
RELATIVITY REVISION NOTES:

1 Time Dilation

A (proper) time interval τ (the time difference between two events at the same place in one
frame of reference), is observed to be dilated to τ ′ in an inertial frame moving with velocity
v relative to the first frame, where

τ ′ =
τ

√

1 − v2/c2

2 Relativistic Energy and Momentum

A particle with mass m and velocity v has total energy (including rest energy), E, given by

E =
mc2

√

1 − v2/c2

and momentum p (vector quantity)

p =
mv

√

1 − v2/c2

These obey the relation
E2

− p2c2 = m2c4

or
E =

√

p2c2 + m2c4.

For a system of particles with energies Ei and momenta pi, the quantity
(

∑

i

Ei

)2

−

(

∑

i

pi

)2

c2

is invariant under Lorentz transformations.

Thus, for example, if we have two particles with masses m1 and m2, with energies EC.M.
1

and EC.M.
2

in the centre-of-mass frame for which the total momentum p1 + p2 = 0, this
quantity is simply

(

EC.M.

1
+ EC.M.

2

)2

.
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If we consider the same system in the rest frame of particle 2, then for particle 2

ELAB

2
= m2c

2, pLAB

2
= 0,

and for particle 1 the energy and momentum are ELAB
1

and pLAB
1

, so that this quantity is
now

(

ELAB

1
+ m2c

2
)2

− (pLAB

1
)2c2 = (ELAB

1
)2 + m2

2
c4 + 2ELAB

1
m2c

2
− (pLAB

1
)2c2.

Using
(ELAB

1
)2

− (pLAB

1
)2c2 = m2

1
c4,

we get

m2

1
c4 + m2

2
c4 + 2m2c

2ELAB

1
=

(

EC.M.

1
+ EC.M.

2

)2

.

There are two interesting special cases

1. The masses are equal m1 = m2 = m, for which this becomes

m2c4 + mc2ELAB

1
= 2

(

EC.M.

1

)2

.

2. Particle 1 is massless, in which case EC.M.
1

= pC.M.
1

c and since pC.M.
1

= −pC.M.
2

, we have

(EC.M.

2
)2 = (EC.M.

1
)2 + m2

2
c4,

and we get

m2

2
c4 + 2m2c

2ELAB

1
=

(

EC.M.

1
+
√

(EC.M.
1 )2 + m2

2c
4

)2

.

PARTICLE DISINTEGRATION

In the rest frame of the decaying particle the momentum is zero therefore by momentum
conservation the total momentum of the two decay particles must be zero. They must come
out back to back with equal and opposite momentum p

� -~
M

(Before) (After)

p p

m1 m2

The energy of decaying particle (which is at rest) is Mc2. The energies of the two decay

particles whose momentum both have magnitude p are
√

m2
1c

4 + p2c2 and
√

m2
2c

4 + p2c2

respectively. Thus conserving energy we have
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Mc2 =
√

m2
1c

4 + p2c2 +
√

m2
2c

4 + p2c2

Case 1: m1 = m2 (= m)

Mc2 = 2
√

m2c4 + p2c2

Squaring gives
M2c4 = 4(m2c4 + p2c2)

From which we get the momentum of the decay particles to be

p =
c

2

√

M2 − 4m2

Case 2: One of the particles is massless, (m2 = 0, m1 = m)
Energy of massless particle with momentum p is pc. Thus we have

Mc2 =
√

m2c4 + p2c2 + pc

We rewrite this as
√

m2c4 + p2c2 = Mc2
− pc

and squaring gives
m2c4 + p2c2 = M2c4

− 2Mc3p + p2c2

Cancelling p2c2 from both sides and rearranging we have for the momentum

p =
(M2

− m2)c

2M

3 Binding Energy

A bound system made up of N particles of mass mi, (i = 1 · · ·N), has a total mass which
is smaller than the sum of the masses of the constituents by an amount equal to the binding
energy divided by c2

M =
N
∑

i=i

mi −
B.E.

c2

4 Relativistic Doppler Shift

If a photon is emitted with frequency ν according to an observer at rest relative to the source
the frequency of the photon measured by an observer moving with velocity v towards the
source is

ν ′ = ν

√

1 + v/c
√

1 − v/c
= ν

(1 + v/c)
√

1 − v2/c2

= ν

√

1 − v2/c2

(1 − v/c)
.
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(For observer moving away from source replace v by −v).

In terms of wavelength λ and λ′ we have (observer moving towards source)

λ′ = λ

√

1 − v/c
√

1 + v/c
= λ

(1 − v/c)
√

1 − v2/c2

= λ

√

1 − v2/c2

(1 + v/c)
.
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