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Zoë Slade

Abstract

Differential cross sections for Compton scattering are computed at tree level for two

collinear frames - the center of mass frame and the rest frame of the electron. In the

center of mass frame, the differential cross section is found with respect to t, the square

momentum transfer between initial and final state photons. In the electron’s rest frame,

the differential cross section is calculated with respect to scattering angle θ and is shown to

reproduce the Klein-Nishina formula. The dependency of both differential cross sections

on center of mass energy is plotted and the classical cross section of Thomson scattering

is reproduced.
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1 Introduction

The cross section is a physically measurable quantity which gives the likelihood of a scat-

tering event to occur [1]. If we consider a beam of particles incident on a static target

of particles, then the cross section can be thought of as the effective area of the target

which, if intersected by a particle in the beam, will result in an interaction. Crucially, it

is a Lorentz invariant quantity; its value will be independent of the frame we choose to

work in [2].

For our purposes it is useful to define the differential cross section dσ, for the scattering

of two incident particles. With collinear frames, the differential cross section is related to

the square matrix element M (and hence S-matrix element) by [3]

dσ =
1

2Ei12Ei2 |vi1 − vi2 |
|M|2dΠn, (1.1)

where Ei1(Ei2) is the energy of the 1st(2nd) initial state, vi1(vi2) is the velocity of the

1st(2nd) initial state related to the momenta by v = p/p0 and

∫
dΠn =

(∏
f

∫
d3pf
(2π)3

1

2Ef

)
(2π)4δ4

(∑
pf −

∑
pi
)

(1.2)

is known as the phase space integral where pf and Ef denote the momenta and energies

of the final states and pi represents initial state momenta.

Upon integration, equation (1.1) gives the cross section for scattering into the final-

state momentum ranges d3p1...d
3pn [1]. When there are only two products in the final

state, we can consider the likelihood for scattering to occur in some element of solid angle

dΩ = sinθdθdφ [2]. Momentum conservation p1 +p2 = p′1 +p′2 constrains four components

i.e. |p′1| and p′2. This leaves
∫
d3p′1d

3p′2 containing two unconstrained components, which

can manifest themselves as the angles θ and φ of the momentum of one of the particles.

Note that in general the differential cross section is not frame independent as the scattering

angles (θ, φ) depend on the frame of reference.

In the following we compute the differential cross section for Compton scattering e−γ →
e−γ at tree level. We look at two cases of collinear frames - the center of mass frame and

the ”lab” frame, in which the electron is initially at rest. We proceed by calculating the

summed/averaged matrix element for the process, introducing spin and polarization sums.

In the following section we find the phase space integral in the center of mass frame and,

together with the matrix element, build the relevant differential cross section dσ/dt. In

section 3 the phase space integral and subsequently, differential cross section dσ/dcosθ,

are calculated in the rest frame of the electron. An alternative method of finding dσ/dcosθ

is outlined in this section as well. Finally we explore the dependence of the differential

cross sections we find on the center of mass energy of the scattering interaction.
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2 Calculation of the square matrix element

2.1 Matrix element for Compton scattering

Two Feynman diagrams contribute to Compton scattering at tree level:

k k′

γ(k, εr) γ(k′, ε∗r
′
)

e−(p, s)

p p+ k p′

e−(p′, s′) e−(p, s) e−(p′, s′)

p p− k′ p′

k k′

γ(k, εr) γ(k′, ε∗r
′
)

Figure 1: Scattering processes A and B respectively where εr and ε∗r
′

are polarization
vectors of incoming and outgoing photons, s and s′ label the spins of incoming and outgoing
electrons and p and k label momenta.

The matrix elements for processes A and B can be immediately written down from the

Feynman rules. Suppressing spinor indices, we have

iMA = −ie2[ūs′(p′)γµε∗r′µ
(/p+ /k +m)

(p+ k)2 −m2
γνεrνu

s(p)] (2.1)

and

iMB = −ie2[ūs′(p′)γνεrν
(/p− /k′ +m)

(p− k′)2 −m2
γµε∗r

′
µ us(p)], (2.2)

where the factor of iε in the denominator is ignored as we have no integrations over

momenta. As there is no exchange of fermion legs between the two diagrams, there is no

relative minus sign between the two terms in the total matrix element iM, given by

iM = iMA + iMB (2.3)

= −ie2ε∗r′µ εrν [ūs
′
(p′)γµ

(/p+ /k +m)

(p+ k)2 −m2
γνus(p) + ūs

′
(p′)γν

(/p− /k′ +m)

(p− k′)2 −m2
γµus(p)].

Conservation of momentum p + k = p′ + k′, together with the mass shell conditions

p2 = p′2 = m2 and k2 = k′2 = 0, give

(p+ k)2 −m2 = 2p.k and (p− k′)2 −m2 = −2p.k′. (2.4)
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Using these, we can write the total matrix element more simply as

iM = −ie2ε∗r′µ εrν [ūs
′
(p′)γµ

(/p+ /k +m)

2p.k
γνus(p) + ūs

′
(p′)γν

(/p− /k′ +m)

−2p.k′
γµus(p)]. (2.5)

The polarizations and spins of the initial and final states in this process are not mea-

sured experimentally and are therefore summed or averaged over [2]. Specifically we

average over incoming spins and polarizations and sum over outgoing spins and polariza-

tions. We replace |M|2 by the summed/averaged matrix element X in the equation for

the differential cross section (1.1). Thus the relevant quantity we wish to compute is given

by

X =
1

4

∑
s,r,s′,r′

|M|2 (2.6)

=
1

4

∑
s,r,s′,r′

|MA|2 +
1

4

∑
s,r,s′,r′

|MB|2 +
1

4

∑
s,r,s′,r′

MAM∗B +
1

4

∑
s,r,s′,r′

M∗AMB.

For ease of computation in what follows, we rewrite the above as

X =
e4

16

[
ZAA

(p.k)2
+

ZBB
(p.k′)2

− ZAB + ZBA
(p.k)(p.k′)

]
, (2.7)

where

ZAA =
∑

s,r,s′,r′

|ūs′(p′)γµε∗r′µ (/p+ /k +m)γνεrνu
s(p)|2 (2.8)

=
∑

s,r,s′,r′

ε∗r
′

µ εrνε
∗r
σ ε

r′
ρ [ūs

′
(p′)γµ(/p+ /k +m)γνus(p)][ūs

′
(p′)γρ(/p+ /k +m)γσus(p)]∗

=
∑

s,r,s′,r′

ε∗r
′

µ εrνε
∗r
σ ε

r′
ρ [ūs

′
(p′)γµ(/p+ /k +m)γνus(p)ūs(p)γσ(/p+ /k +m)γρus

′
(p′)]

ZBB =
∑

s,r,s′,r′

|ūs′(p′)γνεrν(/p− /k′ +m)γµε∗r
′

µ us(p)|2

=
∑

s,r,s′,r′

εrνε
∗r′
µ εr

′
σ ε
∗r
ρ [ūs

′
(p′)γν(/p− /k′ +m)γµus(p)ūs(p)γσ(/p− /k′ +m)γρus

′
(p′)]

ZAB =
∑

s,r,s′,r′

[ūs
′
(p′)γµε∗r

′
µ (/p+ /k +m)γνεrνu

s(p)][ūs
′
(p′)γρεrρ(/p− /k

′
+m)γσε∗r

′
σ us(p)]∗

=
∑

s,r,s′,r′

ε∗r
′

µ εrνε
r′
σ ε
∗r
ρ [ūs

′
(p′)γµ(/p+ /k +m)γνus(p)ūs(p)γσ(/p− /k′ +m)γρus

′
(p′)]

ZBA =
∑

s,r,s′,r′

[ūs
′
(p′)γµε∗r

′
µ (/p+ /k +m)γνεrνu

s(p)]∗[ūs
′
(p′)γρεrρ(/p− /k

′
+m)γσε∗r

′
σ us(p)]

=
∑

s,r,s′,r′

ε∗rν ε
r′
µ ε

r
ρε
∗r′
σ [ūs(p)γν(/p+ /k +m)γµus

′
(p′)ūs

′
(p′)γρ(/p− /k′ +m)γσus(p)].

4



Here we have used the identity (γµ)† = γ0γµγ0 to perform the complex conjugation. Upon

inspection we see that ZAA is equivalent to ZBB with k ↔ k′ and similarly for ZAB and

ZBA. Hence only two of the four ZXX terms will have to be computed in (2.7).

2.2 Spin and polarization sums

We wish to simplify our ZXX expressions. We proceed by summing over polarizations;

making use of the replacement [2] ∑
r

ε∗rµ ε
r
ν → −ηµν , (2.9)

with ηµν the usual Minkowski metric. Introducing this prescription to ZAA, we obtain

ZAA =
∑
s,s′

ηµρηνσ[ūs
′
(p′)γµ(/p+ /k +m)γνus(p)ūs(p)γσ(/p+ /k +m)γρus

′
(p′)]

=
∑
s,s′

ūs
′
(p′)γµ(/p+ /k +m)γνus(p)ūs(p)γν(/p+ /k +m)γµu

s′(p′). (2.10)

Similarly, for ZAB this substitution yields

ZAB =
∑
s,s′

ūs
′
(p′)γµ(/p+ /k +m)γνus(p)ūs(p)γµ(/p− /k′ +m)γνu

s′(p′). (2.11)

With a view to sum over spins, let us briefly introduce spinor indices (denoted by lower

case roman letters) such that for ZAA for example, we write

ZAA =
∑
s,s′

(ūs
′
(p′))a(γ

µ)ab(/p+/k+m)bc(γ
ν)cd(u

s(p)ūs(p))de(γν)ef (/p+/k+m)fg(γµ)ghu
s′(p′)h.

With all indices explicitly shown, it is clear that we can manipulate the above expression

accordingly

ZAA =
∑
s,s′

(γµ)ab(/p+ /k +m)bc(γ
ν)cd(u

s(p)ūs(p))de(γν)ef (/p+ /k +m)fg(γµ)gh(us
′
(p′)ūs

′
(p′))ha

=
∑
s,s′

Tr[γµ(/p+ /k +m)γνus(p)ūs(p)γν(/p+ /k +m)γµu
s′(p′)ūs

′
(p′)].

Now, Tr(A + B) = Tr(A) + Tr(B), we can trivially take the sum inside the trace and,

using the completeness relation [3]∑
s

us(p)ūs(p) = /p+m, (2.12)
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we can perform the final sum over spins, giving

ZAA = Tr[γµ(/p+ /k +m)γν(/p+m)γν(/p+ /k +m)γµ(/p
′ +m)]. (2.13)

A similar calculation for ZAB yields

ZAB = Tr[γµ(/p+ /k +m)γµ(/p+m)γµ(/p− /k′ +m)γν(/p
′ +m)]. (2.14)

As noted before, ZBB and ZBA are simply given by the interchange k ↔ k′ in expressions

(2.13) and (2.14) respectively.

2.3 Gamma matrices and trace manipulations

To find more useful forms of the ZXX expressions, we use the following properties of the

gamma matrices [1]:

γνγν = 4 (2.15)

γνγργν = −2γρ (2.16)

γνγµγργν = 4ηµρ (2.17)

γνγµγργσγν = −2γσγργµ (2.18)

Tr[γµγν ] = 4ηµν (2.19)

Tr[γµγνγργσ] = 4(ηµνηρσ − ηµρηνσ + ηµσηνρ) (2.20)

Tr[γµ1γµ2 ...γµ2n+1 ] = 0. (2.21)

First of all we use the cyclicity of the trace to write (2.13) as

ZAA = Tr[(/p+ /k +m)γν(/p+m)γν(/p+ /k +m)γµ(/p
′ +m)γµ] (2.22)

= Tr[(/p+ /k +m)(γνγρpργν + γνmγν)(/p+ /k +m)(γµγ
σp′σγ

µ + γµmγ
µ)].

Now using the first two properties (2.15) and (2.16) above, we obtain

ZAA = Tr[(/p+ /k +m)(4m− 2/p)(/p+ /k +m)(4m− 2/p
′)]. (2.23)

Expanding this expression and by use of property (2.21), ZAA reduces to a trace of only

even combinations of gamma matrices (in this case, two or four). We have

ZAA = Tr[16m2
/p/k − 12m2

/p/p
′ + 16m2/k/k − 16m2/k/p

′ (2.24)

+4/p/p/p/p
′ + 4/p/p/k/p

′′ + 4/k/p/p/p
′ + 4/k/p/k/p

′ + 16m4].
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To perform the trace over four gamma matrices, we use identity (2.20). For example,

taking the 7th term in the above expression, this gives

Tr[4/p/p/k/p
′] = 4Tr[γµpµγ

νpνγ
ρkργ

σp′σ]

= 4Tr[γµγνγργσ]pµpνkρp
′
σ (2.25)

= 16(ηµνηρσ − ηµρηνσ + ηµσηνρ)pµpνkρp
′
σ.

Terms involving two gamma matrices require (2.19). For example

Tr[8m2
/p/k] = 8m2Tr[γµγν ]pµkν

= 32m2ηµνpµkν (2.26)

= 32m2pνkν .

After performing the traces over all gamma matrices we find that

ZAA = 64m2(p.k)− 48m2(p.p′)− 64m2k′.p+ 64m2k.k + 64m4 (2.27)

+ 16(p.p′)(p.p) + 32(p.p)(k.p′) + 32(k.p)(k.p′)− 16(k.k)(p.p′),

where we have contracted indices using ηµν . Note that when carrying out the trace over

the m4 term, we have to take account of the implicit 4 by 4 identity matrix i.e. we in fact

compute Tr[16m41] = 16m4Tr[1] where Tr[1] = 4. This explains the appearance of the

cofactor 64.

Again we can use the mass-shell conditions and conservation of momentum to simplify

our expression. From these we obtain

p′.k = p.k′ and p.p′ = m2 + p.k − p.k′. (2.28)

Finally, we have

ZAA = 32(m2p.k + (p.k)(p.k′) +m4). (2.29)

The computation of ZAB follows in the same vein. In this case, the cyclicity of the

trace offers no immediate simplification and we must expand all terms. We find

ZAB = Tr[γµ(/p+ /k +m)γν(/p+m)γµ(/p− /k′ +m)γν(/p
′ +m)] (2.30)

= Tr[8ηµνpµk
′
ν/p/p
′ − 8ηµνpµpν/p/p

′ + 12m2
/p/p− 8m2/k

′
/p

− 8ηµνkµpν/p/p
′ + 8ηµνkµkν/p/p

′ + 8m2
/p/k − 4m2/k

′/k + 12m2
/p/p
′

− 4m2/k
′
/p
′ + 4m2/k/p

′ − 8m4],

where we have employed the additional identities (2.17) and (2.18) in going from the

first to the second equality. After performing traces over gamma matrices and using the
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additional following relations obtained from conservation of momentum,

p′.k′ = p.k and k.k′ = p.k − p.k′, (2.31)

we find

ZAB = 16(2m4 + (p.k)− (p.k′)). (2.32)

Altogether we have

ZAA = 32(m2p.k + (p.k)(p.k′) +m4), (2.33)

ZBB = 32(−m2p.k + (p.k′)(p.k) +m4), (2.34)

ZAB = ZBA = 16m2(2m2 + (p.k)− (p.k′)). (2.35)

Finally, plugging these expressions into our definition (2.36) of the matrix element X, we

obtain

X = 2e4

[
p.k′

p.k
+
p.k

p.k′
+ 2m2

(
1

p.k
− 1

p.k′

)
+m4

(
1

p.k
− 1

p.k′

)2 ]
. (2.36)

3 Differential cross section in center of mass frame

3.1 Phase space integral

The last ingredient we need to calculate in our formula for the differential cross section

(1.1) is the phase space integral. We specialize to a particular frame of reference to obtain

a more explicit expression. Let us choose the center of mass frame for simplicity. We

picture the kinematics as

k = (ω,k)

p = (E,p)

θ

k′ = (ω,k′)

p′ = (E,p)

Figure 2: Compton scattering in the center of mass frame.

Note that the initial and final energy of the photon are the same and similarly for the
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electron. In fact, in the center of mass frame we also have the relation
∑

pi =
∑

pf = 0

and thus k = −p and k′ = −p′.

From the definition (1.2) of the phase space integral, this process gives∫
dΠ2 =

∫
d3p′

(2π)3
d3k′

(2π)3
1

2E′2ω′
(2π)(4)δ4(p′ + k′ − p− k), (3.1)

=

∫
d3k′

(2π)3
1

2E′2ω′
(2π)δ(E′ + ω′ − E − ω).

In going to the second line we have performed the d3p′ integral using the delta function

which sets p′ = −k′ and sends E′(p′)→ E′(k′) =
√
|k′|2 +m2.

Transforming to spherical polar coordinates, we have∫
dΠ2 =

∫
dk′

(2π)3
dΩ|k′|2

2E′2ω′
(2π)δ(E′ + ω′ − E − ω). (3.2)

Using the relation

δ(f(x)− f(x0)) =
δ(x− x0)
|f ′(x0)|

(3.3)

and viewing E′ + ω′ as a function of |k′| (since the zero mass of the photon implies

|k′| = ω′), we can perform the dk′ integral to find∫
dΠ2 =

∫
dΩ

(2π)2
ω′

4E′
E′

(ω′ + E′)
. (3.4)

As the process is symmetric about the collision axis, we can simplify this expression further

by integrating the φ degree of freedom between 0 and 2π and thus∫
dΠ2 =

∫
d cos θ

8π

ω′

ω′ + E′
. (3.5)

3.2 Differential cross section

We now have everything we need to construct the differential cross section for Compton

scattering. In particular we can compute the cross section with respect to the square

momentum transfer between the initial and final state photons, given by the Mandelstam

variable t. In the center of mass frame [1]

t = (k′ − k)2 = −2k.k′ = −2ωω′(1− cos θ), (3.6)

where we have used the mass-shell condition k′2 = k2 = 0 and that cos(180 − θ) = cos θ.

Since the energy of the final state photon is independent of θ in the center of mass frame,
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it is straightforward to express the phase space integral (3.5) in terms of t:

dt = 2ωω′d cos θ =⇒
∫
dΠ2 =

∫
dt

16π

1

ω(ω′ + E′)
. (3.7)

Using the definition (1.1) we are now able to write down an expression for the differential

cross section with respect to t:

dσ

dt
=

1

64π

1

ω2

1

|vi1 − vi2 |
1

E(ω′ + E′)
X. (3.8)

From conservation of energy E + ω = E′ + ω′ and recalling that v = p/p0, we have

E(ω′ + E′)|vi1 − vi2 | = E(ω + E)|k
ω
− p

E
|. (3.9)

Using the conditions |k| = ω and
∑

pi = 0 , the above reduces to

E(ω + E)ω

(
E + ω

Eω

)
= (E + ω)2. (3.10)

Thus our differential cross section simplifies to

dσ

dt
=

1

64π

1

ω2(E + ω)2
X. (3.11)

We can rewrite the above equation completely in terms of Lorentz invariant quantities by

introducing the Mandelstam variable s. In the center of mass frame, s is related to ω by

s = (p+ k)2 = m2 + 2ω(E + ω) (3.12)

=⇒ ω2 =
(s−m2)2

4s
,

where we have used the fact that the center of mass energy Ecm ≡
√
s = (E+ω). Therefore

we find
dσ

dt
=

1

16π

1

(s−m2)2
X. (3.13)

Even though we calculated this differential cross section in the center of mass frame, as it

only contains Lorentz scalars, it holds in any collinear frame of reference.

4 Differential cross section in rest frame of electron

4.1 Phase space integral

We can also analyse Compton scattering in the rest frame of the electron also referred to

as the lab frame. For the kinematics we have
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Before: After:

k = (ω,k)

p = (m,0)

θ

k′ = (ω′,k′)

p′ = (E′,p′)

Figure 3: Compton scattering in the lab frame.

(Note that θ, ω and ω′ do not necessarily have the same values as of those in Figure 2.

We will label the photon’s initial and final energy in the lab frame by ωL and ω′L when

there is a risk of ambiguity.)

To compute the phase space integral in the lab frame, we again use the delta function

to perform the d3p′ integration. This sets p′ = k − k′ due to the electron having zero

initial momentum. We find,∫
dΠ2 =

∫
d3p′

(2π)3
d3k′

(2π)3
1

2E′2ω′
(2π)(4)δ4(p′ + k′ − p− k), (4.1)

=

∫
dk′

(2π)3
dΩω′

4E′
(2π)δ(E′ + ω′ − E − ω). (4.2)

where E′ =
√
|k− k′|2 +m2 =

√
ω2 + ω′2 − 2ωω′ cos θ +m2. As before we perform the

dk′ integral by using identity (3.3) and viewing E′ + ω′ as a function of |k′|. We find∫
dΠ2 =

∫
dΩ

(2π)2
ω′

4E′
1

|1 + ω′−ω cos θ
E′ |

. (4.3)

By conservation of energy E′ + ω′ = m+ ω and integrating over dφ, we have∫
dΠ2 =

∫
d cos θ

8π

ω′

m+ ω(1− cos θ)
. (4.4)

We can simplify this expression by using Compton’s formula for the shift in the photon

wavelength [2]. We derive this as follows:

m2 = (p′)2 = (p+ k − k′)2 = p2 + 2p(k − k′)− 2k.k′

= m2 + 2m(ω − ω′)− 2ωω′(1− cos θ) (4.5)

=⇒ 1

ω′
− 1

ω
=

1

m
(1− cos θ).

11



With this equation (4.4) reduces to

dΠ2 =

∫
d cos θ

8π

(ω′)2

ωm
. (4.6)

4.2 Differential cross section

We are now in a position to write down the differential cross section in the lab frame with

respect to the scattering angle θ. From the definition (1.1) we have

dσ

d cos θ
=

1

2m2ω

1

|vi1 − vi2 |
1

8π

(ω′)2

ωm
X. (4.7)

In the lab frame, the electron is initially at rest so vi2 = 0 and, as the photon is massless,

it follows that |vi1 − vi2 | = 1, hence (4.7) becomes

dσ

d cos θ
=

1

32π

(ω′)2

ω2m2
X. (4.8)

Recall X is given by

X = 2e4

[
p.k′

p.k
+
p.k

p.k′
+ 2m2

(
1

p.k
− 1

p.k′

)
+m4

(
1

p.k
− 1

p.k′

)2 ]
. (4.9)

To evaluate X, we replace p.k and p.k′ by mω and mω′ respectively. We find

X = 2e4

[
mω′

mω
+
mω

mω′
+ 2m2

(
1

mω
− 1

mω′

)
+m4

(
1

ωm
− 1

ω′m

)2 ]

= 2e4

[
ω′

ω
+
ω

ω′
+ 2(cos θ − 1) + (cos θ − 1)2

]
(4.10)

= 2e4

[
ω′

ω
+
ω

ω′
− sin2θ

]
.

where we have used (4.5) in going from the first to the second line.

Putting this altogether we have,

dσ

d cos θ
=
πα2

m2

(
ω′

ω

)2
[
ω′

ω
+
ω

ω′
− sin2θ

]
, (4.11)

where α = e2/4π is the fine structure constant. The resulting equation is the Klein-Nishina

formula [1].
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4.3 Alternative approach

We can also find the result (4.8) by direct conversion of dt to d cos θ. In the lab frame we

have

t = (k′ − k)2 = −2ωω′(1− cos θ), (4.12)

=⇒ dt = −2ωdω′ + 2ωω′d cos θ + 2ω cos θdω′,

where remember ω′ is a function of θ. From Compton’s formula (4.5) we find

dω′ =
(ω′)2

m
d cos θ, (4.13)

and so we have

dt =

[
− 2ω(ω′)2

m
+ 2ωω′ + 2

ω(ω′)2

m
cos θ

]
d cos θ

=

[
2ωω′ − 2(ω′)2

(
ω

m
(1− cos θ)

)]
d cos θ (4.14)

=

[
2ωω′ − 2(ω′)2

(
ω

ω′
− 1

)]
= 2(ω′)2d cos θ.

Hence (
dσ

d cos θ

)
lab

= 2(ω′L)2
(
dσ

dt

)
com

=
1

8π

(ωL)2

(s−m2)2
X, (4.15)

where we have used equation (3.13) in going to the last equality and introduced the

subscript L to show that ω′ is in the photon’s final energy in the lab frame. In the lab

frame s = m2 + 2mω and thus upon substitution for (s−m2), we find(
dσ

d cos θ

)
lab

=
1

32π

(ω′)2

m2ω2
X, (4.16)

which agrees with the previous result (4.8)!

5 Cross section dependence on center of mass energy

5.1 dσ/d cos θ against cos θ

Recall that in the lab frame, our differential cross section was given by

dσ

d cos θ
=
πα2

m2

(
ω′

ω

)2
[
ω′

ω
+
ω

ω′
− sin2θ

]
. (5.1)

13



We want to see how dσ/d cos θ varies, as a function of cos θ, with differing values of
√
s.

To express the above equation as a function of cos θ and s, we first need to substitute for

ω′ using Compton’s formula (4.5). This gives

dσ

d cos θ
=
πα2

m2

(
1+

ω

m
(1−cos θ)

)−2[(
1+

ω

m
(1−cos θ)

)−1
+

(
1+

ω

m
(1−cos θ)

)
+cos2 θ−1

]
.

We can write ω in terms of s in the lab frame by using (5.6):

s = m2 + 2mω =⇒ ω =
s−m2

2m
. (5.2)

Thus for the cross section we have

dσ

d cos θ
=
πα2

m2

(
1 +

s−m2

2m2
(1− cos θ)

)−2[(
1 +

s−m2

2m2
(1− cos θ)

)−1
(5.3)

+

(
1 +

s−m2

2m2
(1− cos θ)

)
+ cos2 θ − 1

]
.

We plot dσ/d cos θ against cos θ for three different values of center of mass energy in

the lab frame: (s−m2)� m2 where
√
s > m, (s−m2) ∼ m2 and s� m2.

(s−m2)� m2

(s−m2) ∼ m2

s� m2

cos θ

dσ/d cos θ(MeV−2)

-1.0 -0.5 0.5 1.0

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

Figure 4: Angular dependence of the differential cross section for three different values of√
s. (s−m2)� m2 in blue, (s−m2) ∼ m2 in mustard and s� m2 in purple.

14



The low energy limit corresponds to ω → 0 which, according to (4.5), implies ω′/ω → 1

and thus the cross section (4.11) becomes

dσ

d cos θ
=
πα2

m2
(1 + cos2 θ) =⇒ σ =

8πα2

3m2
. (5.4)

This is the cross section of classical Thomson scattering of electromagnetic radiation by a

free electron in which there is no observed shift in the photon’s wavelength [1]. The low

energy curve takes its highest values for scattering angles close to 0 or π, indicating that

forward or backwards scattering of the photon are most likely and also equally probable

as the curve is symmetric.

As we move to higher energies, the differential cross section decreases in value as θ → π

evidencing that back scattering becomes increasingly unlikely and forward scattering is

favoured.

Comparing all three curves, we see that scattering is more likely to happen at low

energy for all values of scattering angle θ apart from at θ = 0 when it is equally likely at

all energies considered.

5.2 dσ/dt against t

In the center of mass frame we found the differential cross section was given by

dσ

dt
=

1

16π

1

(s−m2)2
X, (5.5)

where X is given by (2.36). We want to see how dσ/dt behaves, as a function of t, for

differing values of center of mass energy
√
s. For this, we need to express the differential

cross section in terms of the Mandelstam variables [1]:

s = (p+ k)2 = 2p.k +m2, (5.6)

u = (k′ − p)2 = −2k′.p+m2, (5.7)

t = (p′ − p)2 = −2p.p′ +m2. (5.8)

These three variables are related through the identity [1]

s+ t+ u =

4∑
i=1

m2
i , (5.9)

where the sum runs over the four external particles.

In the matrix element X, we replace p.k by 1
2(s−m2) and p.k′ by 1

2(t+ s−m2), using
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equations (5.6) to (5.9). We find

dσ

dt
=

2πα2

(s−m2)2

[
t+ s−m2

s−m2
+

s−m2

t+ s−m2
+ 2m2

(
2

s−m2
− 2

t+ s−m2

)
(5.10)

+m4

(
2

s−m2
− 2

t+ s−m2

)2]
.

We plot dσ/dt against t for three different values of center of mass energy: (s−m2)�
m2 where

√
s > m, (s−m2) ∼ m2 and s� m2.

(s−m2)� m2

t (MeV2)

dσ
dt (MeV−4)

-0.005 -0.004 -0.003 -0.002 -0.001

0.25

0.30

0.35

0.40

0.45

Figure 5: Differential cross section dependence on t for (s−m2)� m2.

At low energy, scattering is most likely to occur for t = 0 and t = −4ω2 corresponding

to scattering angle θ = 0 and θ = π respectively. This plot indicates that forward and

backward scattering are equally likely to happen.
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As energy increases, scattering starts to become less likely at small θ and begins to

dominant for values of θ close to π.

(s−m2) ∼ m2

t(MeV2)

dσ
dt (MeV−4)

-0.12 -0.10 -0.08 -0.06 -0.04 -0.02

0.006

0.007

0.008

0.009

0.010

0.011

0.012

Figure 6: Differential cross section dependence on t for (s−m2) ∼ m2.

The high energy behaviour displayed by the final plot shows that scattering at small

θ is greatly suppressed and that the likelihood of scattering only increases as θ tends to π

and no longer as θ → 0 from π/2. This suggests that the photon is most likely to scatter

backwards as viewed from the center of mass frame.

(s−m2) ∼ m2

t(MeV2)

dσ
dt (MeV−4)

-25 -20 -15 -10 -5

2. ´ 10
-6

3. ´ 10
-6

4. ´ 10
-6

5. ´ 10
-6

Figure 7: Differential cross section dependence on t for s� m2.

Comparing all three curves we see that for all values of t, scattering is again most likely

to happen at low energy.
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6 Discussions

We computed the differential cross sections dσ/dt and dσ/d cos θ in the center of mass

frame and lab frame respectively. We reproduced the Klein-Nishina formula for Comp-

ton scattering in the lab frame which reduced to the cross section for classical Thomson

scattering at low energy. The corresponding low energy curve was unable to account for

the high energy behaviour, displayed by the other curves. Historically, the Compton shift

in the wavelength of the photon gave evidence to the notion that light could behave as

a particle [3]. At high energy the particle nature of light must be taken into account to

explain high energy scattering.
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