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We show that the commensurator of any quasiconvex abelian subgroup in a
biautomatic group is small, in the sense that it has finite image in the abstract
commensurator of the subgroup. Using this criterion we exhibit groups that are
CAT(0) but not biautomatic. These groups also resolve a number of other questions
concerning CAT(0) groups.
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1 Introduction

The theory of automatic and biautomatic groups was developed in the late 1980’s,
and described in the book [17] written by Epstein, Cannon, Holt, Levy, Paterson
and Thurston. The question of whether there are any automatic groups that are not
biautomatic appears in this book as [17, Question 2.5.6] and as Remark 6.19 at the end
of the paper of Gersten and Short [20] in which biautomatic groups were introduced.
By that time it had been shown that hyperbolic groups are biautomatic (implicit in
[17, Theorem 3.4.5]). The definition of biautomaticity has both language-theoretic and
geometric aspects, whose interaction is non-trivial. This motivated Alonso and Bridson
to introduce, in the early 1990’s, the geometric class of semihyperbolic groups [1]. This
class contains all biautomatic groups and all CAT(0) groups. In the mid 1990’s Niblo
and Reeves proved that CAT(0) cubical groups are biautomatic [32]. The question
of whether all CAT(0) groups are automatic or even biautomatic must have been a
motivating question for much of the above work, but the earliest written versions that
we were able to find were in the PhD thesis of Elder [16, Open Question 2], written in
2000, and in a problem list compiled by McCammond after the American Institute of
Mathematics meeting ‘Problems in Geometric Group Theory’ April 23–27, 2007 [27,
Question 13] (see also [19, Section 6.6]). We answer the latter question by constructing
the first examples of CAT(0) groups that are not biautomatic.

http://www.ams.org/mathscinet/search/mscdoc.html?code=20F67,(20F10, 20E06)
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The groups that we construct are higher-dimensional analogues of Baumslag-Solitar
groups [7], in the sense that they are HNN-extensions of free abelian groups of rank
greater than one in which the stable letter conjugates two finite-index subgroups.
Consider the group GP given by the presentation

GP := 〈a, b, t ‖ [a, b] = 1, ta2b−1t−1 = a2b, tab2t−1 = a−1b2〉.

This is an HNN-extension of L = 〈a, b〉 ∼= Z2 in which the stable letter conjugates two
subgroups of index five. If we let L act on the Euclidean plane E2 in such a way that
a and b act as translations of length one in orthogonal directions, the elements a2b−1

and ab2 act as translations of length
√

5 in orthogonal directions, as do the elements
a2b and a−1b2 . The action of 〈a, b〉 on E2 extends to an action of the whole group
GP , in which the stable letter acts as a rotation through arccos(3/5). The fact that this
action is by isometries is what ensures that GP is CAT(0), while the fact that the rotation
through arccos(3/5) has infinite order is what allows us to show that GP is not virtually
biautomatic (i.e., no finite-index subgroup is biautomatic).

The action of GP on the Euclidean plane can be used to show that for any n 6= 0,
the subgroup 〈an, tn〉 < GP is not abelian. But also 〈an, tn〉 contains a finite-index
subgroup of 〈a, b〉, and so it cannot be a free group (see Corollary 9.6 below). Thus the
elements a, t ∈ GP give the first negative answer to a question of Wise concerning a
strong version of the Tits Alternative for CAT(0) groups [8, Question 2.7].

The Bass-Serre tree T for GP is a regular tree of valency 10, and we show that GP

acts geometrically on the direct product E2 × T . For F a free group of rank 5, the
group Z2 × F acts geometrically on the same CAT(0) space as GP , and it follows that
these groups are quasi-isometric to each other. Hence any property that is not shared
by Z2 × F and the group GP cannot be invariant under quasi-isometry, even amongst
CAT(0) groups. In particular there are CAT(0) groups that are quasi-isometric to Z2×F
but are not virtually biautomatic, and hence cannot be virtually cubical. In fact, by
a recent result of Huang and Prytuła [22], no finite-index subgroup of GP admits a
proper action on a finite-dimensional CAT(0) cube complex by cubical automorphisms
(because no positive power of t normalizes a subgroup of finite index in the abelian
base group L).

Note that although GP is quasi-isometric to Z2×F it is not commensurable to it, and so
Z2×F is not quasi-isometrically rigid, contrary to some claims in the existing literature.
Moreover, GP embeds as an irreducible lattice in the group of isometries of E2 × T .
There has been some confusion concerning this property in the literature: in particular
[13] claims that no such lattices exist (this has recently been rectified in [14]).
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By varying the geometry of the free abelian subgroup, one can construct similar
examples in which the indices of the subgroups conjugated by the stable letter are
smaller. Consider the groups Gk,2 for k ∈ Z with presentations

Gk,2 := 〈a, b, t ‖ [a, b] = 1, tat−1 = b, tb2t−1 = a−2bk〉.

In Gk,2 , the stable letter conjugates two index 2 subgroups of 〈a, b〉 ∼= Z2 , and since
tat−1 = b, this relator and the generator b can be eliminated, giving a presentation
of Gk,2 with just two generators and two relators. We show that Gk,2 is CAT(0) if
and only if −3 ≤ k ≤ 3 and that Gk,2 is biautomatic if and only if k ∈ {−2, 0, 2}.
Thus the groups Gk,2 for k ∈ {−3,−1, 1, 3} are CAT(0) but not biautomatic, and the
elements a, t ∈ Gk,2 give counterexamples to Wise’s question for these values of k
too [8, Question 2.7].

Although our main examples arise already for base groups free abelian of rank 2, we
consider commensurating HNN-extensions of free abelian groups of arbitrary finite rank.
Such a group is described by a pair L′, L′′ of finite-index subgroups of L = Zn , together
with a matrix A ∈ GL(n,Q) such that multiplication by A defines an isomorphism
A× : L′ → L′′ . We denote this group by G(A,L′), because L′′ = A L′ is determined
by the pair (A,L′). Many of the results that we obtain concerning these groups are
summarized in the following theorem.

Theorem 1.1 Let G = G(A,L′) be a group defined above. Then

(1) G is residually finite ⇔ G is linear ⇔ either L′ = L or A L′ = L or A is
conjugate in GL(n,Q) to an element of GL(n,Z);

(2) G is CAT(0) ⇔ A is conjugate in GL(n,R) to an orthogonal matrix;

(3) G is biautomatic ⇔ G is virtually biautomatic ⇔ A has finite order.

In the special case when n = 1 the three parts of Theorem 1.1 are previously known
results concerning Baumslag-Solitar groups. Similarly to Baumslag-Solitar groups,
many of the groups G(A,L′) can be shown to be non-Hopfian. We give a criterion for
this in Proposition 10.1 which implies that the groups GP and Gk,2 , for k odd, are all
non-Hopfian.

The three parts of Theorem 1.1 are proved separately. The characterization of when G
is residually finite in claim (1) follows from earlier work in [4], and we use the affine
action of G on L⊗Q to show that each residually finite G is linear over Q. For claim
(2) we introduce an addendum to the Flat Torus Theorem concerning the commensurator
of an abelian group of semi-simple isometries of a CAT(0) space, which may be of
independent interest. The main result used to prove claim (3) is the next theorem that
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imposes strong restrictions on the commensurator of a quasiconvex abelian subgroup in
a biautomatic group.

Theorem 1.2 Suppose that G is a group with a biautomatic structure (A,L), and
H 6 G is an L-quasiconvex abelian subgroup. Then the commensurator CommG(H),
of H in G, has finite image in the abstract commensurator Comm(H). In particular,
there is a finite-index subgroup Comm0

G(H) C CommG(H) such that every finitely
generated subgroup of Comm0

G(H) centralizes a finite-index subgroup of H in G.

The key tool used in the proof of Theorem 1.2 is the boundary of an automatic structure,
discussed in Section 2. Our strategy is to show that a biautomatic structure on G induces
a biautomatic structure on the quasiconvex subgroup H , and CommG(H) acts on the
boundary of this structure in a natural way (see Section 4). In Section 3 we show that
the boundary of any (bi)automatic structure on the abelian group H is finite, hence
a finite-index subgroup of CommG(H) must fix this boundary pointwise. Finally, in
Section 5 we apply the latter to prove Theorem 1.2.

The technical heart of this paper is the results concerning biautomaticity, but the other
parts of the paper may be read independently of this material. Section 6 contains
our addendum to the Flat Torus Theorem. Section 7 introduces the groups G(A,L′),
and characterizes which of them are CAT(0). Section 8 characterizes which of the
groups G(A,L′) are biautomatic. Section 9 considers in more detail the case when
L = Z2 , and discusses a class of examples which includes the groups GP and Gk,2

already mentioned above, establishing many of their properties. Section 10 concerns the
non-Hopfian property, with results only in the case L = Z2 , and residual finiteness, with
a more general result. Section 11 shows that many of our examples can be embedded
as index two subgroups of free products with amalgamation in which each factor is
virtually abelian. This construction gives rise to amalgamated products of virtually
abelian groups with surprising properties. Section 12 concludes with a short list of open
problems concerning the groups G(A,L′).
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2 Background and notation

2.1 Commensurators

If G is a group and H 6 G is a subgroup, the commensurator of H in G is the subset
defined by

CommG(H) := {g ∈ G | |H : (H ∩ gHg−1)| <∞ and |gHg−1 : (H ∩ gHg−1)| <∞}.

It is not difficult to see that CommG(H) is actually a subgroup of G. We will say that
G commensurates H if G = CommG(H).

The elements of the abstract commensurator of a group G, denoted Comm(G), are
equivalence classes of isomorphisms φ : H → K , where both H and K are finite-index
subgroups of G. Two such isomorphisms φ1 : H1 → K1 and φ2 : H2 → K2 are
equivalent if there is H 6 H1 ∩ H2 also of finite index in G so that φ1|H = φ2|H . The
abstract commensurator is a group, in which the composite of the equivalence classes
of φ : H → K and ψ : L→ M is the class of ψ ◦ φ : H ∩ φ−1(L)→ ψ(φ(H) ∩ L).

For any group G and a subgroup H , there is a natural map from CommG(H) to
Comm(H), taking g ∈ CommG(H) to the element of Comm(H) represented by
conjugation by g. The kernel of this homomorphism consists of the elements g ∈ G
that centralize some finite-index subgroup of H .

It is easy to see that the abstract commensurator Comm(Zn) can be naturally identified
with GL(n,Q). Equivalently, if L is a finitely generated free abelian group then
Comm(L) is identified with GL(L⊗Q), the group of vector space automorphisms of
L⊗Q. There is a coordinate-free description of the homomorphism from the abstract
commensurator of L to GL(L⊗Q): suppose that φ : L′ → L′′ is an isomorphism between
finite-index subgroups of L , and let i : L′ → L and j : L′′ → L be the inclusions. Each
of i⊗ 1 : L′⊗Q→ L⊗Q and j⊗ 1 : L′′⊗Q→ L⊗Q is an isomorphism. The image
φ̃ of (φ : L′ → L′′) in GL(L⊗Q) is φ̃ := (j⊗ 1) ◦ (φ⊗ 1) ◦ (i⊗ 1)−1 : L⊗Q→ L⊗Q.



6 Ian J. Leary and Ashot Minasyan

2.2 Automatic structures and the fellow traveller property

In this subsection we will briefly discuss the notions of automatic and biautomatic
structures on groups. The reader is referred to [17, Section 2.3, 2.5] for more details
and examples.

Let A be a finite set and let G be a group with a map µ : A → G. We will say that G
is generated by A if the extension of µ to a homomorphism from the free monoid A∗
to G is surjective. Elements of A∗ will be called words, and if W ∈ A∗ and g ∈ G are
such that µ(W) = g, we will say that W represents g in G. Given a word W in A∗ ,
|W| will denote its length. We will always assume that A is closed under inversion, that
is there is an involution ι : A → A, where, for each a ∈ A, ι(a) is denoted a−1 and
satisfies µ(a−1) = µ(a)−1 in G. Any subset L ⊆ A∗ will be called a language over A.

We can form the Cayley graph Γ(G,A), of G with respect to A as follows: the vertices
are elements of G and for every g ∈ G and a ∈ A there is an edge from g to gµ(a),
labelled by a. Metrically, every edge in Γ(G,A) will be considered as an isometric
copy of the interval [0, 1].

We will use dA(·, ·) to denote the standard graph metric on Γ(G,A); its restriction to G
is the word metric corresponding to the generating set A. For any element g ∈ G we
will use |g|A to denote dA(1G, g); in other words, |g|A is the length of a shortest word
in A∗ representing g in G. Note that |g|A = |g−1|A since A is closed under inversion.

For an edge path p in Γ(G,A), p− and p+ will denote the start and end vertices of
p respectively, and |p| will denote the length of p. The label of p is a word from A∗
obtained by collating the labels of its edges.

Any edge path p in Γ(G,A) can be equipped with the following ray parametrization:
p̂ : [0,∞)→ Γ(G,A), where for each t ∈ [0, |p|]∩Z, p̂(t) is the t-th vertex of p (so that
p̂(0) = p− , p̂(|p|) = p+ ), and p̂(t) = p+ for all t > |p|; for every s ∈ [0, |p| − 1] ∩ Z
and each t ∈ [s, s + 1], p̂(t) is defined so that the restriction of p̂ to [s, s + 1] is an
isometry with the corresponding edge of p in Γ(G,A).

Definition 2.1 Let p, q be two edge paths in Γ(G,A), with ray parametrizations
p̂, q̂ : [0,∞)→ Γ(G,A) respectively, and let ζ ≥ 0 be a constant. We will say that p
ζ -follows q if dA(p̂(t), q̂(t)) ≤ ζ for all t ∈ [0, |p|] ∩ Z. The paths p and q are said to
ζ -fellow travel if dA(p̂(t), q̂(t)) ≤ ζ for all t ∈ Z.

If U and V are two words from A∗ , we can consider two edge paths p, q in Γ(G,A)
which start at 1G and are labelled by U , V respectively. We will say that U ζ -follows
V if the path p ζ -follows the path q. Similarly, U and V are said to ζ -fellow travel if
p and q ζ -fellow travel.
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It is easy to see that two edge paths (words) ζ -fellow travel if and only if each of them
ζ -follows the other one.

Definition 2.2 Let G be a group. An automatic structure on the group G is a pair
(A,L), where A is a finite generating set of G, which comes equipped with a map
µ : A → G as above and which is closed under inversion, and L ⊆ A∗ is a language
satisfying the following conditions:

(i) µ(L) = G;

(ii) L is a regular language, i.e., L is the accepted language of a finite state automaton
A over A;

(iii) there exists ζ ≥ 0 such that for any two edge paths p, q in Γ(G,A), labelled
by some words from L and satisfying p− = q− and dA(p+, q+) ≤ 1, p and q
ζ -fellow travel.

(A,L) is a biautomatic structure on G, if L satisfies the conditions (i), (ii) and

(iii’) there exists ζ ≥ 0 such that for any two edge paths p, q in Γ(G,A), labelled by
some words from L and satisfying dA(p−, q−) ≤ 1 and dA(p+, q+) ≤ 1, p and
q ζ -fellow travel.

The group G is said to be automatic (biautomatic) if it admits an automatic (respectively,
biautomatic) structure.

Obviously condition (iii’) is stronger than condition (iii), so every biautomatic structure
on a group is also an automatic structure. Also, condition (iii) implies that for any
two paths p, q that are labelled by some words from L and satisfy p− = q− and
dA(p+, q+) ≤ C , for some C ∈ N ∪ {0}, p and q (ζ max{C, 1})-fellow travel in
Γ(G,A). And, if (iii’) holds, then the requirement p− = q− can be relaxed to
dA(p−, q−) ≤ C .

An automatic structure (A,L) on a group G is said to be finite-to-one if |µ−1(g)∩L| <∞
for every g ∈ G. It is known (see [17, Theorem 2.5.1]) that every automatic (biautomatic)
structure can be refined to a finite-to-one automatic (respectively, biautomatic) structure,
hence from now on we will assume that all the automatic and biautomatic structures are
finite-to-one. Without loss of generality we will also suppose that all the automata in
this paper have no dead states.

It is worth noting that the nowadays standard definition of a biautomatic structure that
we give above is not the same as the definition from [17, Definition 2.5.4]: see [2].
However, for finite-to-one structures these definitions are equivalent [2, Theorem 6].
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2.3 The boundary of an automatic structure

Definition 2.3 Let (A,L) be an automatic structure on G, and let (Wi)i∈N be a
sequence of words from L. We will say that this sequence tends to infinity if |Wi| → ∞
as i→∞ and there exists ζ ≥ 0 such that for any i, j ∈ N, Wi ζ -follows Wj whenever
i ≤ j.

Suppose that (Ui)i∈N and (Vi)i∈N are two sequences of words from L tending to infinity,
and, for each i ∈ N, pi , qi are the edge paths in Γ(G,A) starting at 1G and labelled by
Ui , Vi respectively. We will say that (Ui)i∈N is equivalent to (Vi)i∈N if the Hausdorff
distance between the corresponding sequences of paths (pi)i∈N and (qi)i∈N is at most η
in Γ(G,A). In other words, there must exist η ≥ 0 such that for all i ∈ N, any vertex
of pi is at most η away from a vertex of qj , for some j ∈ N, and vice-versa.

Definition 2.3 immediately implies the following.

Remark 2.4 If (Uij)j∈N is a subsequence of a sequence of words (Ui)i∈N tending to
infinity, then (Uij)j∈N also tends to infinity and is equivalent to (Ui)i∈N .

Definition 2.5 If (A,L) is an automatic structure on a group G, then the boundary,
∂L, of this automatic structure is the set of equivalence classes of sequences of words
from L tending to infinity. If α ∈ ∂L is the equivalence class of a sequence (Ui)i∈N ,
we will say that this sequence converges to the boundary point α .

The first definition of a boundary of an automatic structure was given by Neumann and
Shapiro in [31, pp. 459-460]. It is not difficult to see that there is a natural bijection
between their boundary and ours. However, our Definition 2.5 is better suited for
constructing the action of a group on the boundary of a biautomatic structure (see
Section 4 below).

Given an automaton A, by a path in this automaton we will mean any directed path in
the corresponding graph. If x is a state of A, a cycle based at x is a closed path starting
and ending at the state x. A path in A is simple if it does not pass through the same
state twice. A cycle based at a state x in A is simple if it passes through x exactly twice
(at its beginning and at its end) and does not pass through any other state more than
once. A path or a cycle is non-trivial if it has at least one edge.

The following lemma is a straightforward consequence of the definitions.
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Lemma 2.6 Suppose that (A,L) is an automatic structure on a group G, A is a finite
state automaton for L and W is the label of a non-trivial cycle w in A based at some
state x. Let S and T be words from A∗ labelling some paths s and t connecting the
initial state of A with x and x with an accept state of A respectively. Then (SW iT)i∈N
is a sequence of words from L tending to infinity. In particular, if L is infinite then
∂L 6= ∅.

Definition 2.7 In the notation of Lemma 2.6, if the paths s, t and the cycle w are all
simple, the sequence of words (SW iT)i∈N will be called a simple sequence tending to
infinity and the corresponding point α ∈ ∂L will be called a simple boundary point.

3 The boundary of an automatic structure on an abelian
group

Theorem 3.1 Let H be an abelian group with an automatic structure (B,M) and let
A be a finite state automaton accepting the language M. Then every boundary point
α ∈ ∂M is simple; in other words, every sequence of words fromM tending to infinity
is equivalent to a simple such sequence.

Proof Let w be a simple cycle in A based at a state x. Given a path v in A, an
occurrence of w in v is a subpath of v starting and ending at x and traversing w exactly
once. We will use logw(v) to denote the number of occurrences of w in v.

Let (Ui)i∈N be a sequence of words from M tending to infinity, and for each i ∈ N
fix a path ui from the initial state to an accept state in A, labelled by Ui . Since
|ui| = |Ui| → ∞ as i→∞ and the automaton A is finite, in view of Remark 2.4 we
can replace (Ui)i∈N by a subsequence so that for all i ∈ N ui and ui+1 share a common
initial subpath vi , of length i.

Evidently, since |vi| = i → ∞ as i → ∞, there must exist some non-trivial simple
cycle w, based at a state x in A, such that

(1) lim sup
i→∞

logw(vi) =∞.

Choose I ∈ N so that logw(vI) > 0, then there is a path s from the initial state of A to
x such that sw is an initial subpath of vI (and, hence, of ui for all i ≥ I ). We can also
choose a simple path t from x to an accept state of A, and let S , T and W be the labels



10 Ian J. Leary and Ashot Minasyan

of s, t and w respectively. We will now show that the sequence of words (SW iT)i∈N ,
which tends to infinity by Lemma 2.6, is equivalent to the original sequence (Ui)i∈N .

Let pi and qi be the paths in Γ(H,B) starting at 1H and labelled by the words Ui and
SW iT respectively, i ∈ N. For any i ∈ N, according to (1), there is j ≥ I such that
logw(uj) ≥ i, hence uj is the concatenation uj = sws1ws2 . . .wsi , where s1, . . . , si−1

are some paths in A from x to itself, and si is a path from x to an accept state of A.
Let Sk be the word in B∗ labelling sk , k = 1, . . . , i.

Note that since H is abelian, the word Uj = SWS1 . . .WSi represents the same element
of H as the word R := SW iS1 . . . Si . Moreover, clearly R is accepted by A (it labels
the path swis1 . . . si in A), by construction, hence Uj and R ε-fellow travel in Γ(H,B),
where ε ≥ 0 is the constant from the definition of the automatic structure (B,M).
Therefore the word SW i ε-follows Uj in Γ(H,B), which implies that every vertex of
the path qi lies η1 -close to a vertex of pj , where η1 := ε+ |T|.

To show the converse, let l ∈ N be arbitrary and set i := |Ul|. By (1) there exists
j ≥ max{l, i, I} such that uj = sws1ws2 . . .wsi as before. If Sk is the label of sk ,
k = 1, . . . , i, arguing as above we can conclude that the words Uj and R := SW iS1 . . . Si

ε-fellow travel in Γ(H,B). Since (Um)m∈N tends to infinity, we know that there is
ζ ≥ 0, depending only on this sequence, such that Ul ζ -follows Uj , as l ≤ j. Hence
Ul ζ -follows the prefix of Uj , of length |Ul| = i, which, in its own turn, ε-follows the
prefix of R, of the same length. Since SW i is a prefix of R of length at least i, we can
conclude that Ul (ζ+ε)-follows the word SW i in Γ(H,B), hence it also (ζ+ε)-follows
the word SW iT . Therefore each vertex of the path pl is η2 -close to a vertex of the path
qi in Γ(H,B), where η2 := ζ + ε.

Thus we have shown that the sequences of paths (pi)i∈N and (qi)i∈N lie in η :=
max{η1, η2}-neighborhoods of each other in Γ(H,B), yielding that the sequences
(Ui)i∈N and (SW iT)i∈N are equivalent, as claimed.

The proof of the theorem is not quite finished yet, as the path s, labelled by S in A,
may not be simple. So, choose some simple path s′ , joining the initial state of A with
the state x , at which the simple cycle w is based, and let S′ be the word labelling s′ . By
Lemma 2.6, (S′W iT)i∈N is a simple sequence tending to infinity, and we will complete
the proof by showing that this sequence is equivalent to (SW iT)i∈N (and, hence to
(Ui)i∈N , by transitivity).

Let q′i be the path in Γ(H,B) starting at 1H and labelled by the word S′W iT , i ∈ N.
Since H is abelian, for all i ∈ N the word (SW iT)−1S′W iT represents the same
element of H as the word S−1S′ . Therefore dB((qi)+, (q′i)+) ≤ θ for all i ∈ N ,
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where θ := |S−1S′|. Since the labels of qi and q′i are both in the language M, these
paths λ-fellow travel in Γ(H,B) for each i ∈ N, where λ := εmax{1, θ}. Hence the
Hausdorff distance between the sequences of paths (qi)i∈N and (q′i)i∈N is at most λ,
which implies that the sequences of words (SW iT)i∈N and (S′W iT)i∈N are equivalent.
Thus the theorem is proved.

Definition 2.7 implies that any automatic structure admits only finitely many simple se-
quences of words tending to infinity. Therefore the following statement is a consequence
of Theorem 3.1 (cf. [31, Theorem 6.7]).

Corollary 3.2 If (B,M) is an automatic structure on an abelian group then ∂M is
finite.

4 The action of the commensurator on the boundary of a
quasiconvex subgroup

Let G be a group equipped with a (finite-to-one) biautomatic structure (A,L). Recall
that a subgroup H 6 G is L-quasiconvex if there exists κ ≥ 0 such that for any path
p in Γ(G,A) starting at 1G , ending at some h ∈ H and labelled by a word W ∈ L,
every vertex of p lies in the κ -neighborhood of H (see [20, p. 129]). Given such a
quasiconvex subgroup, let L′ := L ∩ µ−1(H) and define a finite subset B of H by

(2) B := {g−1µ(a)g′ | a ∈ A, g, g′ ∈ G, |g|A, |g′|A ≤ κ} ∩ H.

Note that B = B−1 since A is closed under inversion. Recalling the construction
from [20, p. 138], given any word W = a1 . . . an ∈ L′ , where a1, . . . , an ∈ A, the
quasiconvexity of H implies that for each i ∈ {1, . . . , n} there is gi ∈ G such that
|gi|A ≤ κ and µ(a1 . . . ai)gi ∈ H . Clearly we can choose gn = 1G and let g0 := 1G so
that µ(W) =

∏n
i=1 g−1

i−1µ(ai)gi in G. This allows us to re-write the words from L′ as
words from B∗ , possibly in a non-unique fashion due to some freedom in the choice of
gi . Let M⊆ B∗ denote the resulting language, consisting of words from L′ re-written
as words in B∗ in such a way (with all possible gi ’s).

In [20, Theorem 3.1] Gersten and Short proved that (B,M) is a biautomatic structure on
H . For our purposes it will be convenient to modify the original biautomatic structure
on G as follows. Let C := AtB be the abstract union of the finite sets A and B . Then
N := L ∪M is a language in C∗ . Obviously L and M are still regular in C∗ , hence
N is also a regular language in C∗ , as a union of regular languages (see [17, Lemma
1.4.1]).



12 Ian J. Leary and Ashot Minasyan

One can define a map ν : C → G, where ν|A = µ and ν|B is the identity map on B (as
B ⊆ G, by definition), and extend it to a monoid homomorphism ν : C∗ → G. Clearly
C is a finite generating set of G.

Consider any path p in Γ(G, C), labelled by a word U ∈ M. Let f := p− ∈ G, then
p+ belongs to the coset fH . By definition, U is obtained from a word W ∈ L′ =

L ∩ µ−1(H) ⊆ L by applying the re-writing process above. Let p̃ denote the path in
Γ(G, C) labelled by W and starting at f = p− . Then p̃+ = p+ and |p̃| = |p|. Moreover,
the paths p and p̃ κ -fellow travel in Γ(G, C), by construction (see Figure 1).

p̃

p

fH

f

≤ κ

Figure 1: The paths p and p̃ .

Lemma 4.1 (C,N ) is a finite-to-one biautomatic structure on G.

Proof We have already observed that N is a regular language in C∗ ; moreover,
ν(N ) = G as ν(L) = G and L ⊆ N . Let us now check that the fellow travelling
property holds.

Since (A,L) is a biautomatic structure on G, there is some ε ≥ 0 such that two paths in
Γ(G,A) with labels from L whose endpoints are at distance at most 1 from each other
ε-fellow travel. Consider any two paths p and q in Γ(G, C) labelled by words from N ,
with dC(p−, q−) ≤ 1 and dC(p+, q+) ≤ 1. Define the paths p′ and q′ in Γ(G, C) as
follows. If p is labelled by a word from L, then p′ = p; otherwise, if p is labelled by
a word from M then p′ is the path p̃ defined above, labelled by a word from L. We
construct the path q′ similarly, and note that since the labels of p′ and q′ are in A∗ ,
they can be considered as paths in Γ(G,A).

Since |b|A ≤ 2κ + 1 for any b ∈ B , by (2), p′ has the same endpoints as p, and q′ has
the same endpoints as q, we see that dA(p′−, q

′
−) ≤ 2κ + 1 and dA(p′+, q

′
+) ≤ 2κ + 1.

Therefore the paths p′ and q′ ζ -fellow travel in Γ(G,A), where ζ := ε(2κ+ 1). Hence,
these paths also ζ -fellow travel in Γ(G, C), as A ⊆ C . It follows that the original paths
p and q λ-fellow travel in Γ(G, C), where λ := ζ + 2κ . Thus (C,N ) is a biautomatic
structure on G.
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By our convention, the biautomatic structure (A,L) on G is finite-to-one, and, by
the above construction, there are only finitely many possibilities for re-writing each
word W ∈ L′ as a word in B∗ , hence the biautomatic structure (B,M) on H is also
finite-to-one. It follows that the biautomatic structure (C,N ) on G is finite-to-one as
well.

The new biautomatic structure (C,N ) on G naturally extends the biautomatic structure
(B,M) on H , and the Cayley graph Γ(H,B) is a subgraph of the Cayley graph Γ(G, C).
This allows us to define the action of the commensurator CommG(H) on the boundary
of M as follows. Let (Ui)i∈N be a sequence of words from M tending to infinity and
representing a boundary point α ∈ ∂M, and let g ∈ CommG(H). Since H ∩ gHg−1

has finite index in gHg−1 , there exist f1, . . . , fk ∈ G such that gHg−1 ⊆ Hf1∪ · · ·∪Hfk ,
thus, for any gh ∈ gH there is e ∈ G, with |e|C ≤ max{|fjg|C | j = 1, . . . , k} < ∞,
such that ghe ∈ H .

Note that g ν(Ui) ∈ gH for all i ∈ N, and choose any sequence of elements ei ∈ G,
i ∈ N, such that sup{|ei|C | i ∈ N} <∞ and g ν(Ui) ei ∈ H for all i ∈ N. Let Vi ∈M
be any word representing g ν(Ui) ei , i ∈ N. We claim that the sequence of words
(Vi)i∈N tends to infinity and define its equivalence class in ∂M to be the result of the
action of g on α .

Lemma 4.2 The above construction gives a well-defined action of CommG(H) on
∂M.

Proof Using the notation from the preceding paragraph, let us first check that the
sequence of words (Vi)i∈N in M tends to infinity. Note that limi→∞ |ν(Ui)|C =∞, as
limi→∞ |Ui| =∞, and the biautomatic structure (C,N ) is finite-to-one by Lemma 4.1.
We can also observe that

|Vi| ≥ |g ν(Ui) ei|C ≥ |ν(Ui)|C − |g|C − |ei|C →∞, as i→∞.

Therefore limi→∞ |Vi| =∞.

For each i ∈ N let pi be the path in Γ(G, C) starting at g and labelled by Ui . Since the
sequence (Ui)i∈N , of words in M⊆ N , tends to infinity, there exists ζ ≥ 0 such that
pi ζ -follows pj in Γ(G, C), for any i, j ∈ N with i ≤ j.

Let qi be the path in Γ(G, C) starting at 1G and labelled by Vi , i ∈ N. Observe that for
all i ∈ N, dC((pi)−, (qi)−) = |g|C and dC((pi)+, (qi)+) = dC(g ν(Ui), g ν(Ui)ei) = |ei|C .
Since sup{|ei|C | i ∈ N} < ∞ and the structure (C,N ) is biautomatic, there exists
η ≥ 0 such that the paths pi and qi η -fellow travel, for all i ∈ N. Therefore, for
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λ := 2η + ζ , the path qi λ-follows the path qj in Γ(G, C), whenever i, j ∈ N and i ≤ j.
Let λ′ := max{|h|B | h ∈ H, |h|C ≤ λ} < ∞. Since each qi is labelled by a word
from B∗ , qi λ

′ -follows qj as paths in Γ(H,B), whenever i ≤ j. Thus the sequence
(Vi)i∈N , of words in M, tends to infinity.

Now, suppose that (U′i)i∈N is another sequence of words in M which tends to infinity
and is equivalent to the sequence (Ui)i∈N . For each i ∈ N choose an arbitrary element
e′i ∈ G such that sup{|e′i|C | i ∈ N} <∞ and g ν(U′i) e′i ∈ H , and let V ′i be any word
from M representing the element g ν(U′i) e′i . Let us show that the sequence (V ′i )i∈N is
equivalent to the sequence (Vi)i∈N .

Let p′i be the path in Γ(G, C) starting at g and labelled by U′i , and let q′i be the path
in Γ(G, C) starting at 1G and labelled by V ′i , i ∈ N. By the assumptions, there exists
θ ≥ 0 such that the Hausdorff distance between the sequences (pi)i∈N and (p′i)i∈N
is at most θ . On the other hand, the argument above shows that the paths p′i and q′i
η′ -fellow travel, for some η′ ≥ 0 and all i ∈ N. It follows that the Hausdorff distance
between the sequences (qi)i∈N and (q′i)i∈N does not exceed θ + η + η′ in Γ(G, C).
Since qi and q′i are labelled by words from B∗ , for each i ∈ N, the Hausdorff distance
between the sequences of these paths is also bounded in Γ(H,B) by the constant
max{|h|B | h ∈ H, |h|C ≤ θ + η + η′}. Thus the sequences of words (Vi)i∈N and
(V ′i )i∈N indeed give rise to the same boundary point in ∂M. This shows that the above
action is well-defined.

It remains to check that the axioms of a group action are satisfied. Let g, g′ ∈ CommG(H)
and let (Ui)i∈N be a sequence of words fromM converging to a boundary point α ∈ ∂M.
Obviously 1G α = α , so this axiom is satisfied. On the other hand, by the definition of the
action, the point g′(gα) ∈ ∂M is obtained from a sequence of words inM representing
the elements g′g ν(Ui) eie′i , where ei, e′i ∈ G, i ∈ N, sup{|ei|C , |e′i|C | i ∈ N} <∞ and
g ν(Ui) ei ∈ H , g′g ν(Ui) eie′i ∈ H , for all i ∈ N. Set e′′i := eie′i ∈ G, and observe
that since |e′′i |C ≤ |ei|C + |e′i|C for all i ∈ N, sup{|e′′i |C | i ∈ N} < ∞. Therefore
the boundary point (g′g)α can be obtained from the same sequence of words in M,
representing the same elements g′g ν(Ui) e′′i , i ∈ N, that were used for the point g′(gα).
Thus (g′g)α = g′(gα), which completes the proof of the lemma.

5 The case of an abelian subgroup

In this section we will assume that G is a group equipped with a biautomatic structure
(C,N ), and H 6 G is a finitely generated abelian subgroup with a biautomatic structure
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(B,M), where B ⊆ C and M = N ∩B∗ . As explained in Section 4, we can find such
biautomatic structures on G and H starting from any biautomatic structure (A,L) on
G, as long as H is L-quasiconvex. We also define the action of the commensurator
CommG(H) on the boundary ∂M as explained in that section. Let µ : B∗ → H
and ν : C∗ → G denote the monoid homomorphisms sending the words to the group
elements they represent.

The next theorem is the main result of this section.

Theorem 5.1 Using the notation from the beginning of the section, suppose that an
element g ∈ CommG(H) acts trivially on the boundary ∂M. Then g centralizes a
finite-index subgroup of H .

The proof of Theorem 5.1 will require two auxiliary statements.

Lemma 5.2 Suppose that g ∈ CommG(H) fixes a simple boundary point α ∈ ∂M,
given by a sequence of words (SW iT)i∈N inM tending to infinity, where S,W, T ∈ B∗ .
Then there exists m ∈ N such that ghmg−1 = hm in G, where h ∈ H is the element
represented by the word W .

Proof Since g ∈ CommG(H), we can choose elements ei ∈ G, i ∈ N, so that
η := sup{|ei|C | i ∈ N} < ∞ and g ν(SW iT) ei ∈ H for all i ∈ N. By the definition
of the action, given in Section 4, gα is the equivalence class of a sequence of words
(Vi)i∈N , where Vi ∈M represents the element g ν(SW iT) ei , i ∈ N.

For each i ∈ N let pi be the path in Γ(G, C) starting at g and labelled by the word
SW iT , let qi and ri be the paths in Γ(G, C) starting at 1G and labelled by the words
Vi and SW iT , respectively (see Figure 2). Note that dC((pi)+, (qi)+) = |ei|C ≤ η and,
since gα = α , there are θ ≥ 0, independent of i, and j = j(i) ∈ N, such that (qi)+ is
at most θ -away from some vertex of rj . Obviously, any vertex of rj is at most κ -away
from (rk)+ , for some k ≤ j and κ := |S|+ |W|+ |T|.

Thus for every i ∈ N there is k = k(i) ∈ N such that dC((pi)+), (rk)+) ≤ η + θ + κ .
On the other hand, recall that dC((pi)−, (rk)−) = dC(g, 1G) = |g|C . Since the paths pi

and rk are both labelled by words from M⊆ N and (C,N ) is a biautomatic structure
on G, there is λ ≥ 0 such that these paths λ-fellow travel in Γ(G, C) for all i ∈ N and
k = k(i).

Now, the word W cannot be empty by the assumptions, and since the structure
(C,N ) is finite-to-one, ν(W) = h must have infinite order in G. It follows that
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S W

≤ λ

1G

g

qi
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rk

W W W W T

S

W W W W W T

≤ λ

u1 u2 ul1 ul2

z z

v1 v2 vl1 vl2

W W

W

Vi

Figure 2

limi→∞ dC((pi)−, (pi)+) = ∞, hence k(i) must also tend to infinity as i → ∞.
Therefore there is i0 ∈ N such that both i0 and k0 := k(i0) are greater than ξ := |{f ∈
G | |f |C ≤ λ}|+ 1.

For each l ∈ {1, . . . , ξ} let ul ∈ G be the vertex of pi0 such that the subpath of pi0
from g = (pi0)− to ul is labelled by SW l . Similarly, we define vl ∈ G to be the
vertex of the path rk0 such that the subpath of rk0 from 1G = (rk0)− to vl is labelled
by SW l . By construction, |v−1

l ul|C = dC(ul, vl) ≤ λ for every l = 1, . . . , ξ , and the
definition of ξ implies that there must exist indices l1, l2 , 1 ≤ l1 < l2 ≤ ξ , such that
v−1

l1 ul1 = v−1
l2 ul2 in G. Set z := v−1

l1 ul1 , then the quadrilateral in Γ(G, C) with vertices
vl1 , ul1 , ul2 and vl2 (see Figure 2) gives rise to the equality z ν(Wm) z−1 = ν(Wm) in
G, where m := l2 − l1 ∈ N. Thus z commutes with hm in G. On the other hand,
the quadrilateral with vertices 1G , g, ul1 and vl1 in Γ(G, C) gives rise to the equality
g = ν(SW l1) z ν(SW l1)−1 in G. Since SW l1 is a word from B∗ and H is abelian, the
element ν(SW l1) commutes with hm in G, therefore g also commutes with hm and the
lemma is proved.

Lemma 5.3 Let A be a finite state automaton accepting the language M, and let D
be the set of elements of H represented by the labels of non-trivial simple cycles in A.
Then D generates a finite-index subgroup of H .

Proof Let n be the number of states in the automaton A. We claim that H ⊆ E〈D〉,
where E := {h ∈ H | |h|B ≤ n}.

Indeed, choose any element f ∈ H and let V be the shortest word fromM representing
f in H . We will prove that f ∈ E〈D〉 by induction on the length of V . If |V| ≤ n
then f ∈ E . Otherwise, if |V| > n, any path v in A labelled by V , from the initial
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state to an accept state of A (which exists as this automaton accepts M), must contain
a non-trivial simple cycle based at some state x and labelled by a word W , with
µ(W) ∈ D. Thus V = SWT , where S , T are labels of some subpaths of v ending and
beginning at x respectively. Clearly ST ∈ M, as this word is accepted by A, but its
length is strictly smaller than the length of V . Moreover, since H is abelian, we have
f = µ(V) = µ(ST)µ(W) ∈ µ(ST)D. By the induction hypothesis, µ(ST) ∈ E〈D〉, so
f ∈ E〈D〉D = E〈D〉, and the claim is proved.

Since E is a finite set, by definition, and 〈D〉 6 H , the inclusion H ⊆ E〈D〉 implies
that |H : 〈D〉| <∞, as required.

Proof of Theorem 5.1 Let A be a finite state automaton accepting the language M,
and let W = {W1, . . . ,Wn} be the list of the labels of all non-trivial simple cycles in
A. Let D denote the (finite) set of elements of H represented by the words from W .

Take any h ∈ D, then h = µ(Wk) for some k ∈ {1, . . . , n}. Let x be the state of
A at which a cycle labelled by Wk is based, and choose some simple paths S and T
joining the initial state of A with x and x with an accept state of A respectively. Then,
according to Lemma 2.6, the sequence of words (SW i

kT)i∈N converges to some point
α ∈ ∂M. By the assumptions, gα = α , so we can use Lemma 5.2 to conclude that
ghmg−1 = hm in G, for some m = m(h) ∈ N. Since the latter holds for every h ∈ D
and |D| <∞, we can find a single l ∈ N such that g commutes with hl for all h ∈ D.

Now, the elements {hl | h ∈ D} obviously generate a finite-index subgroup H′ of the
finitely generated abelian group 〈D〉, which itself has finite index in H , by Lemma 5.3.
Thus |H : H′| <∞ and H′ is centralized by g, as required.

We can now prove Theorem 1.2 stated in the introduction.

Proof of Theorem 1.2 Define a biautomatic structure (B,M) on the subgroup L as
in Section 4. This gives rise to an action of CommG(H) on the finite set ∂M (see
Lemma 4.2 and Corollary 3.2), and we denote the kernel of this action by Comm0

G(H).
Then Comm0

G(H) C CommG(H) and |CommG(H) : Comm0
G(H)| <∞.

By Theorem 5.1, every element of Comm0
G(H) centralizes a finite-index subgroup of

H , hence Comm0
G(H) lies in the kernel of the homomorphism from CommG(H) to

Comm(H). It follows that the image of CommG(H) in Comm(H) is finite. Any finite
subset of Comm0

G(H) centralizes a finite-index subgroup of H , thus the same holds for
any finitely generated subgroup F 6 Comm0

G(H).
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The main examples of L-quasiconvex subgroups in biautomatic groups are centralizers
of finite subsets (see [17, Corollary 8.3.5 and Theorem 8.3.1]). Therefore the following
statement is an immediate corollary of Theorem 1.2.

Corollary 5.4 Let G be a biautomatic group and let X ⊆ G be a finite subset such that
H := CG(X) is abelian. Then there is a finite-index subgroup Comm0

G(H)CCommG(H)
such that every finitely generated subgroup of Comm0

G(H) centralizes a finite-index
subgroup of H in G.

Remark 5.5 In [22, Proposition 9.1] Huang and Prytuła use an example from Wise’s
thesis [40] to show that there exists a group G, acting properly discontinuously,
cocompactly and cellularly on a product of two trees, and an infinite cyclic subgroup
H 6 G such that CommG(H) is not finitely generated and does not normalize any
finite-index subgroup of H .

Since the product of two trees is a CAT(0) cube complex, the group G is biautomatic
by [32]. After analysing the construction it becomes clear that one can replace H with
a commensurable infinite cyclic subgroup to ensure that H = CG(X) for some finite
subset X ⊆ G. Therefore, the examples of G and H show that it is indeed necessary to
pass to finitely generated subgroups of CommG(H) in Theorem 1.2 and Corollary 5.4.

6 Commensuration and the Flat Torus Theorem

Let us start this section by recalling the Flat Torus Theorem [12, II.7.1]. Throughout
this section we will use additive notation for the group operation on a free abelian group
L .

Theorem 6.1 Let L be a free abelian group of rank n acting properly by semi-simple
isometries on a CAT(0) space X . Then:

(1) The min set M for L is non-empty and M = Y × En .

(2) Every c ∈ L leaves M invariant, respects the product decomposition, and acts
trivially on Y and by translation on En .

(3) For y ∈ Y , the quotient ({y} × En)/L is an n-torus.

(4) If an isometry of X normalizes L then it preserves M and the direct product
decomposition.
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(5) If a group Γ of isometries of X normalizes L, then a finite-index subgroup of
Γ centralizes L . If Γ is finitely generated, then ΓL has a finite-index subgroup
containing L as a direct factor.

We want an analogous statement to (4) above, but for isometries that lie in the
commensurator of L rather than in its normalizer. For this it is easier first to describe a
different statement that is equivalent to (3).

Recall that a torsor for an abelian group is a non-empty set on which it acts freely and
transitively. An affine space is naturally a torsor for its vector space of translations.

Remark 6.2 Let L be a free abelian group of finite rank n, and suppose that L acts by
translations on a finite-dimensional real affine space A. The following are equivalent:

• the action of L is properly discontinuous and cocompact;

• the unique affine extension of the action to L⊗ R makes A a torsor for L⊗ R.

In fact, the affine extension to L ⊗ R is free if and only if the action of L on A is
properly discontinuous, and in this case A is a torsor for L⊗ R if and only if A has
dimension n.

Now suppose that one is given a torsor action of a vector space V by translations on the
Euclidean space En . In this case, the Euclidean distance on En enables one to define an

inner product on V , via 〈v,w〉 :=
1
2
(
d((v + w) x, x)2 − d(v x, x)2 − d(w x, x)2), for any

x ∈ En .

In particular, with hypotheses and notation as in Theorem 6.1, we may define an inner
product 〈 · , · 〉L on L⊗ R by setting

(3) 〈b, c〉L :=
1
2
(
d((b + c) x, x)2 − d(x, b x)2 − d(x, c x)2)

for each b, c ∈ L , and extending linearly to L⊗ R. Here x ∈ M , the min set of L , and
Theorem 6.1(2) tells us that the definition does not depend on which x we choose. The
fact that this is an inner product follows easily from the cosine rule. The following
observation is an immediate consequence of the definitions and Theorem 6.1.

Remark 6.3 Let L be a finitely generated free abelian group acting properly by
isometries on a CAT(0) space X , and let L′ 6 L be any subgroup. Then the min set of
L is contained in the min set of L′ , and for all b, c ∈ L′ we have 〈b, c〉L′ = 〈b, c〉L .

We are now ready state our addendum to the Flat Torus Theorem.
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Theorem 6.4 Let L be a free abelian group of rank n acting properly by semi-simple
isometries on a CAT(0) space X . Then:

(1) The min set M for L is non-empty and M = Y × En .

(2) Every c ∈ L leaves M invariant, respects the product decomposition, and acts
trivially on Y and by translation on En .

(3′ ) For each y ∈ Y , {y} × En is a torsor for L⊗ R under the affine extension of the
action of L .

(4′ ) For any isometry ϕ of X that commensurates L , the image of ϕ in GL(L⊗Q) 6
GL(L⊗ R) preserves the inner product 〈·, ·〉L .

Proof Statements (1) and (2) are parts of the usual Flat Torus Theorem (Theorem 6.1),
and are restated here for convenience. By Remark 6.2, (3′ ) is equivalent to Theo-
rem 6.1(3). It remains to establish (4′ ).

Since ϕ commensurates L , conjugation by it in the group of the isometries of X induces
an isomorphism φ : L′ → L′′ , for some finite-index subgroups L′ and L′′ of L. Let
M′ and M′′ be the min sets in X for L′ and L′′ respectively. Note that M , the min set
for L , is contained in both M′ and M′′ , and that ϕ restricts to an isometry from M′ to
M′′ . It follows that φ : L′ → L′′ respects their inner products, in the sense that for each
b, c ∈ L′ , 〈φ(b), φ(c)〉L′′ = 〈b, c〉L′ . Since L′ and L′′ have finite index in L , there exists
m ∈ N so that for all b ∈ L, mb ∈ L′,L′′ . Remark 6.3 implies that 〈 · , · 〉L , 〈 · , · 〉L′

and 〈 · , · 〉L′′ are all equal on the finite-index subgroup L′ ∩ L′′ of L. Hence for any
b, c ∈ L ,

〈φ̃(b), φ̃(c)〉L =
1

m2 〈φ(mb), φ(mc)〉L′′ =
1

m2 〈mb,mc〉L′ = 〈b, c〉L,

where φ̃ is the image of φ in GL(L⊗Q), as defined in Subsection 2.1.

7 Commensurating HNN-extensions of free abelian groups

Let L be a finitely generated free abelian group, and let φ : L′ → L′′ be an isomorphism
between finite-index subgroups of L . Define a group G(L, φ, L′) as the HNN-extension
of L in which the stable letter conjugates L′ to L′′ via φ:

G(L, φ,L′) := 〈L, t ‖ tct−1 = φ(c), ∀ c ∈ L′〉.
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In the case when we are given a basis for L ∼= Zn and φ is described by a matrix, we
simplify the notation slightly. For A ∈ GL(n,Q) and L′ a finite-index subgroup of
L ∩ A−1 L = Zn ∩ A−1 Zn , we write G(A, L′) for the HNN-extension defined as above:

(4) G(A,L′) := 〈L, t ‖ tct−1 = A c, ∀ c ∈ L′〉.

If in this case, L′ is as large as possible, i.e., L′ = L∩A−1 L , then we write G(A) instead
of G(A,L′).

When n = 1, the groups G(A,L′) are precisely the Baumslag-Solitar groups; if A is
a 1 × 1 matrix with entry m/d , then G(A, dZ) = BS(m, d) and if (m, d) = 1 then
G(A, dZ) = G(A).

Proposition 7.1 Each group G = G(A,L′) is free-by-abelian-by-cyclic.

Proof There is an affine action of G on L⊗ R ∼= Rn in which elements of L act as
translations and t acts as multiplication by the matrix A. Let α : G→ AGL(n,R) denote
the resulting homomorphism, where AGL(n,R) is the group of affine transformations
of Rn . The subgroup L is in the kernel of the standard map β : AGL(n,R)→ GL(n,R),
and hence the image (β ◦ α)(G) is cyclic. Since kerβ ∼= Rn , we can deduce that α(G)
is abelian-by-cyclic.

Evidently the intersection kerα ∩ L is trivial, which implies that kerα acts freely on
the Bass-Serre tree for G expressed as an HNN-extension of L. Hence this kernel is
free, so G is free-by-abelian-by-cyclic.

See [23] for a stronger result in the case n = 1.

Theorem 7.2 The group G(A, L′) = G(Zn,A, L′) is a CAT(0) group if and only if the
matrix A is conjugate in GL(n,R) to an orthogonal matrix.

Proof Let L = Zn and consider any P ∈ GL(n,R). Let Λ 6 Rn be the lattice P L,
let Λ′ := P L′ , and let B := PAP−1 . There is a group isomorphism from G(A,L′) to
H := G(Λ,B×,Λ′), given by c 7→ P c for c ∈ L , and t 7→ t .

Now suppose that B is an orthogonal matrix. In this case, there is a homomorphism
from H := G(Λ,B×,Λ′) to the group of isometries of En , in which elements of Λ

act naturally as translations and t acts as multiplication by B. This action is not
properly discontinuous, but its restriction to each conjugate of Λ is free and properly
discontinuous. Now let T be the Bass-Serre tree for H expressed as an HNN-extension
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of Λ. The stabilizer of each vertex of T is a conjugate of Λ and the stabilizer of each
edge of T is a conjugate of Λ′ . Consider the diagonal action of H on the product
En × T . Since edge and vertex stabilizers for the action of H on T act freely properly
discontinuously and cocompactly on En , it follows that the diagonal action of H on
the product En × T is free, properly discontinuous, cocompact and isometric (for the
product metric on En × T , which is CAT(0) [12, Example II.1.15(3)]). Hence H is a
CAT(0) group.

For the converse, if G = G(A,L′) is a CAT(0) group, then since t is in CommG(L), it
follows that the action of t preserves an inner product on L⊗ R = Rn by Theorem 6.4.
But this action is just multiplication by A. Hence A preserves an inner product on
Rn and so (since all n-dimensional real inner product spaces are isomorphic), A is
conjugate in GL(n,R) to an orthogonal matrix.

Remark 7.3 There is another way to describe the CAT(0) space constructed in the
above proof. Suppose that B is an orthogonal matrix, Λ 6 Rn is a lattice and
multiplication by B induces an isomorphism of finite-index sublattices B× : Λ′ → Λ′′ .
Then multiplication by B induces an isometry of tori from T′ := Rn/Λ′ to T′′ := Rn/Λ′′ .
Take the torus T := Rn/Λ, and the direct product T′ × [0, 1] := Rn/Λ′ × [0, 1]. Glue
the subspace T′ × {0} ∼= T′ to T via the covering map T′ → T, which is a local
isometry, and glue the subspace T′×{1} ∼= T′ to T by the composite of multiplication
by B (an isometry T′ → T′′ ) and the covering map T′′ → T. By the gluing lemma [12,
II.11.13], the resulting space is locally CAT(0). The universal cover of this space with its
group of deck transformations is of course the direct product En × T with the isometric
action of G(Λ,B×,Λ′) as described in the proof above.

Corollary 7.4 If A ∈ GL(n,Q) is conjugate in GL(n,R) to an orthogonal matrix and
L′ 6= L then G(A,L′) is quasi-isometric to Zn × F , the direct product of a free abelian
group and a finite rank non-abelian free group F .

Proof Let F be the free group of rank m = |L : L′| > 1. Since the determinant of A is
±1, m = |L : L′′| too. Hence the Bass-Serre tree T , for the decomposition of G(A, L′)
as an HNN-extension, is a regular tree of valency 2m, and so both G and Zn × F have
natural isometric geometric actions on En× T . By the Švarc-Milnor lemma [12, I.8.19]
they are quasi-isometric to each other.

Theorem 7.5 Suppose that G = G(A, L′) where A has infinite order and is conjugate
in GL(n,R) to an orthogonal matrix. Then G is a lattice in Isom(En)× Isom(T) whose
projections to the factors are not discrete.
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Proof Since A is conjugate to a matrix in O(n), G acts isometrically on En , and the
action on the Bass-Serre tree T is always isometric. Since G acts freely, properly
discontinuously, cocompactly and isometrically on En × T , it follows that G is a lattice
in Isom(En)× Isom(T). Since A has infinite order, the element t ∈ G acts on En as
an infinite order element of the point stabilizer, which is compact (and isomorphic to
O(n)), showing that the projection of G to Isom(En) is not discrete.

The vertex stabilizers of the action of G on T are conjugates of the subgroup L 6 G,
hence the kernel of this action is the core c(L) of L , i.e., the intersection of all conjugates
of L in G. Provided that c(L) has infinite index in L , it will follow that the image of L
in Isom(T) is an infinite subgroup of the vertex stabilizer, which is a compact (profinite)
group (because the tree T is locally finite). But c(L) is a normal abelian subgroup
of G, and so, by the Flat Torus Theorem (Theorem 6.1), there is k ∈ N such that tk

centralizes c(L), and thus tk acts trivially on c(L)⊗ R. But tk cannot act trivially on
L ⊗ R because A has infinite order, and so c(L) ⊗ R must be a proper subspace of
L ⊗ R. It follows that |L : c(L)| = ∞, and so the image of L (and, hence, of G) in
Isom(T) is not discrete.

In the case when n = 2, it follows that G as in the above statement is an irreducible
lattice in Isom(E2)× Isom(T), because the matrix A acts irreducibly on E2 . This is
not necessarily the case for larger n. For example, if G satisfies the hypotheses, then
so does Z × G 6 Isom(E1) × Isom(En) × Isom(T) 6 Isom(En+1) × Isom(T). As
mentioned in the introduction, the existence of irreducible lattices in Isom(E2)×Isom(T)
contradicts [13, Theorem 1.3(i), Proposition 3.6, Theorem 3.8].

8 Characterizing biautomaticity of the groups G(A,L′)

Suppose that L = Zn , for some n ∈ N, A ∈ GL(n,Q) and L′ 6 L is a finite-index
subgroup such that L′′ := A L′ is contained in L . In this section we study the (virtual)
biautomaticity of the groups G(A,L′) defined in (4).

Lemma 8.1 If L′ and L′′ are both proper subgroups of L then L is self-centralizing
in G(A,L′). In particular, if neither A nor A−1 is an integer matrix, then L is
self-centralizing.

Proof Let T be the Bass-Serre tree for G = G(A, L′) expressed as an HNN-extension
of L . The centralizer of L will act on the set of L-fixed points TL , which is a subtree
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(because the unique geodesic path between two fixed points must also be fixed). The
vertex corresponding to the identity coset of L is fixed by L , but the hypotheses imply
that no edge that is incident with this vertex can be fixed by L . Hence the fixed point
set for the action of L on T is this single vertex. The first claim follows since L is the
full stabilizer of this vertex.

The second claim follows from the first, because the largest possible choices for L′ and
L′′ are L′ = A−1 L ∩ L and L′′ = A L ∩ L .

Recall that a subgroup G of a direct product H × F , of two groups H and F , is said to
be a subdirect product if the restrictions to G of the natural projections H × F → H
and H × F → F are surjective.

The following criterion for biautomaticity will be useful.

Proposition 8.2 Let H be a finitely generated virtually abelian group and let F be a
biautomatic group. Then every subdirect product G 6 H × F is also biautomatic.

Proof Abusing the notation we identify any subgroup S 6 H with the subgroup
S× {1} of H × F . Since G 6 H × F is subdirect, the subgroup N := G∩H is normal
in H (cf. [29, Lemma 2.1]). Now, by [30, Lemma 4.2], there exists a normal subgroup
R C H which intersects N trivially and such that |H : NR| <∞. Let H1 := H/R and
φ : H × F → H1 × F be the natural homomorphism whose kernel is R.

By construction, R has trivial intersection with G in H×F , hence φ(G) ∼= G. Evidently
φ(G) is still subdirect in H1 × F . Moreover, φ(N) ⊆ φ(G) ∩ H1 has finite index in
H1 as |H : NR| < ∞, which implies that φ(G) has finite index in H1 × F (see [29,
Lemma 2.1]).

Now, H1 is finitely generated and virtually abelian, so it is biautomatic by [17,
Corollary 4.2.4]. Therefore H1 × F is biautomatic by [17, Theorem 4.1.1], and, hence
its finite-index subgroup φ(G) ∼= G is biautomatic by [17, Theorem 4.1.4].

Theorem 8.3 The group G = G(A, L′) is biautomatic if and only if A has finite order.

Proof Assume that G is biautomatic. If either L′ = L or L′′ = L, then G is an
ascending HNN-extension of L; in this case Groves and Hermiller [21, Main Theorem]
proved that G must be virtually abelian. The latter clearly implies that A has finite
order in GL(n,Q).
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Thus we can assume L′ and L′′ are proper subgroups of L . Then L is finitely generated
and self-centralizing by Lemma 8.1, and the commensurator CommG(L) is the whole
of G. Therefore, by Corollary 5.4, there is k ∈ N such that tk centralizes a finite-index
subgroup of L . This means that Ak is the identity matrix, and so A has order dividing k .

Now suppose that A has finite order k ∈ N, and let M be the intersection of the
subgroups tiL′t−i = Ai L′ 6 L, i = 0, . . . , k − 1. Then M is a finite-index subgroup
of L and is normal in G. The quotient group F = G/M is an HNN-extension of
the finite group L/M , hence it is virtually free. It follows that F is word hyperbolic,
and, therefore, biautomatic (this can be easily deduced from [17, Chapter 3]; see [12,
III.Γ.2.20] for an explicit statement). Let β : G→ F denote the natural epimorphism
with kerβ = M .

As in the proof of Proposition 7.1, we also have a homomorphism α : G→ AGL(n,R)
which sends L to a subgroup of translations of Rn and t to the linear transformation of
Rn corresponding to A. Since A has finite order, it is clear that H := α(G) is virtually
abelian; moreover, L ∩ kerα = {1} by construction.

Define the homomorphism ψ : G→ H × F by ψ(g) = (α(g), β(g)) for all g ∈ G. This
homomorphism is injective because the kernels of α and β intersect trivially. Since
α(G) = H and β(G) = F , ψ(G) is a subdirect product in H × F . Therefore G ∼= ψ(G)
is biautomatic by Proposition 8.2.

A well-known open problem (see [17, Open Question 4.1.5]) asks whether a group which
has a finite-index biautomatic subgroup must itself be biautomatic. In the remainder
of this section we will show that this is indeed the case for our groups: G(A,L′) is
biautomatic if and only if it is virtually biautomatic.

Lemma 8.4 Suppose that L′ and L′′ are both proper subgroups of L and let G(2) denote
the second derived subgroup of G = G(A,L′). Then G(2) is a non-abelian free group
and for any two non-commuting elements g1, g2 ∈ G(2) , the centralizer CG({g1, g2}) is
a finite-index subgroup of fLf−1 , for some f ∈ G.

Proof Proposition 7.1 implies that G(2) is free, and since L′ and L′′ are proper
subgroups of L , G cannot be soluble (it will contain non-abelian free subgroups being
an HNN-extension in which both of the associated subgroups are proper subgroups of
the base group), hence G(2) is non-abelian.

Observe that the normal closure N , of L in G, is generated by the elements tict−i , where
i ∈ Z and c ∈ L. Evidently any such element centralizes the finite-index subgroup
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tiLt−i ∩ L, of L. Since each g ∈ N is a product of finitely many such elements, we
conclude that g must also centralize a finite-index subgroup of L in G.

Consider any two non-commuting elements g1, g2 ∈ G(2) . Since G/N is cyclic
(generated by the image of t), G(2) ⊆ N , so g1 and g2 both centralize some finite-
index subgroup K of L. Let T be the Bass-Serre tree for the splitting of G as an
HNN-extension of L . Note that the subgroup 〈g1, g2〉 ⊆ G(2) acts freely on T (see the
proof of Proposition 7.1), so each gj acts as a hyperbolic isometry of T with an axis `j ,
j = 1, 2.

If `1 = `2 then the rank 2 free subgroup 〈g1, g2〉 acts on the simplicial line `1 by
isometries. This action must have a non-trivial kernel, because the group of all simplicial
isometries of `1 is isomorphic to the infinite dihedral group. This means that a non-trivial
element of 〈g1, g2〉 fixes `1 pointwise, contradicting the freeness of the action of this
subgroup on T .

Hence `1 and `2 must be distinct. Since CG({g1, g2}) preserves each of these axes
setwise, this centralizer must fix a vertex of T : if `1 ∩ `2 is a finite segment, it will
fix a vertex of this segment; if `1 ∩ `2 is an infinite ray, it will fix all of it; finally, if
`1 ∩ `2 = ∅, it will fix all vertices of the unique geodesic segment connecting these
two axes. The vertex stabilizers for the action of G on T are conjugates of L , so there
exists f ∈ G such that CG({g1, g2}) ⊆ fLf−1 . Recall that G commensurates L , hence
L ∩ fLf−1 has finite index in fLf−1 . Since CG({g1, g2}) contains K and |L : K| <∞,
we conclude that |fLf−1 : CG({g1, g2})| <∞, as claimed.

Theorem 8.5 If A has infinite order then the group G = G(A,L′) is not virtually
biautomatic.

Proof As in the proof of Theorem 8.3, the case when either L = L′ or L = L′′ follows
from the result of Groves-Hermiller [21, Main Theorem], so we assume from now on
that both L′ and L′′ are proper subgroups of L .

Let H be a finite-index subgroup of G, then |G(2) : G(2) ∩ H| < ∞, so G(2) ∩ H is
a non-abelian free subgroup by Lemma 8.4. Choose arbitrary two non-commuting
elements g1, g2 ∈ H ∩ G(2) . The same lemma states that CG({g1, g2}) is a finite-index
subgroup of fLf−1 for some f ∈ G. Since G commensurates L , it also commensurates
fLf−1 , as well as its finite-index subgroup M := CH({g1, g2}) = H ∩ CG({g1, g2}).
It follows that M is an abelian subgroup commensurated by H . Now, Corollary 5.4
implies that H cannot be biautomatic as ftlf−1 ∈ H , for some l ∈ N, and no non-trivial
power of this element can centralize a finite-index subgroup of fLf−1 (since Al has
infinite order).
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9 Explicit examples

Throughout this section, it will be sufficient to specialize the groups G(A, L′), defined in
Section 7, to the case when L = Z2 has rank two. We will write M2(Q) to denote the ring
of 2× 2 matrices with rational entries. Before starting, we recall that the classification,
up to conjugacy, of square matrices over a field k is equivalent to the classification, up to
isomorphism, of finitely generated torsion modules for the polynomial ring k[x], which
is a principal ideal domain [25, Ch. XI]. In particular, if f (x) ∈ k[x] is a polynomial that
is square-free (i.e., not divisible by the square of any irreducible polynomial) then there
is exactly one conjugacy class of square matrices over k with characteristic polynomial
f (x): this is the analogue for k[x] of the familiar statement (for Z-modules) that there is
exactly one abelian group of order n provided that n is square-free.

Proposition 9.1 If A ∈ M2(Q), then A is conjugate to an element of SO(2) in GL(2,R)
if and only if det(A) = 1 and either A = ±I or −2 < tr(A) < 2. Such a matrix A has
finite order if and only if tr(A) ∈ Z.

Proof Matrices in SO(2) have the claimed properties, and these are not changed
by conjugation. Conversely, if A has the claimed properties and A 6= ±I , then the
characteristic polynomial of A has the form X2 − tr(A)X + 1, and is irreducible over R.
Any two matrices with this characteristic polynomial are conjugate in GL(2,R).

If A has finite order, the additive group of the subring of M2(Q) generated by A is
finitely generated, from which it follows that the characteristic polynomial of A must lie
in Z[X]. For the converse, the choices of −2,−1, 0, 1, 2 for tr(A) give rise to elements
of order 2, 3, 4, 6, 1 respectively.

Example 9.2 As examples, the matrix

(5) Ak/m :=
(

0 −1
1 k/m

)
,

for k,m ∈ Z with m > 0, is conjugate to a matrix in SO(2) if and only if −2m < k < 2m,
and has infinite order provided that k 6= −m, 0,m.

Pythagorean triples give rise to matrices of infinite order in GL(2,Q) ∩ SO(2). For
example we shall consider the matrix AP , defined by

(6) AP :=
(

3/5 −4/5
4/5 3/5

)
.

A combination of Theorem 7.2 with Theorem 8.3 yields the following.
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Corollary 9.3 If A ∈ GL(2,Q) has infinite order and is conjugate to an element of
SO(2) in GL(2,R) then for any L′ , G(A,L′) is CAT(0) and is not biautomatic.

Example 9.4 For more concrete examples, consider the groups

Gk,m := 〈a, b, t ‖ [a, b] = 1, tat−1 = b, tbmt−1 = a−mbk〉.

This group is CAT(0) whenever −2m < k < 2m and is not biautomatic provided that
k 6= −m, 0,m. The group Gk,m is of the form G(Ak/m, L′), where L′ = 〈(1, 0)T , (0,m)T〉
has index m in L. In the case when gcd(k,m) = 1, L′ is as large as possible, so
Gk,m = G(Ak/m).

The first example of a group of this type that we found was the group G′P := G(AP, (5Z)2),
where AP is the matrix defined in (6) . Here are presentations for the groups GP := G(AP)
mentioned in the introduction (which corresponds to the case L′ = L ∩ A−1

P L =

〈(2,−1)T , (1, 2)T〉) and G′P .

GP = 〈a, b, t ‖ [a, b] = 1, ta2b−1t−1 = a2b, tab2t−1 = a−1b2〉,

G′P = 〈a, b, t ‖ [a, b] = 1, ta5t−1 = a3b4, tb5t−1 = a−4b3〉.

In the case when G(A, L′) is CAT(0), there is usually only one choice of CAT(0) metric
on L⊗ R up to homothety.

Corollary 9.5 Suppose that A ∈ GL(2,Q) has order at least 3 and is conjugate to
an element of SO(2) in GL(2,R). In this case, the inner product 〈 · , · 〉L on L ⊗ R,
defined by (3) when viewing L as a subgroup of the CAT(0) group G(A,L′), is, up to
multiplication by a scalar, the unique inner product that is preserved by A.

Proof Let a ∈ L be any non-identity element, and suppose that the CAT(0) structure
on G(A,L′) is chosen so that a acts on L⊗ R as translation by some distance λ > 0.
In this case 〈a, a〉L = λ2 , but also

〈A a,A a〉L = λ2, 〈A a, a〉L = 〈a,A a〉L = λ2tr(A)/2,

because A acts on L ⊗ R as rotation through an angle θ with 2 cos(θ) = tr(A). The
uniqueness follows, because for A 6= ±I2 , a and A a form a basis of L⊗ R.

Figure 3 below depicts the unique geometries on L⊗ R for the seven CAT(0) groups
Gk,2 and the CAT(0) group GP .

In [8, Question 2.7] D. Wise asked whether every CAT(0) group G has the following
property: for any elements a, b ∈ G, there exists n > 0 so that the subgroup 〈an, bn〉 is
either abelian or free.
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k = −3 k = 3

k = −2 k = 2

k = −1 k = 1

k = 0 GP

Figure 3: The geometry of L⊗ R in the CAT(0) groups Gk,2 and GP . Dots represent points of
L and the shaded regions represent the fundamental domains for L′ and L′′ that are implied by
the given presentations. In each picture a acts as a horizontal translation and t acts as rotation
through arccos(k/4) for Gk,2 and arccos(3/5) for GP .
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Corollary 9.6 If A has infinite order and is conjugate to an element of SO(2) in
GL(2,R) then the group G = G(A,L′), for any suitable choice of L′ , is CAT(0) but
it is not virtually biautomatic and it does not have Wise’s property. In particular, this
applies to the groups GP , G′P and Gk,m from Example 9.4, provided −2m < k < 2m
and k 6= 0,±m.

Proof The group G is CAT(0) by Theorem 7.2 and it is not virtually biautomatic by
Theorem 8.5.

Let a ∈ L be a non-identity element of L 6 G and let t ∈ G be the stable letter from
the presentation (4). Set m := |L/L′|, then bm ∈ L′ for every b ∈ L . Given any n ∈ N,
the subgroup Hn = 〈an, tn〉 6 G cannot be abelian because tn does not centralize any
non-identity element of L. On the other hand, Hn cannot be free, because it contains
the element tnanmn

t−n ∈ L , which together with an generates a finite-index subgroup of
L .

Remark 9.7 Although the standard Tits alternative is still unknown for general CAT(0)
groups, Proposition 7.1 implies that it does hold for any of the groups G(A, L′), defined
by (4).

Remark 9.8 After hearing the first named author’s talks on the results of this paper,
M. Bridson suggested that the methods developed in his paper [9] give an alternative
proof that the groups G(A,L′) from Corollary 9.6 are not biautomatic. Indeed, [9,
Proposition 2.2] states that any biautomatic structure on an abelian group can contain
only finitely many commensurability classes of quasiconvex subgroups. If the matrix
A has infinite order and has no rational eigenvectors, then for any infinite cyclic
quasiconvex subgroup C 6 L, its conjugates tiCt−i , i ∈ N, will all be quasiconvex,
pairwise non-commensurable and will virtually be subgroups of L. Moreover, using
the work of Bridson and Gilman [11] it may be possible to extend this method to prove
the stronger statement that G(A,L′) does not admit any bounded bicombing such that
the corresponding language is context-free.

10 Residual finiteness and non-Hopficity

As mentioned in the introduction, the groups G(A,L′) are higher dimensional general-
izations of the Baumslag-Solitar groups. Originally Baumslag and Solitar introduced
their groups in [7] as the first examples of non-Hopfian one-relator groups. It is not hard
to see that nearly the same argument shows that many of our groups are non-Hopfian.
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The following result is closely related to a theorem of D. Meier [28], although neither
result is a direct corollary of the other.

Proposition 10.1 Let A ∈ GL(2,Q) satisfy det A ∈ Z. Suppose that there exists an
integer m > 1 so that mA is an integer matrix and k := mtr(A) is coprime to m. Then
the group G = G(A), defined in Section 7, is non-Hopfian.

Proof The characteristic polynomial of A is X2 − (k/m)X + l, where l := det A ∈ Z.
This implies that

(7) mA + mlA−1 = kI2,

in particular, mlA−1 is an integer matrix. Since mA is an integer matrix, we have
A Lm = (mA) L ⊆ L, hence Lm ⊆ A−1 L ∩ L = L′ . Similarly, Lml ⊆ A L ∩ L = L′′ .
Thus

(8) Lm ⊆ L′ and Lml ⊆ L′′.

Let a, b ∈ L 6 G be generators for L ∼= Z2 , and let t ∈ G be the stable letter.
Combining (8) with (7), we obtain the identity

(9) tcmt−2cmlt = ck for any c ∈ L in G.

It is easy to check that the map φ defined by

φ(a) := am, φ(b) := bm, φ(t) := t

extends to an endomorphism φ : G → G. Since the image of φ contains t and
Lm = 〈am, bm〉, in view of (9) we see that it also contains ak and bk . Recall that k is
coprime to m by the assumptions, hence the image of φ contains a and b, so φ is
surjective.

It remains to show that φ is not injective. The assumptions imply that both A and
A−1 have some non-integer entries, hence L′ and L′′ must be proper subgroups of L.
Choose arbitrary c ∈ L− L′ and d ∈ L− L′′ (since L cannot be the union of the two
proper subgroups L′ and L′′ , there are elements of this form with c = d). Then the
commutator [tct−1, d] is non-trivial in G by Britton’s Lemma for HNN-extensions (cf.
[24, Section IV.2]), but it is in the kernel of φ by (8).

By a well-known theorem of Malcev (cf. [26]) the groups from Proposition 10.1 cannot
be residually finite. We can actually say more about the finite images of such groups.
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Corollary 10.2 Suppose that G = G(A) is a group satisfying the assumptions of
Proposition 10.1, and φ : G → G is the endomorphism defined in the proof of this
proposition. Let R :=

⋃∞
n=1 ker(φn) C G. Then the quotient G/R is abelian-by-cyclic.

In particular, every finite quotient of G is metabelian.

Proof Let N be the normal closure of L in G, so that G/N is infinite cyclic. Any
g, h ∈ N can be written as products of elements of the form tict−i , where c ∈ L and
i ∈ Z. Hence, we can choose s ∈ N such that g′ := tsgt−s and h′ := tsht−s are products
of elements of the form tict−i , where c ∈ L and i > 0.

Note that, in view of (8), if i ∈ N then for each j ≥ i, φj(tict−i) ∈ L in G. Therefore there
exists a sufficiently large n ∈ N such that φn(g′) ∈ L and φn(h′) ∈ L . Since L is abelian,
it follows that the commutator [g′, h′] ∈ kerφn ⊆ R, so [g, h] = t−s[g′, h′]ts ∈ R,
for arbitrary g, h ∈ N . Therefore the image of N in G/R is abelian, so G/R is
abelian-by-cyclic.

For the last assertion, recall that the proof of Malcev’s theorem implies that R is contained
in the intersection of all finite-index subgroups of G. Therefore it is annihilated by
every epimorphism ψ : G→ Q, with Q finite. It follows that Q is a quotient of G/R,
so it is also abelian-by-cyclic, as claimed.

Corollary 10.3 Suppose that G = GP or G = Gk,m , with m > 1, −2m < k < 2m
and gcd(k,m) = 1, is a group from Example 9.4. Then G is a CAT(0) group which is
not Hopfian and not uniformly non-amenable.

Proof The group G is non-Hopfian by Proposition 10.1. The fact that G is not
uniformly non-amenable follows from Corollary 10.2 by [5, Corollary 13.2] or [34,
Theorem 2.2].

The fact that the group GP is non-Hopfian can also be derived from Meier’s criterion
[28, Lemma 1], however this criterion does not seem to apply to the groups Gk,m . The
first examples of non-Hopfian CAT(0) groups were constructed by Wise in [39].

Using the work of Andreadakis, Raptis and Varsos [4] we can characterize the residual
finiteness of groups G(A,L′) in general.

Proposition 10.4 Suppose that L = Zn , A ∈ GL(n,Q) and L′ is a finite-index
subgroup of L such that A L′ ⊆ L. Then the group G = G(A,L′), defined by (4), is
residually finite if and only if one of the following conditions holds:
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(i) L′ = L or A L′ = L;

(ii) A is conjugate in GL(n,Q) to a matrix from GL(n,Z).

Proof By [4, Theorem 1] the group G, defined by (4), is residually finite if and only if
either L = L′ or L = A L′ (in which case G is metabelian) or t normalizes a finite-index
subgroup of L . Let us prove that the latter is equivalent to saying that A is conjugate in
GL(n,Q) to a matrix from GL(n,Z).

Suppose, first, that tMt−1 = M for some finite-index subgroup M 6 L. This implies
that M ⊆ L′ , so tMt−1 = A M = M . Evidently M = B L for some invertible matrix B
with integer entries, thus (B−1 A B) L = L , i.e., B−1 A B ∈ GL(n,Z).

Conversely, assume that C−1 A C ∈ GL(n,Z) for some C ∈ GL(n,Q). Set k := |L/L′|
and choose m ∈ N so that all entries of the matrix B := mC are integers divisible by
k . Then B is invertible, so M := B L has finite index in L; moreover, M ⊆ L′ by the
choice of m. Note that B−1 = 1

m C−1 , so B−1 A B = C−1 A C ∈ GL(n,Z). It follows
that (B−1 A B) L = L , hence M = A M = tMt−1 , as required.

Using the rational canonical form for matrices [25, Chapter XI.4], condition (ii) from
Proposition 10.4 can be restated more algebraically.

Remark 10.5 A matrix A ∈ GL(n,Q) is conjugate in GL(n,Q) to some matrix from
GL(n,Z) if and only if det(A) = ±1 and all coefficients of the characteristic polynomial
of A are integers.

Proposition 10.6 Let G = G(A,L′), where L = Zn , A ∈ GL(n,Q) and L′ is a
finite-index subgroup of L such that A L′ ⊆ L . Then G is residually finite if and only if
G is linear over Q.

Proof Finitely generated linear groups are residually finite by a result of Malcev [26],
hence we only need to prove that if G is residually finite then it is isomorphic to a
subgroup of GL(m,Q) for some m ∈ N.

Suppose, first, that t normalizes a finite-index subgroup M of L. Then M C G and
F := G/M is an HNN-extension of the finite group L/M . Thus F is finitely generated
and virtually free, so it is linear over Q. Let β : G→ F be the natural epimorphism
with kerβ = M .

As before, we also have a homomorphism α : G → AGL(n,Q), which comes from
the actions of L and t on Qn by translations and by A respectively. The standard
embedding of AGL(n,Q) in GL(n + 1,Q) shows that it is linear over Q.
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Evidently kerα ∩ L = {1}, hence kerα ∩ kerβ = {1}. Therefore the homomorphism
ψ : G→ AGLn(Q)× F , defined by ψ(g) = (α(g), β(g)) for all g ∈ G, is injective. It
follows that G is linear over Q.

If t does not normalize any finite-index subgroup of L , then, by [4, Theorem 1], either
L′ = L or A L′ = L . In this case G is an ascending HNN-extension of L , which easily
yields that G embeds in the direct product AGL(n,Q)× Z, where the homomorphism
G→ Z, onto the second factor, is given by the natural projection sending L to 0 and t
to 1. This again shows that G is linear over Q.

11 Free products with amalgamation

Just as a cyclic group embeds as an index two subgroup of a dihedral group, many of
the groups G(A,L′) can be embedded as index two subgroups of groups expressed as
free products with amalgamation.

Theorem 11.1 Let L = Zn , let A ∈ GL(n,Q) and let L′ be a finite-index subgroup of
L ∩ A−1 L . Suppose that there is a matrix R ∈ GL(n,Z) with the following properties.

(i) R2 = In ;

(ii) RAR = A−1 ;

(iii) R L′ = L′′ , where L′′ := A L′ 6 L .

Then the group G(A,L′), defined by (4), embeds as an index two subgroup of an
amalgamated free product K = H ∗L′=L′ H′ , where H is an index 2 overgroup of L
and H′ is an index 2 overgroup of L′ .

If n = 2 and A is conjugate to an element of SO(2) in GL(2,R) then K is CAT(0).

Proof Define the matrix R′ := RA ∈ GL(n,Q). From conditions (i)–(iii) it is immediate
that R′2 = In , and that R′ L′ = L′ . The group H is defined as an extension with kernel
L and the quotient cyclic of order two, generated by ρ, say, where conjugation by ρ
acts as multiplication by the matrix R. Similarly, H′ is defined as an extension with
kernel L′ and the quotient cyclic of order two, generated by an element ρ′ that acts on
L′ as multiplication by R′ . Let K := H ∗L′=L′ H′ be the amalgamated product of H and
H′ along their common subgroup L′ .

Let r ∈ H and r′ ∈ H′ be some preimages of ρ and ρ′ respectively. Let us first check
that the subgroup M := 〈L, rr′〉 has index 2 in K . Evidently K is generated by M and r ,
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and rLr−1 = L , r(rr′)r−1 = r2r′2r′−1r−1 ∈ L(rr′)−1 ⊆ M , as r2 ∈ L and r′2 ∈ L′ ⊆ L
in K . Therefore rMr−1 ⊆ M , which implies that M C K because r2 ∈ M . It follows
that M is the kernel of the epimorphism η : K → Z/2Z, defined by η(r) = 1, η(r′) = 1
and η(L) = {0}. Thus |K : M| = 2, as claimed.

Let T be the Bass-Serre tree for the decomposition of K as an amalgamated free product.
The vertices of T can be identified with the cosets cH or cH′ , c ∈ K , and the edges
correspond to the cosets cL′ , c ∈ K . Let u, v be the vertices of T corresponding to
H and H′ respectively; let e be the edge of T corresponding to L′ . Then e joins u
with v in T , and this edge, together with the endpoints, is a fundamental domain for
the action of K on T . As a fundamental domain for the induced action of M on T we
can take the union e ∪ e′ , where e′ := r′−1 e with the vertices u = e− , v = e+ = e′+
and w := e′− = r′−1 e− . Note that w = r′−1 u = r′−1r−1 u ∈ M u, since r u = u and
rr′ ∈ M . Thus the action of M on T has two orbits of vertices and two orbits of edges,
and the quotient graph M\T consists of two vertices and two edges joining them.

Observe that the M -stabilizers of u, v, e and e′ are L, L′ , L′ and r′−1L′r′ = L′

respectively. We can now apply the Structure Theorem of Bass-Serre theory [36, Section
I.5.4] to find that M has the following presentation:

(10) M = 〈L, t ‖ tct−1 = (r′−1r−1)−1c(r′−1r−1), ∀ c ∈ L′〉.

It remains to observe that for each c ∈ L′ we have (r′−1r−1)−1c(r′−1r−1) =

(rr′)c(rr′)−1 = A c, hence the presentation (10), of M , coincides with the presen-
tation (4), of G(A,L′). Thus M ∼= G(A,L′).

Now suppose that n = 2 and A ∈ SO(2). The cases A = ±I2 are easily dealt with.
Assuming that A ∈ SO(2) has order at least 3, a direct computation shows that any
matrix R ∈ SL±(2,R) satisfying RA = A−1R is a reflection matrix from O(2). Hence
whenever A preserves some inner product on L⊗R, that inner product is also preserved
by R and R′ . Once one knows this, showing that K is a CAT(0) group is similar to
the proof of Theorem 7.2. There are isometric actions of the group on E2 and on T ,
the Bass-Serre tree for the given decomposition as a free product with amalgamation.
Furthermore, the diagonal action on E2 × T is properly discontinuous, cocompact
and by isometries. (If we metrize T so that each edge has length 1/2, the space
E2 × T with its action of G(A, L′) is equivariantly isometric to the space constructed in
Theorem 7.2.)

Remark 11.2 In the case when L′ = L ∩ A−1 L , one has that R L′ = R L ∩ RA−1 L =

L ∩ AR L = L ∩ A L = A L′ , and so in this case condition (iii) follows from conditions
(i) and (ii).
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The possible isomorphism types of the group H arising in Theorem 11.1 depend on the
action of R on L . To make this precise, we need a further definition.

Let L be a free abelian group of rank two, and let ρ be an involution of L that reverses
the orientation of L. It can be shown that there are two conjugacy classes of such
involutions in GL(2,Z), depending on whether L has a basis which is permuted by
ρ or has a basis of eigenvectors for ρ. We refer to the first as the rhombic case and
to the second as the rectangular case. If one chooses an inner product on L ⊗ R
that is preserved by the action of the involution, the rhombic case corresponds to the
existence of a basis for L consisting of vectors of the same length swapped by ρ, and
the rectangular case corresponds to the existence of an orthogonal basis for L consisting
of eigenvectors for ρ.

Proposition 11.3 Let H be a group expressed as an extension with kernel L ∼= Z2 and
quotient cyclic of order two, generated by ρ. If the action of ρ on L is rhombic then
H is isomorphic to the wreath product Z o C2 . If the action of ρ on L is rectangular
then H is isomorphic either to the direct product Z× D∞ or to the Klein bottle group
BS(1,−1).

Proof Group extensions with quotient cyclic of order two and kernel a given C2 -
module V are classified by H2(C2; V). In the rhombic case L is a free Z〈ρ〉-module
and so there is only the split extension Z o C2 . In the rectangular case H2(〈ρ〉; L) has
order two. The split extension gives Z × D∞ and the non-split extension gives the
Klein bottle group BS(1,−1).

Example 11.4 Next we consider how this embedding result applies to the groups Gk,m ,
GP and G′P which were defined in Example 9.4.

Let {a, b} be the standard basis for L = Z2 . For each k and m, the matrix Ak/m ,

defined in (5), is inverted by the matrix R =

(
0 1
1 0

)
. If L′ is the submodule of L

spanned by a and mb, then RA a = a and RA mb = −mb + ka. A calculation shows
that the action of R on L = Z2 is rhombic and the action of RA on L′ is rhombic in the
case when k is odd and is rectangular in the case when k is even. Thus in each case the
group Gk,m embeds as an index two subgroup of a group H ∗L′=L′ H′ as in the statement
of Theorem 11.1, where H ∼= Z o C2 . If k is odd, then H′ is also isomorphic to Z o C2 ,
whereas if k is even, then H′ may be taken to be either Z× D∞ or BS(1,−1).

Since the matrix AP , defined in (6), is already in SO(2), there are four possible choices

for R ∈ O(2) ∩ GL(2,Z):
(

0 1
1 0

)
or
(

0 −1
−1 0

)
(rhombic case), or

(
1 0
0 −1

)
or
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(
−1 0
0 1

)
(rectangular case). In the case when L′ = 〈(2,−1)T , (1, 2)T〉 is as large

as possible, a calculation shows that the action of RAP on L′ and the action of R on
L both have the same type. Thus we obtain five potentially different amalgamated
products of the form H ∗L′=L′ H′ that contain GP as an index two subgroup, including
one torsion-free group in which each of H and H′ is isomorphic to BS(1,−1). None of
the possible choices for R swaps (5Z)2 and its image under AP , so we cannot construct
a group of this form containing G′P as an index two subgroup.

Example 11.5 Let us give an explicit presentation for the torsion-free amalgamated

product K = H ∗L′=L′ H′ , where A = AP =

(
3/5 −4/5
4/5 3/5

)
, L′ = 〈(2,−1)T , (1, 2)T〉

and R =

(
−1 0
0 1

)
(rectangular case). Then the group GP from Example 9.4 embeds

in K as a subgroup of index 2, and K ∼= BS(1,−1) ∗Z2 BS(1,−1) has the presentation

〈a, r, c, s ‖ rar−1 = a−1, scs−1 = c−1, a2r−2 = c, ar4 = s2〉,
which can be transformed to the 2-generator and 2-relator presentation

〈r, s ‖ r5s−2r3s−2 = 1, s5r−10s3r−10 = 1〉.

Remark 11.6 Suppose that the hypotheses of both Proposition 10.1 and Theorem 11.1
apply, and we are in the split case (i.e., when r2 = r′2 = 1, H = L o 〈r〉 and
H′ = L′o 〈r′〉). Then the endomorphism φ constructed in the proof of Proposition 10.1
extends to the amalgamated product H ∗L′=L′ H′ via φ(r) = r and φ(r′) = r′ . This
gives examples of free products of virtually Z2 groups amalgamating abelian subgroups
that are non-Hopfian, and, in particular, not residually finite.

Corollary 11.7 In addition to the assumptions of Theorem 11.1, suppose that A
has infinite order. Then the amalgamated product K = H ∗L′=L′ H′ is not virtually
biautomatic.

Proof Indeed, the group G = G(A,L′) is not virtually biautomatic by Theorem 8.5
and, since G has index 2 in K , K cannot be virtually biautomatic by [17, Theorem
4.1.4].

Baumslag, Gersten, Shapiro and Short [6] proved that a free product of two finitely
generated free abelian groups amalgamating any subgroup is always automatic. However,
Bridson [10, Remark 3] noted that amalgamated products of finitely generated virtually
abelian groups can be much wilder; in particular they may not even be asynchronously
automatic. Corollary 11.7 together with Example 11.4 produce examples of similar
spirit.
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12 Closing remarks and open questions

Motivated by the question whether all automatic groups are biautomatic, we tried
checking automaticity of the groups GP and Gk,m from Example 9.4. As part of this
effort, we used the GAP implementation of Holt’s KBMAG software [18, 37] to search
for automatic structures on the groups Gk,2 as defined in Example 9.4 for various
choices of k . In the cases k ∈ {−2, 0, 2} it easily found an automatic structure, while
for k ∈ {−3,−1, 1, 3, 4, 5} it failed to find any automatic structure.

Throughout the rest of this section we assume that n ∈ N, L = Zn , A ∈ GL(n,Q) and
L′ is a finite-index subgroup of L such that A L′ ⊆ L . The questions below concern the
groups G(A,L′), defined in (4).

Question 12.1 Can the group G(A,L′) be automatic when A has infinite order?

As explained in the introduction, the groups G(A, L′) are higher-dimensional analogues
of Baumslag-Solitar groups BS(k, l), which cannot be subgroups of biautomatic groups
unless |k| = |l| [20, Proposition 6.7]. This yields the following question, suggested to
the authors by K.-U. Bux:

Question 12.2 Suppose that G(A,L′) embeds as a subgroup in a biautomatic group.
Does it follow that A has finite order?1

In [19, Question 43] Farb, Hruska and Thomas asked whether every group which acts
properly and cocompactly on a CAT(0) piecewise Euclidean 2-complex is biautomatic.
This question remains open, though one can show that our groups GP and Gk,m ,
−2m < k < 2m, admit geometric actions on CAT(0) piecewise Euclidean 3-complexes.

Andreadakis, Raptis and Varsos [3] described a necessary and sufficient criterion for
an HNN-extension of Zn to be Hopfian. However, it is not obvious how to check
this criterion for any given group G(A,L′). It would be interesting to characterize the
Hopficity of G(A, L′) only in terms of the matrix A and the finite-index subgroup L′ of
L = Zn (in the spirit of the residual finiteness criterion from Proposition 10.4).

Question 12.3 Classify the groups G(A,L′) up to isomorphism2, commensurability
and quasi-isometry.

1A positive answer to this question has recently been announced by M. Valiunas,
arXiv:2104.13688.

2This has recently been completed by M. Valiunas in arXiv:2011.08143.
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We expect that the classification up to isomorphism should be straightforward, while
the classification up to commensurability will be more challenging (it has only recently
been completed by Casals-Ruiz, Kazachkov and Zakharov [15] for the Baumslag-
Solitar groups, which correspond to the case n = 1). For n = 1 the quasi-isometry
classification of Baumslag-Solitar groups was done by Whyte [38]. Suppose that A is
conjugate to an orthogonal matrix in GL(n,R). Then, in view of Corollary 7.4, G(A, L′)
is quasi-isometric to the direct product of Zn with a free group. So, for a fixed n ∈ N,
there are exactly 2 quasi-isometry classes for such A: in the first class L′ = L, A
has finite order and G(A,L′) is virtually Zn+1 , and in the second class L′ is a proper
subgroup of L and G(A,L′) is quasi-isometric to Zn × F2 , where F2 is the free group
of rank 2. In the latter case G(A,L′) is commensurable with Zn × F2 if and only if A
has finite order.

Finally, an observant reader may notice that, according to Theorem 1.1, if the group
G(A,L′) is both CAT(0) and residually finite then it is biautomatic. Thus our methods
leave the following question open.

Question 12.4 Is every residually finite CAT(0) group biautomatic?
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