvex.

Proposition 1 was proved by Zeph Grunschlag in 1999 in [11; Prop. 3.14] and, independently, by the author in his diploma paper in 2000.

If \(H \) is a subgroup of \(G \) and \(x \in G \) then the subgroup conjugated to \(H \) by \(x \) will be denoted \(H^x = xHx^{-1} \). The main result of the paper is

Theorem 1. Suppose \(G_1, \ldots, G_n, H_1, \ldots, H_m \) are quasiconvex subgroups of the group \(G, n, m \in \mathbb{N} \); \(f, e \in G \). Then there exist numbers \(r, \ell \in \mathbb{N} \cup \{0\} \) and \(f_l, \alpha_{lk}, \beta_{lk} \in G, k = 1, 2, \ldots, t_l \) (for every fixed \(l \)), \(l = 1, 2, \ldots, r \), such that

\[
f G_1 G_2 \cdot \cdot \cdot G_n \cap eH_1 H_2 \cdot \cdot \cdot H_m = \bigcup_{l=1}^{r} f_l S_l
\]

where for each \(l, \ell = t_l \), there are indices \(1 \leq i_1 \leq i_2 \leq \ldots \leq i_\ell \leq n, 1 \leq j_1 \leq \leq j_2 \leq \ldots \leq j_\ell \leq m \):

\[
S_l = (G_{i_1}^{\alpha_{1l}} \cap H_{j_1}^{\beta_{1l}}) \cdot \cdot \cdot (G_{i_\ell}^{\alpha_{\ell l}} \cap H_{j_\ell}^{\beta_{\ell l}}).
\]
This claim does not hold if the group \(G \) is not hyperbolic: set \(G_1 = \langle (1, 0) \rangle \), \(G_2 = \langle (0, 1) \rangle \), \(H = \langle (1, 1) \rangle \) – cyclic subgroups of \(\mathbb{Z}^2 \) (they are quasiconvex in \(\mathbb{Z}^2 \) with generators \(\{(1, 0), (0, 1), (1, 1)\} \). \(G_1 \cdot G_2 = \mathbb{Z}^2 \), thus, \(G_1 G_2 \cap H = H \) but \(G_1 \cap H = G_2 \cap H = \{(0, 0)\} \) and, if the statement of the theorem held for \(\mathbb{Z}^2 \) then \(H \) would be finite – a contradiction.

The above example can also be used as another argument to prove the well-known fact that \(\mathbb{Z}^2 \) can not be embedded into a hyperbolic group (because any cyclic subgroup is quasiconvex in a hyperbolic group).

The condition that the subgroups \(G_i \), \(H_j \) are quasiconvex is also necessary: using Rips’ Construction ([12]) one can achieve a group \(G \) satisfying the small cancellation condition \(C'(1/6) \) (and, therefore, hyperbolic) and its finitely generated normal subgroup \(K \) such that \(G/K \cong \mathbb{Z}^2 \). Let \(\phi \) be the natural epimorphism from \(G \) to \(\mathbb{Z}^2 \), \(G_1 = \phi^{-1}(\langle (1, 0) \rangle) \leq G \), \(G_2 = \phi^{-1}(\langle (0, 1) \rangle) \leq G \), \(H = \phi^{-1}(\langle (1, 1) \rangle) \leq G \). \(G_1, G_2 \) and \(H \) are finitely generated subgroups of \(G \), \(G_1 \cdot G_2 = G \) because \(\langle (1, 0) \rangle \cdot \langle (0, 1) \rangle = \mathbb{Z}^2 \) and \(K \leq G_2 \), thus \(G_1 \cdot G_2 \cap H = H \).

But for every \(\alpha, \beta \in G \) \(\phi(G_1^\alpha \cap H^\beta) \subseteq \phi(G_1^\alpha) \cap \phi(H)^{\phi(\beta)} = \{(0, 0)\}, i = 1, 2 \). Hence, it is impossible to obtain the infinite subgroup \(\phi(H) \) from products of cosets to such sets, and we constructed the counterexample needed.

Definition: let \(G_1, G_2, \ldots, G_n \) be quasiconvex subgroups of \(G \), \(f_1, f_2, \ldots, f_n \in G \), \(n \in \mathbb{N} \). Then the set

\[
f_1 G_1 f_2 G_2 \cdots f_n G_n = \{ f_1 g_1 f_2 g_2 \cdots f_n g_n \in G \mid g_i \in G_i, i = 1, \ldots, n \}
\]

will be called quasiconvex product.

Corollary 2. An intersection of finitely many quasiconvex products is a finite union of quasiconvex products.

Thus the class of finite unions of quasiconvex products is closed under taking finite intersections.

Recall that a group \(H \) is called elementary if it has a cyclic subgroup \(\langle h \rangle \) of finite index. An elementary subgroup of a hyperbolic group is quasiconvex (see remark 5, Section 4). It is well known that any element \(x \) of infinite order in \(G \) is contained in a unique maximal elementary subgroup \(E(x) \leq G \) [4, 5]. Every non-elementary hyperbolic group contains the free group of rank 2 [5, Cor. 6].

Suppose \(G_1, G_2, \ldots, G_n, H_1, H_2, \ldots, H_m \) are infinite maximal elementary subgroups of \(G \), \(f, e \in G \). And \(G_i \neq G_{i+1}, H_j \neq H_{j+1}, i = 1, \ldots, n - 1, j = 1, \ldots, m - 1 \). Then we present the following uniqueness result for the products of such subgroups:

Theorem 2. The sets \(f G_1 \cdots G_n \) and \(e H_1 \cdots H_m \) are equal if and only if \(n = m, G_n = H_n \), and there exist elements \(z_j \in H_j, j = 1, \ldots, n \), such that \(G_j = (z_n z_{n-1} \cdots z_{j+1}) \cdot H_j \cdot (z_n z_{n-1} \cdots z_{j+1})^{-1}, j = 1, 2, \ldots, n - 1, f = e z_1^{-1} z_2^{-1} \cdots z_n^{-1} \).
given in Section 4). The statement of Corollary 2 can be strengthened in this case:

Theorem 3. Intersection of any family (finite or infinite) of finite unions of ME-products is a finite union of ME-products.

An example which shows that an analogous property is not true for arbitrary quasiconvex products is constructed at the end of this paper.

Thus, all finite unions of ME-products constitute a topology \mathcal{T} (of closed sets) on the set of elements of a hyperbolic group. Taking an inverse, left and right shifts in G are continuous operations in \mathcal{T}. Also, by definition, any point is closed in \mathcal{T}, so \mathcal{T} is weakly separated (T_1). However, if G is infinite elementary, then \mathcal{T} turns out to be the topology of finite complements which is not Hausdorff, also, in this case, the group multiplication is not continuous with respect to \mathcal{T} (since any product of two non-empty open sets contains the identity of G).

1. Preliminary information

Let $d(\cdot, \cdot)$ be the usual left-invariant metric on the Cayley graph of the group G with generating set \mathcal{A}. For any two points $x, y \in \Gamma(G, \mathcal{A})$ we fix a geodesic path between them and denote it by $[x, y]$.

If $Q \subset \Gamma(G, \mathcal{A})$, $N \geq 0$, the closed N-neighborhood of Q will be denoted by

$$O_N(Q) \overset{df}{=} \{ x \in \Gamma(G, \mathcal{A}) \mid d(x, Q) \leq N \} .$$

If $x, y, w \in \Gamma(G, \mathcal{A})$, then the number

$$(x|y)_w \overset{df}{=} \frac{1}{2}(d(x, w) + d(y, w) - d(x, y))$$

is called the Gromov product of x and y with respect to w.

Let abc be a geodesic triangle. There exist "special" points $O_a \in [b, c]$, $O_b \in [a, c]$, $O_c \in [a, b]$ with the properties: $d(a, O_b) = d(a, O_c) = \alpha$, $d(b, O_a) = = d(b, O_c) = \beta$, $d(c, O_a) = d(c, O_b) = \gamma$. From a corresponding system of linear equations one can find that $\alpha = (b|c)_a$, $\beta = (a|c)_b$, $\gamma = (a|b)_c$. Two points $O \in [a, b]$ and $O' \in [a, c]$ are called a-equidistant if $d(a, O) = d(a, O') \leq \alpha$.

The triangle abc is said to be δ-thin if for any two points O, O' lying on its sides and equidistant from one of its vertices, $d(O, O') \leq \delta$ holds.

abc is δ-slim if each of its sides belongs to a closed δ-neighborhood of the two others.

We assume the following equivalent definitions of hyperbolicity of $\Gamma(G, \mathcal{A})$ to be known to the reader (see [6], [2]):

1°. There exists $\delta \geq 0$ such that for any four points $x, y, z, w \in \Gamma(G, \mathcal{A})$ their Gromov products satisfy

$$(x|y)_w \geq \min\{(x|z)_w, (y|z)_w\} - \delta ;$$

2°. All triangles in $\Gamma(G, \mathcal{A})$ are δ-thin for some $\delta \geq 0$;

3°. All triangles in $\Gamma(G, \mathcal{A})$ are δ-slim for some $\delta \geq 0$.

3
Now and below we suppose that G meets $1^\circ, 2^\circ$ and 3° for a fixed (sufficiently large) $\delta \geq 0$. 3° easily implies

Remark 0. Any side of a geodesic n-gon ($n \geq 3$) in $\Gamma(G, A)$ belongs to a closed $(n-2)\delta$-neighborhood of the union of the rest of its sides.

Let p be a path in the Cayley graph of G. Further on by p_-, p_+ we will denote the startpoint and the endpoint of p, by $|p|$ its length; $\text{lab}(p)$, as usual, will mean the word in the alphabet A written on p. $\text{elem}(p) \in G$ will denote the element of the group G represented by the word $\text{lab}(p)$.

A path q is called (λ, c)-quasigeodesic if there exist $0 < \lambda \leq 1$, $c \geq 0$, such that for any subpath p of q the inequality $\lambda|p| - c \leq d(p_-, p_+)$ holds. In a hyperbolic space quasigeodesics and geodesics with same ends are mutually close:

Lemma 1.1. ([6; 5.6,5.11], [2; 3.3]) There is a constant $N = N(\delta, \lambda, c)$ such that for any (λ, c)-quasigeodesic path p in $\Gamma(G, A)$ and a geodesic q with $p_- = q_-, p_+ = q_+$, one has $p \subset O_N(q)$ and $q \subset O_N(p)$.

An important property of cyclic subgroups in a hyperbolic group states

Lemma 1.2. ([6; 8.21], [2; 3.2]) For any word w representing an element $g \in G$ of infinite order there exist constants $\lambda > 0$, $c \geq 0$, such that any path with a label w^m in the Cayley graph of G is (λ, c)-quasigeodesic for arbitrary integer m.

A broken line $p = [X_0, X_1, \ldots, X_n]$ is a path obtained as a consequent concatenation of geodesic segments $[X_{i-1}, X_i]$, $i = 1, 2, \ldots, n$. Later, in this paper, we will use the following fact concerning broken lines in a hyperbolic space:

Lemma 1.3. ([3, Lemma 21]) Let $p = [X_0, X_1, \ldots, X_n]$ be a broken line in $\Gamma(G, A)$ such that $|[X_{i-1}, X_i]| > C_1 \quad \forall \ i = 1, \ldots, n$, and $(X_{i-1}|X_{i+1})X_i \leq C_0 \quad \forall \ i = 1, \ldots, n-1$, where $C_0 \geq 14\delta$, $C_1 > 12(C_0 + \delta)$. Then p is contained in the closed $2C_0$-neighborhood $O_{2C_0}([X_0, X_n])$ of the geodesic segment $[X_0, X_n]$.

Suppose $H = \langle X \rangle$ is a subgroup of G with a finite symmetrized generating set X. If $h \in H$, then by $|h|_G$ and $|h|_H$ we will denote the lengths of the element h in A and X respectively. The distortion function $D_H : \mathbb{N} \to \mathbb{N}$ of H in G is defined by $D_H(n) = \max\{|h|_H \mid h \in H, |h|_G \leq n\}$.

If $\alpha, \beta : \mathbb{N} \to \mathbb{N}$ are two functions then we write $\alpha \preceq \beta$ if $\exists K_1, K_2 > 0: \alpha(n) \leq K_1\beta(K_2n)$. $\alpha(n)$ and $\beta(n)$ are said to be equivalent if $\alpha \preceq \beta$ and $\beta \preceq \alpha$.

Evidently, the function D_H does not depend (up to this equivalence) on the choice of finite generating sets A of G and X of H. One can also notice that $D_H(n)$ is always at least linear (provided that H is infinite). If D_H is equivalent to linear, H is called *undistorted*.

Lemma 1.4. ([2; 3.8], [7; 10.4.2]) A quasiconvex subgroup H of a hyperbolic group G is finitely generated.

Remark 1. From the proof of this statement it also follows that D_H is equivalent to linear for a quasiconvex subgroup H.

Indeed, it was observed in [2] that if H is ε-quasiconvex, it is generated by
finitely many elements \(x_i, i = 1, \ldots, s \), such that \(|x_i|_G \leq 2\varepsilon + 1 \forall i \), and \(\forall h \in H \),
\[h = a_1 \cdots a_r, \quad a_j \in A, \quad \text{hence } \exists i_1, \ldots, i_r \in \{1, 2, \ldots, s\}: h = x_{i_1}x_{i_2} \cdots x_{i_r}. \]

The proof of corollary 2 is based on

Lemma 1.5. ([1; Prop. 3]) Let \(G \) be a group generated by a finite set \(A \). Let \(A, B \) be subgroups of \(G \) quasiconvex with respect to \(A \). Then \(A \cap B \) is quasiconvex with respect to \(A \).

We will use the following notion in this paper :

Definition : let \(H = \langle X \rangle \leq G = \langle A \rangle, \quad card(X) < \infty, \quad card(A) < \infty \). A path \(P \) in \(\Gamma(G, A) \) will be called \(H \)-geodesic (or just \(H \)-path) if : a) \(P \) is labelled by the word \(a_{i_1} \cdots a_{i_k} \cdots a_{i_s} \) corresponding to an element \(\text{elem}(P) = x \in H \), where \(a_{i_j} \in A \); b) \(a_{i_1} \cdots a_{i_k} \) is a shortest word for generator \(x_j \in X \) (i.e. \(|x_j|_G = k_j \), \(j = 1, \ldots, s \); c) \(x = x_1 \cdots x_s \) in \(H \), \(|x|_H = s \).

I.e. \(P \) is a broken line in \(\Gamma(G, A) \) with segments corresponding to shortest representations of generators of \(H \) by means of \(A \).

Lemma 1.6. (see also [10; Lemma 2.4]) Let \(H \) be a (finitely generated) subgroup of a \(\delta \)-hyperbolic group \(G \). Then \(H \) is quasiconvex iff \(H \) is undistorted in \(G \).

Proof. The necessity is given by remark 1.

To prove the sufficiency, suppose \(H = \langle X \rangle, \quad card(X) < \infty, \quad D_H(n) \leq cn, \forall n \in \mathbb{N}, \quad c > 0 \). For arbitrary two vertices \(x, y \in H \) there is a \(H \)-path \(q \) connecting them in \(\Gamma(G, A) \). Let \(p \) be any its subpath. By definition, there exists a subpath \(p' \) of \(q \) such that \(p'_-, p'_+ \in H \), subpaths of \(q \) from \(p_- \) to \(p'_- \) and from \(p_+ \) to \(p'_+ \) are geodesic, and \(d(p_-, p'_-) \leq \varepsilon/2, d(p_+, p'_+) \leq \varepsilon/2, \) where \(\varepsilon = \max\{|h|_G : h \in X\} < \infty \). In particular, \(p' \) is also \(H \)-geodesic. Using the property c) from the definition of a \(H \)-path we obtain

\[||p'|| \leq \varepsilon \cdot |\text{elem}(p')|_H \leq \varepsilon \cdot c \cdot d(p'_-, p'_+). \]

Therefore, \(||p'|| = ||p'|| + \varepsilon \leq \varepsilon \cdot c \cdot d(p'_-, p'_+) + \varepsilon \leq \varepsilon \cdot c \cdot d(p_-, p_+) + \varepsilon^2 c + \varepsilon, \) which shows that \(q \) is \((\frac{1}{2}, \varepsilon + \frac{1}{2})\)-quasigeodesic. By lemma 1.1 \(\exists N = N(\varepsilon, c) \) such that any geodesic path between \(x \) and \(y \) belongs to the closed \(N \)-neighborhood \(O_N(q) \) but \(q \subset O_{N/2}(H) \) in the Cayley graph of \(G \). Hence, \(H \) is quasiconvex with the constant \((N + \varepsilon/2) \), and the lemma is proved. □

During this proof we showed

Remark 2. If \(H \) is a quasiconvex subgroup of a hyperbolic group \(G \) then any \(H \)-path is \((\lambda, c)\)-quasigeodesic for some \(\lambda, c \) depending only on the subgroup \(H \).

Let the words \(W_1, \ldots, W_l \) represent elements \(w_1, \ldots, w_l \) of infinite order in a hyperbolic group \(G \). For a fixed constant \(K \) consider the set \(S_M = S(W_1, \ldots, W_l; K, M) \) of words

\[W = X_0 W_1^\alpha_1 X_1 W_2^\alpha_2 X_2 \cdots W_l^\alpha_l X_l \]
where \(|X_i| \leq K\) for \(i = 0, 1, \ldots, l\), \(|\alpha_2|, \ldots, |\alpha_{l-1}| \geq M\), and the element of \(G\) represented by \(X_i^{-1}W_iX_i\) does not belong to the maximal elementary subgroup \(E(w_{i+1}) \leq G\) containing \(w_{i+1}\) for \(i = 1, \ldots, l - 1\).

Lemma 1.7. ([5; Lemma 2.4]) There exist constants \(\lambda > 0\), \(c \geq 0\) and \(M > 0\) (depending on \(K, W_1, \ldots, W_l\)) such that any path in \(\Gamma(G, A)\) labelled by an arbitrary word \(W \in S_M\) is \((\lambda, c)\)-quasigeodesic.

Lemma 1.8. Suppose \(l \in \mathbb{N}, K > 0\), and \(w_1, \ldots, w_l \in G\) are elements of infinite order. Then there are \(\lambda > 0\), \(c \geq 0\) and \(M > 0\) (depending on \(K, w_1, \ldots, w_l\)) such that for arbitrary \(x_0, x_1, \ldots, x_l \in G\), \(|x_i|_G \leq K, i = 0, \ldots, l\), with conditions \(w_i \notin x_iE(w_{i+1})x_i^{-1} \forall i \in \{1, \ldots, l-1\}\), and any \(\alpha_i \in \mathbb{Z}, |\alpha_i| \geq M, i = 2, \ldots, l - 1\), the element

\[
w = x_0w_1^{\alpha_1}x_1w_2^{\alpha_2}x_2 \cdots w_l^{\alpha_l}x_l \in G
\]

satisfies \(|w|_G \geq \lambda|\alpha_1| - c\).

Proof. As follows from Lemma 1.7 and the definition of a \((\lambda, c)\)-quasigeodesic path, one has the following inequality:

\[
|w|_G \geq \lambda \cdot \left(|x_0|_G + \sum_{i=1}^{l} (|\alpha_i||w_i|_G + |x_i|_G) \right) - c \geq \lambda \cdot |\alpha_1||w_1|_G - c \geq \lambda|\alpha_1| - c.
\]

\[\square\]

2. Quasiconvex sets and their products

Remark 3. Any finite subset of \(G\) is \(d\)-quasiconvex (where \(d\) is the diameter of this set).

Remark 4. Let \(Q \subseteq G\) be \(\varepsilon\)-quasiconvex, \(g \in G\). Then (a) the left shift \(gQ = \{gx \mid x \in Q\}\) is quasiconvex with the same constant; (b) the right shift \(Qg = \{xg \mid x \in Q\}\) is quasiconvex (possibly, with a different quasiconvexity constant).

(a) holds because the metric \(d(\cdot, \cdot)\) is left-invariant.

\(x, y \in Q\) if and only if \(xg, yg \in Qg\). By remark 0

\[
[xg, yg] \subset O_{2\delta}([x, xg] \cup [x, y] \cup [y, yg]) \subset O_{2\delta+|g|_G}([x, y]) \subset O_{2\delta+|g|_G+\varepsilon}(Q) \subset O_{2\delta+2|g|_G+\varepsilon}(Qg)
\]

therefore (b) is true.

Therefore, a left coset of a quasiconvex subgroup and a conjugate subgroup to it are quasiconvex (in a hyperbolic group).

Lemma 2.1. (see also [11; Prop. 3.14]) A finite union of quasiconvex sets in a hyperbolic group \(G\) is quasiconvex.

Proof. It is enough to prove that if \(A, B \subset G\) are \(\varepsilon_i\)-quasiconvex, \(i = 1, 2\), respectively, then \(C = A \cup B\) is quasiconvex.
Hence \(d \) (see Figure 1).

By remark 0 we have \([x, y] \subset O_{2\delta}(x, a \cup [a, b] \cup [b, y]). \) After denoting \(d(a, b) = 2\eta \) we obtain \([x, a] \subset O_{\epsilon_1}(A), [b, y] \subset O_{\epsilon_2}(B), [a, b] \subset O_\eta(A \cup B). \) Hence \([x, a] \cup [a, b] \cup [b, y] \subset O_{max(\epsilon_1, \epsilon_2, \eta)}(C), \) consequently, \([x, y] \subset O_{max(\epsilon_1, \epsilon_2, \eta) + 2\delta}(C), \) and the lemma is proved. □

Proof of Proposition 1. Assume \(n = 2 \) (for \(n > 2 \) the statement will follow by induction).

So, let \(A, B \) be \(\epsilon_i \)-quasiconvex subsets of \(G \) respectively, \(i = 1, 2. \)

Consider arbitrary \(a_1b_1a_2b_2 \in AB, a_i \in A, b_i \in B_i, i = 1, 2, \) and fix an element \(b \in B, |b|_G = \eta. \) Then, since the triangles are \(\delta \)-slim,

\[
[b_1, 1_G] \subset O_\delta([b, 1_G] \cup [b, b_1]) \subset O_{3\delta + \eta}([b, b_1]) \subset O_{3\delta + \eta + \epsilon_2}(B).
\]

Denoting \(\epsilon_3 = \delta + \eta + \epsilon_2, \) one obtains \([b_1, 1_G] \subset O_{\epsilon_3}(B) \) and, similarly, \([b_2, 1_G] \subset O_{\epsilon_3}(B). \) Therefore, \([a_1b_1, a_1] \subset O_{\epsilon_3}(a_1B), [a_2b_2, a_2] \subset O_{\epsilon_3}(a_2B). \)

Also, observe that \(\forall a \in A \quad d(a, ab) = |b|_G = \eta, \) i.e. \(A \subset O_\eta(AB) \subset O_\eta(AB), \) hence \([a_1, a_2] \subset O_{\epsilon_1}(A) \subset O_{\epsilon_1 + \eta}(AB). \) And using remark 0 we achieve

\[
[a_1b_1, a_2b_2] \subset O_{3\delta}([a_1b_1, a_1] \cup [a_1, a_2] \cup [a_2b_2, a_2]) \subset O_{3\delta + max(\epsilon_1, \epsilon_2, \eta)}(AB),
\]

q.e.d. □

Corollary 1. In a hyperbolic group \(G \) every quasiconvex product is a quasiconvex set.

This follows directly from the proposition 1 and part (a) of remark 4.

3. Intersections of quasiconvex products

Set a partial order on \(\mathbb{Z}^2: (a_1, b_1) \leq (a_2, b_2) \) if \(a_1 \leq a_2 \) and \(b_1 \leq b_2. \) As usual, \((a_1, b_1) < (a_2, b_2)\) if \((a_1, b_1) \leq (a_2, b_2)\) and \((a_1, b_1) \neq (a_2, b_2).\)
Definition: a finite sequence \(((i_1, j_1), (i_2, j_2), \ldots, (i_t, j_t))\) of pairs of positive integers will be called increasing if it is empty \((t = 0)\) or \((t > 0)\)
\((i_q, j_q) < (i_{q+1}, j_{q+1}) \forall q = 1, 2, \ldots, t - 1.\) This sequence will also be called \((n, m)\)-increasing \((n, m \in \mathbb{N})\) if \(1 \leq i_q \leq n, 1 \leq j_q \leq m\) for all \(q \in \{1, 2, \ldots, t\} \).

Note that the length \(t\) of an \((n, m)\)-increasing sequence never exceeds \((n + m - 1)\).

Instead of proving theorem 1 we will prove

Theorem 1’: Suppose \(G_1, \ldots, G_n, H_1, \ldots, H_m\) are quasiconvex subgroups of the group \(G, n, m \in \mathbb{N}; f, e \in G.\) Then there exist numbers \(r, t \in \mathbb{N} \cup \{0\}\) and \(f_t, \alpha_{t_k}, \beta_{t_k} \in G, k = 1, 2, \ldots, t\) (for every fixed \(l),
\(l = 1, 2, \ldots, r,\) such that

\[
\begin{align*}
(1) & \quad fG_1G_2 \cdots G_n \cap eH_1H_2 \cdots H_m = \bigcup_{l=1}^r f_l S_l
\end{align*}
\]

where for each \(l, t = t_l,\) there are indices \(1 \leq i_1 \leq i_2 \leq \ldots \leq i_t \leq n, 1 \leq j_1 \leq \ldots \leq j_t \leq m ;
\]

\[
\begin{align*}
(2) & \quad S_l = (G_{i_1}^{\alpha_{i_1}} \cap H_{j_1}^{\beta_{i_1}}) \cdots (G_{i_t}^{\alpha_{i_t}} \cap H_{j_t}^{\beta_{i_t}})
\end{align*}
\]

and the sequence \(((i_1, j_1), \ldots, (i_t, j_t))\) is \((n, m)\)-increasing.

For our convenience, let us also introduce the following

Definition: the unions as in the right-hand side of (1) will be called special \((n, m)\)-products.

Lemma 3.1: Consider a geodesic polygon \(X_0X_1 \ldots X_n\) in the Cayley graph \(\Gamma(G, A), n \geq 2.\) Then there are points \(X_i \in [X_i; X_{i+1}], i = 1, 2, \ldots, n - 1,\) such that setting \(X_0 = X_0, X_n = X_n,\) we have \((X_i-1; X_{i+1}) \leq \delta\) and \(d(X_i, [X_{i-1}; X_i]) \leq \delta,\) for \(1 \leq i \leq n - 1.\)

Proof of the lemma. First, we recursively construct the vertices \(\bar{X}_i.\) Let \(X_1 \in [X_1; X_2], \bar{U}_1 \in [X_0; X_1]\) be the "special" points of the geodesic triangle \(X_0X_1X_2,\) i.e. \(|X_1 - X_1| = |X_1 - \bar{U}_1| = (X_0|X_2)X_1.\) Now, if \(X_{i-1}\) is constructed, denote by \(\bar{X}_i \in [X_i; X_{i+1}], \bar{U}_i \in [X_{i-1}; X_i]\) the special points of triangle \(X_{i-1}X_iX_{i+1}((X_i - \bar{X}_i) = |X_i - \bar{U}_i| = (X_{i-1}|X_{i+1})X_i.\) (Figure 2)

Then \(d(\bar{X}_i, [X_{i-1}; X_i]) \leq |X_i - \bar{U}_i| \leq \delta, \forall i = 1, 2, \ldots, n - 1.\)

For the other part of the claim we will use induction on \(n.\)

\(\text{If } n = 2,\) then
\[
(X_0|X_2)_{X_1} \overset{\text{def}}{=} \frac{1}{2}(|X_0 - \bar{X}_1| + |X_2 - \bar{X}_1| - |X_0 - X_2|) \leq \frac{1}{2}(|X_0 - \bar{U}_1| + |\bar{U}_1 - X_1| + |X_2 - X_1| - |X_0 - X_2|) = \frac{1}{2} |\bar{U}_1 - X_1| \leq \frac{\delta}{2} \leq \delta
\]

Suppose, now, that \(n \geq 3.\) Let us evaluate the Gromov product \((X_0|X_2)_{X_1}.\)
\[
(X_0|X_2)_{X_1} = \frac{1}{2}(|X_0 - \bar{X}_1| + |X_2 - \bar{X}_1| - |X_0 - X_2|)
\]
The lemma is proved.

Now we notice that $\bar{\triangle} X_0 | X \in i = 1$ and ending at 0 and a path corresponding to $X_0 - X_2$.

Consider a pair of (non-geodesic) polygons associated with X_0. Choose an arbitrary $x = g_1 g_2 \ldots g_n = e h_1 h_2 \ldots h_m$ where $g_i \in G_i$, $h_j \in H_j$, $i = 1, \ldots, n$, $j = 1, \ldots, m$.

Choose an arbitrary $x \in T$, $x = f g_1 g_2 \ldots g_n = e h_1 h_2 \ldots h_m$ where $g_i \in G_i$, $h_j \in H_j$, $i = 1, \ldots, n$, $j = 1, \ldots, m$.

Figure 2

$$|\bar{X}_2 - \bar{X}_1| = |\bar{X}_1 - \bar{U}_2| + |\bar{X}_2 - \bar{U}_2| \leq |\bar{X}_1 - \bar{U}_2| + \delta, |X_0 - \bar{X}_1| \leq |X_0 - \bar{U}_1| + \delta.$$

$|X_0 - \bar{U}_1| + |X_2 - \bar{X}_1| = |X_0 - X_2|$ by the definition of special points of the triangle $X_0 X_2$. Therefore

$$|X_0 - \bar{X}_1| + |\bar{X}_2 - \bar{X}_1| \leq |X_0 - \bar{U}_1| + |\bar{X}_1 - \bar{U}_2| + 2\delta =$$

$$= |X_0 - \bar{U}_1| + (|X_2 - \bar{X}_1| - |X_2 - \bar{U}_2|) + 2\delta = |X_0 - X_2| - |X_2 - \bar{X}_2| + 2\delta.$$

Now we notice that $|X_0 - X_2| - |X_2 - \bar{X}_2| \leq |X_0 - X_2|$ and obtain:

$$(\bar{X}_0|X_2)_X \leq \frac{1}{2}(|X_0 - X_2| + 2\delta - |X_0 - \bar{X}_2|) = \delta.$$

To the n-gon $\bar{X}_1 X_2 \ldots X_n$ we can apply the induction hypothesis.

The lemma is proved. \square

Proof of theorem 1'. Define $T = f G_1 G_2 \ldots G_n \cap e H_1 H_2 \ldots H_m$.

Fix some finite generating sets in every G_i, H_j and denote

$$K_1 = \max \{1 : |f| G : |\text{generators of } G_i| G : i = 1, 2, \ldots, n\} < \infty,$$

$$K_2 = \max \{1 : |e| G : |\text{generators of } H_j| G : j = 1, 2, \ldots, m\} < \infty.$$

Induction on $(n + m)$.

If $n = 0$ or $m = 0$, then $\text{card}(T) \leq 1$ and the statement is true.

Let $n \geq 1$ and $m \geq 1$, $n + m \geq 2$.

Consider a pair of (non-geodesic) polygons associated with x in $\Gamma(G, A)$:

$P = X_0 p_1 X_1 p_2 \ldots p_n X_0 p_0$ and $Q = Y_0 q_1 Y_1 q_2 \ldots q_m Y_0 q_0$ with vertices $X_0 = Y_0 = 1_G$, $X_i = f g_1 \ldots g_i \in G$, $Y_j = e h_1 \ldots h_j \in G$, $i = 1, \ldots, n$, $j = 1, \ldots, m$, and edges p_0, p_1, \ldots, p_n, q_0, q_1, \ldots, q_m. Such that p_1, starting at X_0 and ending at X_1, is a union of a geodesic path corresponding to f and a G_i-path corresponding to g_i, p_i is a G_i-path labelled by a word representing the element g_i in G from X_{i-1} to X_i, $i = 2, \ldots, n$; p_0 is the geodesic path $[X_n, X_0]$ (Figure 3).
By construction, there are constants \(\lambda_i, c_i \) (not depending on \(x \in T \)) such that the segments \(p_i, i = 1, \ldots, n \) are \((\lambda_i, c_i) \)-quasigeodesics respectively.

Similarly one constructs the paths \(q_j, j = 0, \ldots, m \).

Therefore the geodesic path \(p_0 = [X_0; X_n] = [Y_0; Y_m] = q_0 \) will be labelled by a word representing \(x \) in our Cayley graph.

We will also consider the geodesic polygons \(X_0X_1 \ldots X_n \) and \(Y_0Y_1 \ldots Y_m \) with same vertices as \(P \) and \(Q \) respectively.

Recalling the property of quasigeodesic paths, for each \(i = 1, \ldots, n \)

\[
\text{[} j = 1, \ldots, m \text{]} \quad \text{we obtain a constant } N_i > 0 \quad [M_j > 0] \quad \text{(not depending on the element } x \in T \text{)} \quad \text{such that}
\]

\[
(i) \quad [X_{i-1}, X_i] \subset O_{N_i}(p_i) \quad [\quad [Y_{j-1}, Y_j] \subset O_{M_j}(q_j) \quad].
\]

Define \(L = \max\{N_1, \ldots, N_n, M_1, \ldots, M_m\} \).

a) Suppose \(n, m \geq 2 \) (after considering this case, we will see the other cases, when \(n = 1 \) or \(m = 1 \) are easier).

Let’s focus our attention on the polygons \(X_0 \ldots X_n \) and \(P \) since everything for the two others can be done analogously.

One can apply lemma 3.1 and obtain \(\bar{X}_1 \in [X_i; X_{i+1}], i = 1, \ldots, n-1 \), such that \((\bar{X}_{i-1}\bar{X}_{i+1})_{\bar{X}_i} \leq \delta, i = 1, \ldots, n-1, (\bar{X}_0 = X_0 = 1_G, \bar{X}_n = X_n = x) \), along with \(\bar{U}_i \in [\bar{X}_{i-1}; \bar{X}_i], |\bar{X}_i - \bar{U}_i| \leq \delta, i = 1, \ldots, n-1 \).

Now, using (i), we obtain points \(\bar{X}_i \in p_{i+1}, i = 1, \ldots, n-1 \), satisfying \(d(\bar{X}_i; X_i) \leq L \quad (X_0 = X_0 = 1_G, X_n = X_n = x) \) and \(\bar{U}_1 \in p_1 \) satisfying \(d(\bar{U}_1, \bar{U}_1) \leq L \). For each \(i \in \{1, 2, \ldots, n-2\} \) the triangle \(\bar{X}_i \bar{X}_{i+1} \bar{X}_{i+1} \) is \(\delta \)-slim, hence \(\exists U_{i+1} \in [X_i; X_{i+1}] : d(U_{i+1} \bar{U}_{i+1}) \leq L + \delta \). The segment of \(p_{i+1} \) between \(\bar{X}_i \) and \(X_{i+1} \) is quasigeodesic with the same constants as \(p_{i+1} \), therefore there is a point \(\bar{U}_{i+1} \in p_{i+1} \) between \(\bar{X}_i \) and \(X_{i+1} \) such that \(d(U_{i+1} \bar{U}_{i+1}) \leq L \), and, consequently, \(d(U_{i+1} \bar{U}_{i+1}) \leq 2L + \delta \) (see Figure 4).
Let α_t denote the segment of p_t from \bar{X}_{t-1} to X_t, $t = 2, \ldots, n$, and β_s – the subpath of p_s from X_{s-1} to U_s, $s = 1, \ldots, n - 1$. Shifting the points $\bar{X}_i, \bar{U}_i, i = 1, \ldots, n - 1$, along their sides of P (so that \bar{U}_i still stays between \bar{X}_{i-1} and X_i on p_i) by distances at most K_1, we can achieve $\text{elem}(\beta_1) \in fG_1$ (i.e., $\text{lab}(\beta_1)$ represents an element of fG_1), $\text{elem}(\alpha_t) \in G_{t+1}$, $\text{elem}(\beta_s) \in G_s$, $t = 2, \ldots, n$, $s = 1, 2, \ldots, n - 1$. And after this, setting, for brevity, $K = \max\{K_1 + \frac{3}{2}L, K_2 + \frac{3}{2}L\}$, one obtains

$$(X_{i-1}, X_{i+1}) \leq \delta + 3K_1 + 3L \leq \delta + 3K \leq 14\delta + 3K \overset{\text{def}}{=} C_0,$$

$$|\bar{X}_i - \bar{U}_i| \leq \delta + 2K_1 + 3L + \delta \leq 2\delta + 2K, \quad i = 1, \ldots, n - 1.$$

Let $\text{elem}(\beta_1) = f\bar{g}_1$, $\text{elem}(\beta_i) = \bar{g}_i$, $i = 1, \ldots, n - 1$, $\text{elem}(\alpha_n) = \bar{g}_n$, where $\bar{g}_k \in G_k$, $k = 1, 2, \ldots, n$. $\text{elem}([U_i; X_i]) = u_i \in G, G_{i+1}$, $i = 1, \ldots, n - 1$.

Then $|u_i| \leq 2\delta + 2K$, and there are only finitely many of possible u_i's for every $i \in \{1, 2, \ldots, n - 1\}$. Hence, we achieved the following representation for x:

$$x \overset{\alpha}{=} f\bar{g}_1u_1\bar{g}_2u_2 \cdot \cdot \cdot \bar{g}_{n-1}u_{n-1}\bar{g}_n.$$

Similarly, one can obtain

$$x \overset{\alpha}{=} e\bar{h}_1v_1\bar{h}_2v_2 \cdot \cdot \cdot \bar{h}_{m-1}v_{m-1}\bar{h}_m.$$

11
where $\bar{h}_j \in H_j$, $j = 1, \ldots, m$; $v_j \in H_jH_{j+1}$ and $|v_j|_G \leq 2\delta + 2K$ for every $j = 1, 2, \ldots, m - 1$ (see Figure 5).

$\mathcal{U}_i \overset{\text{def}}{=} \{ u \in G_iG_{i+1} : |u|_G \leq 2\delta + 2K \} \subset G$, $i = 1, \ldots, n - 1$, card(\mathcal{U}_i) $< \infty$, $\forall i = 1, \ldots, n - 1$. For convenience, $\mathcal{U}_0 = \mathcal{U}_n = G_0 = G_{n+1} \overset{\text{def}}{=} \{1_G\}$.

Analogously, define $\mathcal{V}_j \subset H_jH_{j+1}$, $j = 1, \ldots, m - 1$, and again,

$\mathcal{V}_0 = V_m = H_0 = H_{m+1} \overset{\text{def}}{=} \{1_G\}$.

Set $D = 14(\delta + C_0) + 3K = \text{const}$, and $\mathcal{L} = \{ g \in G : |g|_G \leq D \}$. At last, we denote

$$\Delta_i = \mathcal{U}_{i-1} \cdot (\mathcal{L} \cap G_i) \cdot \mathcal{U}_i \subset G_{i-1}G_iG_{i+1} \subset G, \ i = 1, 2, \ldots, n,$$

$$\Theta_i = \mathcal{V}_{j-1} \cdot (\mathcal{L} \cap H_j) \cdot \mathcal{V}_j \subset H_{j-1}H_jH_{j+1} \subset G, \ j = 1, 2, \ldots, m.$$

By construction, card(Δ_i) $< \infty$, card(Θ_i) $< \infty$, $\forall i, j$.

Take any $i \in \{1, 2, \ldots, n\}$ and consider the intersection

$$T \supseteq fG_1G_2 \cdot \ldots \cdot G_{i-1} \Delta_i G_{i+1} \cdot \ldots \cdot G_n \cap eH_1 \cdot \ldots \cdot H_m =$$

$$= \bigcup_{g \in \Delta_i} [fG_1G_2 \cdot \ldots \cdot G_{i-1}gG_{i+1} \cdot \ldots \cdot G_n \cap eH_1 \cdot \ldots \cdot H_m] =$$

$$= \bigcup_{g \in \Delta_i} [fg(g^{-1}G_1g)(g^{-1}G_2g) \cdot \ldots \cdot (g^{-1}G_{i-1}g)G_{i+1} \cdot \ldots \cdot G_n \cap eH_1 \cdot \ldots \cdot H_m].$$

Because of remark 4, one can apply the induction hypothesis to the last expression and conclude that it is a (finite) "special" union. Hence,

$$(3) \quad T_1 \overset{\text{def}}{=} \bigcup_{i=1}^n [fG_1G_2 \cdot \ldots \cdot G_{i-1} \Delta_i G_{i+1} \cdot \ldots \cdot G_n \cap eH_1 \cdot \ldots \cdot H_m]$$

is also a finite special union.

Because of the symmetry, we parallely showed that

$$(4) \quad T_2 \overset{\text{def}}{=} \bigcup_{j=1}^m [fG_1 \cdot \ldots \cdot G_n \cap eH_1H_2 \cdot \ldots \cdot H_{j-1} \Theta_j H_{j+1} \cdot \ldots \cdot H_m]$$

is a finite "special" union.

We have just proved that there exist $r_1 \in \mathbb{N} \cup \{0\}$, $f_1 \in G$ and increasing (n, m)-products S_l, $l = 1, 2, \ldots, r_1$, such that

$$T_1 \cup T_2 = \bigcup_{l=1}^{r_1} f_1 S_l \subset T.$$

$$T = T_1 \cup T_2 \cup T_3, \text{ where } T_3 \overset{\text{def}}{=} T \setminus (T_1 \cup T_2).$$

Now, let’s consider the case $x \in T_3$. It means that in representations (\ast) and ($\ast\ast$) for x, $|\bar{y}_i|_G > D$,

$|h_j|_G > D$, for $D = 14(\delta + C_0) + 3K$ and $\forall i = 1, \ldots, n, \forall j = 1, \ldots, m$.

Therefore, returning to the pair of polygons we constructed, one will have:
We also possess the following inequalities: \(|\bar{X}_n - \bar{X}_1| \geq |\bar{y}_1| \sigma - |f| \sigma - |u_1| \sigma > 14(\delta + C_0) + 3K - K - 2\delta - 2K = 12(\delta + C_0) + 2C_0 \).\(^{\text{def}}\) \(C_1, |||X_{n-1}; X_1||| \geq |\bar{y}_1| \sigma - |u_1| \sigma > 14(\delta + C_0) + 3K - 2\delta - 2K > C_1, i = 2, \ldots, n - 1, |||X_{n-1}; X_1||| = |\bar{y}_1| \sigma > C_1.\)

We also possess the following inequalities: \((\bar{X}_{n-1}; \bar{X}_1)_{X_i} \subset C_0, i = 1, \ldots, n - 1, \)

\(C_0 \geq 14C, C_1 > 12(\delta + C_0).\)

By lemma 1.3, the broken line \([\bar{X}_0; \bar{X}_1; \ldots; \bar{X}_n]\) is contained in the closed \(C = 2C_0\)-neighborhood of the geodesic segment \([\bar{X}_0; \bar{X}_n]\). In particular,

\[
(5) \quad d(X_{n-1}, [X_0; X_n]) \leq C.
\]

A similar argument shows that \(d(Y_{m-1}, [Y_0; Y_m]) = C, \) and, since \([\bar{X}_0; \bar{X}_n] = [X_0; X_n] = [Y_0; Y_m] = [Y_0; Y_m],\) one has

\[
(6) \quad d(Y_{m-1}, [X_0; X_n]) \leq C.
\]

b) In the previous case we assumed that \(n, m \geq 2 \) and we needed quite a long argument to prove (5) and (6). On the other hand, if, for example, \(n = 1, \) then \(X_0 = X_{n-1} \) and (5) is trivial.

Because of (5) and (6) one can choose \(W, Z \in [X_0; X_n] \) with the properties \(|W - X_{n-1}| \leq C, |Z - Y_{m-1}| \leq C.\)

The first possibility is, when the point \(W \) on \([X_0; X_n]\) lies between \(Z \) and \(X_n, \) i.e. \(W \in [Z; X_n].\)

Then, since triangles are \(\delta \)-thin in the hyperbolic space \(\Gamma(G, A),\) \(d(W, [Y_{m-1}; X_1]) \leq C + \delta.\) Hence \(d(X_{n-1}, [Y_{m-1}; X_1]) \leq 2C + \delta.\) Consequently, because \(q_m \) is quasigeodesic, there exists a point \(R \) on the subpath \(\gamma \) of \(q_m \) from \(Y_{m-1} \) to \(Y_m \) such that \(d(X_{n-1}, R) \leq 2C + \delta + K + M_m\) (\(M_m \) is the same as in \(\gamma \)) and \(\text{elem}([R; Y_m]) = \text{elem}(\gamma) = h_m \in H_m.\)

Define \(\Omega = \{ g \in G_n H_m : |g| \leq 2C + \delta + K + M_m \}.\) Therefore \(\text{card}(\Omega) < \infty \) and \(\text{elem}(\{X_{n-1}; R\}) \in \Omega.\)

For each element \(g \in \Omega \) take a pair \(g' \in G_n, h' \in H_m \) such that \(g = g'h'.\) By \(G' \subset G_n \) denote the set of all elements \(g' \) which we have chosen, by \(H' \subset H_m - \text{set of all } h'\)’s.

\[
x = f g_1 u_1 \ldots u_{n-1} g_n = e h_1 v_1 \ldots v_{m-1} h_m.
\]
From the triangle X_nXnR we obtain $\bar{g}_n\hat{h}_m^{-1} = g'h' \in \Omega$, $g' \in G'$, $h' \in H'$. Thus $(g')^{-1}\bar{g}_n = h'\hat{h}_m \in G_n \cap H_m$.

$$x \in fG_1G_2 \cdot \ldots \cdot G_{n-1} \cdot u_{n-1}g' \cdot ((g')^{-1}\bar{g}_n) \cap eH_1H_2 \cdot \ldots \cdot H_{m-1}H_m \subset$$

$$\subset fG_1G_2 \cdot \ldots \cdot G_n \cdot U_{n-1}G' \cdot (G_n \cap H_m) \cap eH_1H_2 \cdot \ldots \cdot H_{m-1}H_m \subset T \cdot$$

Denote $I = U_{n-1} \cdot G' \subset G_n \cap G_n$ - a finite subset of G. Then

$$x \in fG_1G_2 \cdot \ldots \cdot G_{n-1}I \cdot (G_n \cap H_m) \cap eH_1H_2 \cdot \ldots \cdot H_{m-1}H_m =$$

$$= [fG_1G_2 \cdot \ldots \cdot G_{n-1}I \cap eH_1H_2 \cdot \ldots \cdot H_m] \cdot (G_n \cap H_m) \subset T \cdot$$

The second possibility, when $Z \in [W; X_n]$ is considered analogously, and, in this case, one obtains a finite subset $J \subset H_{m-1}H_m$ such that

$$x \in [fG_1G_2 \cdot \ldots \cdot G_n \cap eH_1H_2 \cdot \ldots \cdot H_{m-1}J] \cdot (G_n \cap H_m) \subset T \cdot$$

Therefore, we showed that $T_3 \subseteq [T_3^1 \cup T_3^2] \cdot (G_n \cap H_m) \subset T$ where

(7) $$T_3^1 \overset{def}{=} fG_1G_2 \cdot \ldots \cdot G_{n-1}I \cap eH_1H_2 \cdot \ldots \cdot H_m \cdot$$

(8) $$T_3^2 \overset{def}{=} fG_1G_2 \cdot \ldots \cdot G_n \cap eH_1H_2 \cdot \ldots \cdot H_{m-1}J \cdot$$

Combining the formulas (3),(4),(7),(8) and the property that if $H \leq G$ and $a \in H$ then $aH = Ha = H$, we obtain the following

Lemma 3.2. In notations of the theorem 1

$$fG_1G_2 \cdot \ldots \cdot G_n \cap eH_1H_2 \cdot \ldots \cdot H_m = T_1 \cup T_2 \cup [T_3^1 \cup T_3^2] \cdot (G_n \cap H_m) \cdot$$

where

$$T_1 = \bigcup_{i=1}^{n} \left(fG_1G_2 \cdot \ldots \cdot G_{i-1} \Delta_i \Delta_{i+1} \cdot \ldots \cdot G_n \cap eH_1 \cdot \ldots \cdot H_m \right) \cdot$$

$$T_2 = \bigcup_{j=1}^{m} \left(fG_1 \cdot \ldots \cdot G_n \cap eH_1H_2 \cdot \ldots \cdot H_{j-1} \Theta_i \Theta_{j+1} \cdot \ldots \cdot H_m \right) \cdot$$

$$T_3^1 = fG_1G_2 \cdot \ldots \cdot G_{n-1}I \cap eH_1H_2 \cdot \ldots \cdot H_m \cdot$$

$$T_3^2 = fG_1G_2 \cdot \ldots \cdot G_n \cap eH_1H_2 \cdot \ldots \cdot H_{m-1}J \cdot$$

for some finite subsets $\Delta_i \subset G_i, \Theta_j \subset H_j$, $I \subset G_n, J \subset H_m$, $1 \leq i \leq n$, $1 \leq j \leq m$.

Now, to finish the proof of the theorem, we apply the inductive hypothesis:

$$T_3 \subseteq \bigcup_{g \in I} \left[fG_1G_2 \cdot \ldots \cdot G_{n-1}g \cap eH_1H_2 \cdot \ldots \cdot H_m \right] \cdot (G_n \cap H_m) \cup$$

14
∪ \bigcup_{h \in J} [fG_1 G_2 \ldots \cdot G_n \cap eH_1 H_2 \ldots \cdot H_{m-1} h] \cdot (G_n \cap H_m) = \\
= \bigcup_{g \in I} \left[fG_1 G_2 \ldots \cdot G_{n-1} \cap eH_1 H_2 \ldots \cdot H_m \right] \cdot (G_n \cap H_m) \cup \\
\bigcup_{h \in J} [fG_1 G_2 \ldots \cdot G_n \cap eH_1 H_2 \ldots \cdot H_{m-1} \cdot eH_1 H_2 \ldots \cdot H_{m-1} h] \cdot (G_n \cap H_m) = \\
= \left(\bigcup_{g \in I} \left[\bigcup_{k=1}^{\tilde{r}} \tilde{f}_k \tilde{S}_k \right] \cup \bigcup_{h \in J} \left[\bigcup_{q=1}^{\hat{r}} \hat{f}_q \hat{S}_q \right] \right) \cdot (G_n \cap H_m) = \\
= \bigcup_{l=r_1+1}^{r} f_l S_l \subseteq T .

Here \(\tilde{r}, \hat{r}, r \in \mathbb{N} \cup \{0\} \), \(r \geq r_1, \tilde{f}_k, \hat{f}_q, f_l \in G \); \(\tilde{S}_k \) is an \((n-1,m)\)-increasing product,
\(\hat{S}_q \) is an \((n,m-1)\)-increasing product and \(S_l \) is an \((n,m)\)-increasing product;
\(k = 1, \ldots, \tilde{r} \); \(q = 1, \ldots, \hat{r} \); \(l = r_1 + 1, \ldots, r \).

Hence,

\[T = T_1 \cup T_2 \cup T_3 \subseteq \bigcup_{l=1}^{r} f_l S_l \subseteq T , \]

and, thus

\[T = \bigcup_{l=1}^{r} f_l S_l . \]

So, the theorem is proved. \(\square \)

Proof of Corollary 2. Observe that arbitrary quasiconvex product \(f_1 G_1 f_2 G_2 \cdot \ldots \cdot f_n G_n \) is equal to a "transformed" product \(fG_1' G_2' \cdot \ldots \cdot G_n' \) where
\(G_i' = (f_{i+1} \cdot \ldots \cdot f_n)^{-1} G_i (f_{i+1} \cdot \ldots \cdot f_n), i = 1, \ldots, n-1, G_n' = G_n, \) are quasiconvex subgroups of \(G \) by remark 4 and \(f = f_1 f_2 \cdot \ldots \cdot f_n \in G \). It remains to apply theorem 1 to the intersection of "transformed products" several times because a \((n,m)\)-increasing product is also a quasiconvex product. \(\square \)

4. Products of elementary subgroups

Recall that a group \(H \) is called elementary if it has a cyclic subgroup \(\langle h \rangle \) of
finite index.

Remark 5. An elementary subgroup \(H \) of a hyperbolic group \(G \) is quasiconvex.

Indeed, we have : \(|H : \langle h \rangle| < \infty \). If the element \(h \) has a finite order, then
\(H \) is finite and, thus, quasiconvex. In the case, when the order of \(h \) is infinite,
by lemmas 1.2,1.1 \(\langle h \rangle \) is a quasiconvex subgroup of \(G \). By remark 4 and lemma
2.1 \(H \) is quasiconvex.

It is well known that any element \(x \) of infinite order in \(G \) is contained in a
unique maximal elementary subgroup \(E(x) \leq G \) (see [4]). And the intersection
Let \(\beta \) be a property:

\[
|\langle 1 \rangle| \leq 1
\]

Then, \(\exists \beta \) elements of infinite order. Also, assume \(G_i \neq G_{i+1} \), \(H_j \neq H_{j+1} \), \(i = 1, \ldots, n - 1 \), \(j = 1, \ldots, m - 1 \). If there is a sequence of positive integers \((t_k)_{k=1}^{\infty} \) with the properties:

\[
\lim_{k\to\infty} t_k = \infty \quad \text{and} \quad f g_1^{h_k} g_2^{h_k} \cdots g_n^{h_k} \in eH_1 H_2 \cdots H_m \quad \text{for all} \quad k \in \mathbb{N},
\]

then \(n = m, G_n = H_n \), and there exist elements \(z_i \in H_i, i = 1, \ldots, n \), such that \(G_i = \langle z_n z_{n-1} \cdots z_{i+1} \rangle \cdot H_i \cdot \langle z_n z_{n-1} \cdots z_{i+1} \rangle^{-1}, i = 1, 2, \ldots, n - 1 \), \(f = e z_1^{-1} z_2^{-1} \cdots z_n^{-1} \). Consequently, \(f G_1 \cdot \cdots \cdot G_n = eH_1 \cdot \cdots \cdot H_m \).

In the conditions of theorem 2', let \(h_j \in H_j \) be fixed elements of infinite order, \(j = 1, 2, \ldots, m \). Then \(G_i = E(y_i), H_j = E(h_j) \) and \(|G_i : \langle y_i \rangle| < \infty \), \(|H_j : \langle h_j \rangle| < \infty \). Hence, there exists \(T \in \mathbb{N} \) such that for all \(j \) and \(\forall v \in H_j \) there exists \(\beta \in \mathbb{Z}, y \in H_j : v = y \cdot h_j^\beta \) and \(|y|_G \leq T \). Thus, every element \(h \in eH_1 \cdot \cdots \cdot H_m \) can be presented in the form

\[
h = cy_1 h_1^{\beta_1} y_2 h_2^{\beta_2} \cdots y_m h_m^{\beta_m}
\]

where \(\beta_j \in \mathbb{Z}, y_j \in H_j, |y_j|_G \leq T, j = 1, 2, \ldots, m \).

Definition: the representation (9) for \(h \) will be called reduced if for any \(i, j \), \(1 \leq i \neq j \leq m \), such that \(\beta_i, \beta_j \neq 0 \), one has

\[
(y_{i+1} h_{i+1}^{\beta_{i+1}} \cdots h_{j-1}^{\beta_{j-1}} y_j)^{-1} \cdot h_i \cdot (y_{i+1} h_{i+1}^{\beta_{i+1}} \cdots h_{j-1}^{\beta_{j-1}} y_j) \notin H_j = E(h_j).
\]

Observe that each element \(h \in eH_1 \cdot \cdots \cdot H_m \) has a reduced representation. Indeed, if \((y_{i+1} h_{i+1}^{\beta_{i+1}} \cdots h_{j-1}^{\beta_{j-1}} y_j)^{-1} \cdot h_i \cdot (y_{i+1} h_{i+1}^{\beta_{i+1}} \cdots h_{j-1}^{\beta_{j-1}} y_j) \in H_j \) for some \(1 \leq i < j \leq m \) then there are \(\beta'_j \in \mathbb{Z}, y'_j \in H_j, |y'_j|_G \leq T \):

\[
y_j \cdot (y_{i+1} h_{i+1}^{\beta_{i+1}} \cdots h_{j-1}^{\beta_{j-1}} y_j)^{-1} \cdot h_i \cdot (y_{i+1} h_{i+1}^{\beta_{i+1}} \cdots h_{j-1}^{\beta_{j-1}} y_j) \cdot h_j^{\beta_j} = y'_j h_j^{\beta_j'}.
\]

Therefore,

\[
h = ey_1 h_1^{\beta_1} \cdots y_{i-1} h_{i-1}^{\beta_{i-1}} y_i y_{i+1} h_{i+1}^{\beta_{i+1}} \cdots y_{j-1} h_{j-1}^{\beta_{j-1}} y_j y_{j+1} h_{j+1}^{\beta_{j+1}} \cdots y_m h_m^{\beta_m}
\]

and the number of non-zero \(\beta_j \)'s is decreased. Continuing this process, we will obtain a reduced representation for \(h \) after a finite number of steps.
Proof of Theorem 2'. Let $h_j \in H_j$, $1 \leq j \leq m$, T, be as above. Induction on n.

If $n=1$, then, evidently, $m = 1$, and $\forall k \in \mathbb{N}$ there is $y_k \in H_1$, $|y_k| \leq T$, and $\beta_k \in \mathbb{Z}$ such that $f g_1^{t_k} = e y_k h_1^{\beta_k}$. Because of having $\lim_{k \to \infty} t_k = \infty$, one can choose $p, q \in \mathbb{N}$ so that $t_p < t_q$ and $y_p = y_q$. Therefore,

$$f g_1^{t_p} h_1^{-\beta_p} = e y_p = f g_1^{t_q} h_1^{-\beta_q},$$

and, thus, $g_1^{t_q-t_p} = h_1^{\beta_q-\beta_p}$ — an element of infinite order in the intersection of G_1 and H_1. Consequently, $G_1 = H_1$, because these subgroups are maximal elementary.

Assume, now, that $n > 1$. For every $k \in \mathbb{N}$ one has

$$f g_1^{t_k} g_2^{t_k} \cdots g_n^{t_k} = e y_{k+1} h_1^{\beta_1} \cdots y_{k+n} h_1^{\beta_n} m$$

where the product in the right-hand side is reduced. Obviously, there exists a subsequence $(t_k)_{k=1}^\infty$ of (t_k) and $C \in \mathbb{N}$ such that for each $j \in \{1, 2, \ldots, m\}$ either $|\beta_{kj}| \leq C$ for all k or $\lim_{k \to \infty} |\beta_{kj}| = \infty$.

Therefore, since $|y_{kj}| \leq T \forall k \in \mathbb{N}, \forall j$, there is a subsequence $(s_k)_{k=1}^\infty$ of (t_k) such that $y_{kj} = y_j \in H_j \forall j$, and if for $j \in \{1, \ldots, m\}$ we had $|\beta_{kj}| \leq C$ and $k \in \mathbb{N}$ then $\lim_{k \to \infty} |\beta_{kj}| = \infty$ for all other j's.

Thus, $\{1, 2, \ldots, m\} = J_1 \cup J_2$ where if $j \in J_1$ then $|\beta_{kj}| = \beta_j$ for every k, and if $j \in J_2$ then $\lim_{k \to \infty} |\beta_{kj}| = \infty$. Let $J_2 = \{j_1, j_2, \ldots, j_{\lambda}\} \subset \{1, 2, \ldots, m\}$, $j_1 < j_2 < \ldots < j_{\lambda}$, and denote

$$w_1 = y_1^{-1} \in H_1$$

if $j_1 = 1$, otherwise, if $j_1 > 1$,

$$w_1 = y_j^{-1} h_{j_1-1}^{\beta_j-1} \cdots h_1^{\beta_1-1} y_1^{-1} \in H_j H_{j_1-1} \cdots H_1,$$

$$\ldots$$

$$w_{\lambda} = y_{j_{\lambda}}^{-1} \in H_{j_{\lambda}}$$

if $j_{\lambda} = j_1 + 1$, otherwise, if $j_{\lambda} > j_1 + 1$,

$$w_{\lambda} = y_j^{-1} h_{j_{\lambda}-1}^{\beta_j-1} \cdots h_{j_{\lambda}+1-1} y_{j_{\lambda}+1-1}^{-1} \in H_{j_{\lambda}} H_{j_{\lambda}+1} \cdots H_{j_{\lambda}+1-1},$$

$$w_{\lambda+1} = 1_G$$

if $j_{\lambda} = m$, otherwise, if $j_{\lambda} < m$,

$$w_{\lambda+1} = y_1^{-1} h_{j_{\lambda}+1}^{\beta_1-\beta_{j_{\lambda}+1}} y_{j_{\lambda}+1}^{-1} \in H_1 H_{j_{\lambda}+1} \cdots H_{j_{\lambda}+1}.$$

To simplify the formulas, denote $\delta_{k\nu} = -\beta_{j_{k\nu}}$, $1 \leq \nu \leq \lambda$.

Then $\lim_{k \to \infty} |\delta_{k\nu}| = \infty$ for every $\nu = 1, 2, \ldots, \lambda$. (10) is equivalent to

$$w_k \overset{\text{def}}{=} f g_1^{s_k} g_2^{s_k} \cdots g_{n-1}^{s_k} w_{\lambda+1} h_{j_{\lambda}+1}^{\delta_{j_{\lambda}+1}} w_{j_{\lambda}+1}^{-1} \cdots w_2 h_{j_1}^{\delta_{j_1}} w_1 e^{-1} = 1_G$$

So, $|u_k| \leq 0$ for all $k \in \mathbb{N}$. Denote $K = \max\{|f_G|, |w_1 e^{-1}|_G, |w_2|_G, \ldots, |w_{\lambda+1}|_G\}$, and assume that $g_n \notin w_{\nu+1} E(h_{j_{\nu+1}}) w_{\nu+1}^{-1}$. The product in the right-hand side of (10) was reduced, therefore $h_{j_{\nu}} \notin w_{\nu} E(h_{j_{\nu-1}}) w_{\nu-1}^{-1}$, $\nu = 2, 3, \ldots, \lambda$. Thus, we can apply Lemma 1.6 to (11) and obtain $\lambda > 0$, $c \geq 0$.

17
and $M > 0$ (depending on K, $g_1, \ldots, g_n, h_{j_1}, \ldots, h_{j_n}$) such that if $s_k \geq M$ and $|\delta_{jk}| \geq M$, $\nu = 2, 3, \ldots, \infty$, then $|u_k| \geq \lambda \cdot s_k - c$. Now, by the choice of the sequence (s_k), there exists $N \in \mathbb{N}$ such that $s_k \geq M$ and $|\delta_{jk}| \geq M \forall k \geq N$, $\nu = 2, 3, \ldots, \infty$. Thus, taking $k \geq \max\{N, c/\lambda\} + 1$, we achieve a contradiction: $0 = |u_k| \geq \lambda \cdot s_k - c$.

Hence, $g_n \in w_{x'}E(h_{j_n})w_{x'}^{-1}$ which implies

$$
G_n = E(g_n) = w_{x'}E(h_{j_n})w_{x'}^{-1} = E(w_{x'}h_{j_n}w_{x'}^{-1}).
$$

Consequently, for every $k \in \mathbb{N}$, $w_{x'}g_k w_{x'}h_{j_n}^{x'} = y_k h_{j_n}^{y_k} \in H_{j_n}$ where $|y_k| \leq T$. By passing to a subsequence of (s_k) we can assume that $y_{j_n} = y_{j_n}' \in H_{j_n}$ for every k. Therefore

$$
u_k = f g_k g_2 \cdots g_{n-1} w_{x'}h_{j_n}^{y_k} \cdots w_{x'}h_{j_n}^{y_k} \cdots w_{x'}h_{j_n}^{y_k}w_{x'}^{-1} = 1_G.
$$

Suppose $\limsup_{k \to \infty} |\gamma_k| = \infty$. Since $E(g_{n-1}) = G_{n-1} \neq G_n = E(g_n)$, we have $g_{n-1} \notin w_{x'}E(h_{j_n})w_{x'}^{-1} = w_{x'}y_{j_n}'E(h_{j_n})(y_{j_n}')^{-1}w_{x'}^{-1}$ (because $y_{j_n}' \in H_{j_n}$).

Then for $K' = \max\{K, w_{x'}y_{j_n}'|G\}$ by Lemma 1.8 there exist $\lambda > 0$, $c > 0$ and $M > 0$ (depending on K', $g_1, \ldots, g_{n-1}, h_{j_1}, \ldots, h_{j_n}$) such that if $s_k \geq M$, $|\delta_{jk}| \geq M$, $\nu = 2, 3, \ldots, \infty$, and $|\gamma_k| \geq M$ then $|\nu_k| \geq \lambda \cdot s_k - c$. Now, by the assumption on (γ_k) and (γ_n), there exists $N \in \mathbb{N}$, $N > c/\lambda$, such that $s_N \geq M$, $|\delta_{Nj}| \geq M$, $\nu = 2, 3, \ldots, \infty$, and $|\gamma_N| > M$. Which leads us to a contradiction: $0 = |\nu_k| \geq \lambda \cdot s_k - c$.

Thus, $|\gamma_k| \leq C_1$ for some constant C_1, so, by passing to a subsequence as above, we can assume that $\gamma_k = \gamma \forall k \in \mathbb{N}$. Hence, after setting $z_\nu = w_{x'}y_{j_n}'h_{j_n}^{y_k}w_{x'}$, for every natural index k we will have

$$
u_k = f g_k g_2 \cdots g_{n-1} z_\nu h_{j_n}^{y_k} \cdots w_{x'}h_{j_n}^{y_k} \cdots w_{x'}h_{j_n}^{y_k}w_{x'}^{-1} = 1_G.
$$

Which implies $f g_k g_2 \cdots g_{n-1} \in \nu w_{x'}^{-1} h_{j_n} w_{x'}^{-1} h_{j_n} z_\nu - 1 = u H_{j_n}^2 \cdots H_{j_n}^{v_\nu} \cdots H_{j_n}^{w_\nu} \nu = 2, 3, \ldots, \infty - 1, v_\nu = z_\nu w_{x'}^{-1} \cdots w_{x'}^{-1} w_{x'}^{-1} w_{x'}^{-1} \cdots w_{x'}^{-1}$.

$n - 1 \geq m - 1 > \infty - 1$ and the other conditions of the theorem 2' are satisfied, therefore one can apply the induction hypothesis and obtain that $n - 1 = \infty - 1$, hence, $n = m = n$, $j_\nu = \nu$, $1 \leq \nu \leq \infty$ and, by definition, $w_\nu = y_{j_n} \in H_{\nu}$, $\nu = 1, 2, \ldots, n$, $w_{x'} = 1_G$, $z_\nu = z_\nu H_{n}$, and also $G_{n-1} = H_{j_n}^{v_\nu} = H_{n-1}^{v_\nu}$, and there exist $z_\nu \in H_{n}, 1 \leq i < n - 1$, such that

$$
G_i = (z_{n-1} z_{n-2} \cdots z_{i+1}) \cdot H_{i}^{v_\nu} \cdot (z_{n-1} z_{n-2} \cdots z_{i+1})^{-1} = (z_{n-1} \cdots z_{i+1}) H_{i} \cdot (z_{n-1} \cdots z_{i+1})^{-1}, i = 1, 2, \ldots, n - 2,
$$

where $z_\nu \in H_{n}$, $1 \leq \nu \leq n - 1$, $f = u (z_{n-1} \cdots z_{i+2})^{-1} = e_{n-1} \cdots e_{i+2}$.

By (12) $G_n = E(h_n) = H_n$. The proof of the theorem 2' is finished. \square
Suppose \(G_1, G_2, \ldots, G_n \) are infinite maximal elementary subgroups of \(G \), \(f_1, \ldots, f_n \in G \), \(n \in \mathbb{N} \cup \{0\} \).

Definition: the set \(P = f_1 G_1 f_2 G_2 \cdots f_n G_n \) will be called ME-product. Thus, if \(n = 0 \), we have the empty set. For convenience, we will also consider every element \(g \in G \) to be a ME-product. As in the proof of corollary 2, every such ME-product can be brought to a form (however, not unique)

\[P' = fG'_1 G'_2 \cdots G'_k \]

where \(0 \leq k \leq n \), \(f \in G \), \(G'_i \) are infinite maximal elementary subgroups, \(i = 1, 2, \ldots, k \), and \(G'_i \neq G'_{i+1} \), \(1 \leq i \leq k - 1 \). The number \(k \) in this case will be called rank of the ME-product \(P \) (thus, \(\text{rank}(P) = \text{rank}(P') = k \leq n \)).

A set \(U \) which can be presented as a finite union of ME-products has rank \(k \), by definition, if \(U = \bigcup_{i=1}^{t} P_i \), where \(P_i \), \(i = 1, \ldots, t \), are ME-products, and \(k = \max\{\text{rank}(P_i) | 1 \leq i \leq t\} \).

Note: an empty set is defined to have rank \(-1 \); any element of the group \(G \) is a ME-product of rank 0; thus any finite non-empty subset of \(G \) is a finite union of ME-products of rank 0.

Remark 6. the rank of a ME-product is defined correctly by theorem 2. By theorem 2' the definition of the rank of a finite union of ME-products is correct.

Lemma 4.1. Suppose \(P,R \) are ME-products in a hyperbolic group \(G \). Then the intersection \(T \overset{\text{def}}{=} P \cap R \) is a finite union of ME-products and its rank is at most \(\text{rank}(P) \). If \(\text{rank}(T) = \text{rank}(P) \) then \(T = P \).

Proof. Since a conjugate to an infinite maximal elementary subgroup is also infinite maximal elementary, it follows from theorem 1 that \(T \) is a finite union of ME-products \(P_i \), \(1 \leq i \leq t \) (for some \(t \in \mathbb{N} \cup \{0\} \)):

\[T = P \cap R = \bigcup_{i=1}^{t} P_i \]

For each \(i = 1, \ldots, t \), \(P_i \subseteq P \), therefore by theorem 2', \(\text{rank}(P_i) \leq \text{rank}(P) \) (otherwise we would get a contradiction), and \(\text{rank}(P_i) = \text{rank}(P) \) if and only if \(P_i = P \). Thus \(\text{rank}(T) = \max\{\text{rank}(P_i) | 1 \leq i \leq t\} \leq \text{rank}(P) \). If \(\text{rank}(T) = \text{rank}(P) \) then \(\text{rank}(P_i) = \text{rank}(P) \) for some \(i \), and so, \(P_i = P = T \). Q.e.d. □

As an immediate consequence of lemma 4.1 one obtains

Corollary 3. let \(P \) be a ME-product of rank \(n \) and \(U \) be a finite union of ME-products. Then the set \(P \cap U \) is a finite union of ME-products, \(\text{rank}(P \cap U) \leq n \), and if \(\text{rank}(P \cap U) = n \) then \(P \cap U = P \).

Corollary 4. A non-elementary hyperbolic group \(G \) can not be equal to a finite union of its ME-products.

Proof. Suppose, by the contrary, that \(G \) is a finite union of ME-products: \(G = P_1 \cup \ldots \cup P_1 \) and \(\text{rank}(G) = m \). Since \(G \) is not elementary, there exist
two elements $x, y \in G$ of infinite order such that $E(x) \neq E(y)$. Hence, one can construct a ME-product $P = G_1G_2 \cdots G_{m+1}$ in G where $G_i = E(x)$ if i is even, and $G_i = E(y)$ if i is odd. Consequently, $\text{rank}(P) = m + 1$, but $P \subset G$, thus

$$P \cap G = P = \bigcup_{j=1}^{l} (P_j \cap P).$$

By lemma 4.1, $\text{rank}(P_j \cap P) \leq \text{rank}(P_j) \leq m$ for every $j = 1, 2, \ldots, l$. Therefore, we achieve a contradiction with the definition of rank: $m + 1 = \text{rank}(P) = \text{rank}(P \cap G) \leq m$. □

A group H is called **bounded-generated** if it is a product of finitely many cyclic subgroups, i.e. there are elements $x_1, x_2, \ldots, x_k \in H$ such that every $h \in H$ is equal to $x_1^{s_1} x_2^{s_2} \cdots x_k^{s_k}$ for some $s_1, \ldots, s_k \in \mathbb{Z}$.

Corollary 5. Any bounded-generated hyperbolic group is elementary.

Proof. Indeed, any cyclic subgroup of a hyperbolic group either is finite or is contained in some infinite maximal elementary subgroup. Hence, their product is contained in a finite union of ME-products and we can apply corollary 4. □

Proof of Theorem 3. Since there exist at most countably many different ME-products in G, it is enough to consider only their countable intersections. Let $P_{ji}, 1 \leq i \leq k_j, k_j, j \in \mathbb{N}$, be ME-products, and $U_j = \bigcup_{i=1}^{k_j} P_{ji}$ - their finite unions. Let

$$T = \bigcap_{j=1}^{\infty} U_j.$$

One has to show that there exist ME-products R_1, \ldots, R_s, $s \in \mathbb{N} \cup \{0\}$, such that $T = R_1 \cup \ldots \cup R_s$.

Induct on $n = \text{rank}(U_1)$.

$$T = \left(\bigcup_{i=1}^{k_1} P_{i1} \right) \cap \bigcap_{j=2}^{\infty} U_j = \bigcup_{i=1}^{k_1} \left(P_{i1} \cap \bigcap_{j=2}^{\infty} U_j \right)$$

So, it is enough to consider the case when $k_1 = 1$, $U_1 = P_{11} = P$.

If $n = 0$ then P is finite and there is nothing to prove.

Assume that $n > 0$ and let $J \in \mathbb{N}$ be the smallest index such that $P \cap U_J \neq P$ (if there is no such J then $T = P$ and the theorem is true).

Therefore

$$T = P \cap \bigcap_{j=J}^{\infty} U_j = (P \cap U_J) \cap \bigcap_{j=J+1}^{\infty} U_j.$$

By corollary 3, $P \cap U_J$ is a finite union of ME-products:

$$P \cap U_J = \bigcup_{l=1}^{t} R_{lJ}, \ t \in \mathbb{N} \cup \{0\}.$$
and \(\text{rank}(P \cap U_j) < n \) because of the choice of \(J \), therefore \(\text{rank}(R'_l) < n \), \(\forall l = 1, 2, \ldots, t \).

Hence, by the induction hypothesis,

\[
T = \bigcup_{l=1}^{t} \left[R'_l \cap \bigcap_{j=J+1}^{\infty} U_j \right] = \bigcup_{l=1}^{t} [R_{l1} \cup \ldots \cup R_{ln}]
\]

for some ME-products \(R_{l1}, \ldots, R_{ln} \), \(n_i \in \mathbb{N} \cup \{0\} \), \(1 \leq l \leq t \). \(\square \)

The statement of the theorem 3 fails to be true if maximal elementary subgroups in the definition of ME-products one substitutes by arbitrary elementary subgroups. Below we construct an example to demonstrate that.

Let \(G = F(x, y) \) be the free group with two generators, \(q_1 < q_2 < q_3 < \ldots \) be an infinite sequence of prime numbers. Define \(d_i = q_i q_2 \ldots q_i, c_i = q_1 q_2 \ldots q_i \), \(i \in \mathbb{N} \), and the sets \(P_i, i \in \mathbb{N} \), as follows:

\[
P_1 = \langle x^{d_i} \rangle - \text{cyclic subgroup of } G \text{ generated by } x^{d_i} = x^{q_1},
\]

\[
P_2 = \langle y \rangle \cdot \langle y x^{c_i} y^{-1} \rangle \cdot \langle y^2 x^{q_2} y^{-2} \rangle \cdot \langle y \rangle,
\]

\[
P_3 = \langle y \rangle \cdot \langle y x^{c_i} y^{-1} \rangle \cdot \langle y^2 x^{q_2} y^{-2} \rangle \cdot \langle y^3 x^{q_3} y^{-3} \rangle \cdot \langle y \rangle,
\]

\[\ldots.
\]

\[
P_t = \langle y \rangle \cdot \langle y x^{c_i} y^{-1} \rangle \cdot \langle y^2 x^{q_2} y^{-2} \rangle \cdot \ldots \cdot \langle y^{t-1} x^{c_i-1} y^{-t(i-1)} \rangle \cdot \langle y^t x^{q_i} y^{-i} \rangle \cdot \langle y \rangle,
\]

\[\ldots.
\]

Now consider the intersection \(T = \bigcap_{i=1}^{\infty} P_i \). Let us observe that

\[
P_1 \cap P_2 = \langle x^{c_1} \rangle \cup \langle x^{d_1} \rangle, \ldots, \bigcap_{i=1}^{k} P_i = \langle x^{c_1} \rangle \cup \ldots \cup \langle x^{c_{k-1}} \rangle \cup \langle x^{d_k} \rangle, \ldots.
\]

Indeed, \(P_1 \cap P_2 = \langle x^{d_1} \rangle \cap (\langle x^{c_1} \rangle \cup \langle x^{d_2} \rangle) = \langle x^{c_1} \rangle \cup \langle x^{d_2} \rangle \). Inducting on \(k \), we get

\[
\bigcap_{i=1}^{k} P_i = \left(\bigcap_{i=1}^{k-1} P_i \right) \cap P_k = \langle x^{c_1} \rangle \cup \ldots \cup \langle x^{c_{k-1}} \rangle \cup \langle x^{d_{k-1}} \rangle \cap (\langle x^{c_1} \rangle \cup \ldots \cup \langle x^{c_{k-1}} \rangle \cup \langle x^{d_k} \rangle)
\]

\[
= \langle x^{c_1} \rangle \cup \ldots \cup \langle x^{c_{k-1}} \rangle \cup \langle x^{d_k} \rangle.
\]

Since \(\bigcap_{i=1}^{\infty} \langle x^{d_i} \rangle = \{1\} \), therefore \(T = \bigcup_{i=1}^{\infty} \langle x^{c_i} \rangle \).

If \(q_1 = 2, q_2 = 3, q_3 = 5, \ldots \), is chosen to be the enumeration of all primes, one can show directly that the set \(T \) can not be presented as a finite union of products \(f_1 G_1 f_2 G_2 \ldots f_n G_n \), where \(f_1, \ldots, f_n \in G \) and \(G_1, \ldots, G_n \) are elementary (in this case cyclic) subgroups of \(G \). We are not going to do that, instead we will use a set-theoretical argument: there are only countably many such finite unions, hence there is an infinite sequence of primes \(q_1 < q_2 < q_3 < \ldots \) such that the corresponding set \(\bigcap_{i=1}^{\infty} P_i \) is the example sought (because the sets \(\bigcap_{i=1}^{\infty} P_i \) and \(\bigcap_{i=1}^{\infty} P'_i \) corresponding to different increasing sequences of prime numbers \(\alpha = \{q_1, q_2, q_3, \ldots\} \) and \(\alpha' = \{q_1', q_2', q_3', \ldots\} \) are distinct: if \(q_i \in \alpha \setminus \alpha' \) then \(x^{c_i} \in \bigcup_{i=1}^{\infty} \langle x^{c_i} \rangle \setminus \bigcup_{i=1}^{\infty} \langle x^{c_i} \rangle \).
Acknowledgements
The author is grateful to his advisor Professor A.Yu. Ol’shanskii for suggesting problems, helpful discussions and comments.

References